SlideShare a Scribd company logo
1 of 1
Download to read offline
OPTICAL	
  FLOW	
  FOR	
  MOTION	
  ESTIMATION	
  AND	
  TRACKING	
  OF	
  
SUBCELLULAR,	
  CELLULAR	
  AND	
  SUPRACELLULAR	
  DYNAMICS	
  
Mauricio Cerda1, Jorge Jara1,4, Alex Córdova1, Jorge Toledo1,2, Eduardo Pulgar1,3, Carmen-Gloria Lemus1,3, Omar Ramírez1,2, Jarno Ralli5, Miguel Concha3 and Steffen Härtel1	

References	
  
1.  Horn	
  BKP	
  &	
  Schunck	
  BG	
  (1981)	
  Determining	
  op>cal	
  flow.	
  Ar>ficial	
  Intelligence,	
  Vol.	
  17:	
  185–203.	
  
2.  Lucas	
  BD	
  (1985)	
  Generalized	
  image	
  matching	
  by	
  the	
  method	
  of	
  differences.	
  PhD	
  thesis,	
  Robo>cs	
  Ins>tute,	
  Carnegie	
  Mellon	
  University,	
  PiYsburgh,	
  PA,	
  USA.	
  
3.  Bruhn	
  A	
  &	
  Weickert	
  J	
  (2005)	
  Lucas/Kanade	
  Meets	
  Horn/Schunck:	
  Combining	
  Local	
  and	
  Global	
  Op>c	
  Flow	
  Methods.	
  Int.	
  J.	
  of	
  Computer	
  Vision	
  61(3):	
  211-­‐231.	
  
4.  Delpiano	
  J,	
  Jara	
  J,	
  Scheer	
  J,	
  Ramírez	
  O,	
  Ruiz-­‐del-­‐Solar	
  J	
  and	
  S	
  Härtel	
  (2012)	
  Performance	
  of	
  op>cal	
  flow	
  techniques	
  for	
  mo>on	
  analysis	
  of	
  fluorescent	
  point	
  
signals	
  in	
  confocal	
  microscopy.	
  Machine	
  Vision	
  and	
  Applica>ons:	
  23(4):675-­‐689.	
  
5.  Márquez-­‐Valle	
  P,	
  Gil	
  D	
  &	
  Hernández-­‐Sabaté	
  A	
  (2012)	
  Error	
  analysis	
  for	
  Lucas-­‐Kanade	
  Based	
  Schemes.	
  LNCS	
  Vol.	
  7324:	
  184-­‐191.	
  
6.  Stuurman	
  N	
  (2003-­‐9)	
  ImageJ	
  MTrack2	
  tracking	
  plug-­‐in.	
  Ronald	
  D.	
  Vale	
  Lab.	
  at	
  U.	
  of	
  California,	
  San	
  Francisco.	
  
hYp://valelab.ucsf.edu/~nico/IJplugins/MTrack2.html	
  
7.  Friedman	
  JR	
  et	
  al	
  (2010)	
  ER	
  sliding	
  dynamics	
  and	
  ER-­‐mitochondrial	
  contacts	
  occur	
  on	
  acetylated	
  microtubules.	
  J.	
  Cell	
  Biol.	
  Vol.	
  190	
  (3):	
  363–375.	
  
8.  Cai	
  D	
  et	
  al	
  (2009)	
  Single	
  molecule	
  Imaging	
  reveals	
  differences	
  in	
  microtubule	
  track	
  selec>on	
  between	
  kinesin	
  motors.	
  PLoS	
  Biology	
  7(10)	
  e1000216.	
  
Figure	
  1.	
  Four	
  dynamical	
  structures	
  and	
  their	
  simplified	
  models.	
  
a)	
  GABABR1	
  receptors	
  traffic	
  in	
  dendrites	
  (first	
  presented	
  by	
  Delpiano	
  et	
  al	
  [4].	
  b)	
  Cell	
  migra>on	
  in	
  the	
  Kupffer’s	
  
vesicle.	
  c)	
  Microtubule	
  reorganiza>on	
  in	
  COS	
  cells.	
  d)	
  Cell	
  bleb	
  forma>on	
  in	
  the	
  parapineal	
  organ	
  of	
  zebra	
  fish.	
  
IntroducXon	
  
MS-­‐OF	
  improves	
  OF	
  mo>on	
  es>ma>on	
  range	
  by	
  a	
  factor	
  of	
  three,	
  and	
  the	
  performance	
  of	
  HS	
  and	
  CLG	
  
methods	
   are	
   comparable	
   at	
   least	
   in	
   the	
   case	
   of	
   >p	
   growing.	
   We	
   quan>fy	
   and	
   bound	
   OF	
   error	
   for	
  
mo>on	
   es>ma>on	
   in	
   model	
   structures.	
   These	
   results	
   can	
   be	
   used	
   directly	
   to	
   guide	
   biologists	
   in	
  
defining	
  experimental	
  spa>o-­‐temporal	
  sampling	
  acquisi>on	
  rates	
  and	
  parameter	
  serngs	
  when	
  using	
  
OF	
  for	
  mo>on	
  es>ma>on	
  and	
  segmenta>on	
  in	
  >me	
  series.	
  
	
  
When	
   compared	
   with	
   automa>c	
   tracking,	
   OF	
   shows	
   to	
   be	
   less	
   sensi>ve	
   to	
   parameters,	
   and	
   its	
  
performance	
  is	
  comparable	
  to	
  manual	
  segmenta>on	
  and	
  tracking	
  performed	
  by	
  an	
  expert.	
  
Figure	
  2.	
  OF	
  methods	
  evalua>on	
  for	
  model	
  structures	
  (sample).	
  
a)  Parameter	
  op>miza>on	
  (α)	
  for	
  CLG-­‐OF	
  method	
  in	
  the	
  >p	
  model	
  (theore>cal	
  α	
  shown	
  in	
  black).	
  
b)  Maximum	
  detectable	
  speeds.	
  
c)  OF	
  for	
  the	
  >p	
  model	
  at	
  different	
  input	
  speeds,	
  measuring	
  all	
  of	
  the	
  described	
  OF	
  methods.	
  
Figure	
   3.	
   Comparison	
   of	
   speed	
   es>ma>on	
   approaches	
   for	
  
microtubule	
  >p	
  growing.	
  Reported	
  values	
  for	
  speed:	
  
0.044	
  [µm/s],	
  std=0.018	
  [7]	
  and	
  0.08	
  [µm/s]	
  std=0.03	
  [8].	
  	
  
a)	
  Sample	
  image	
  of	
  the	
  microtubule	
  >ps	
  mo>on	
  sequence	
  
(Fig.	
   1c).	
   b)	
   OF	
   vector	
   field	
   computed	
   for	
   the	
   segmented	
  
microtubule	
   >ps.	
   c)	
   Es>mated	
   >p	
   speeds	
   with	
   the	
   tested	
  
methods,	
  using	
  the	
  best	
  parameters	
  for	
  each	
  OF	
  approach.	
  
d)	
   Frequency	
   histograms	
   of	
   es>mated	
   the	
   >p	
   mo>on	
  
speeds.	
  
I.	
  TheoreXcal	
  OF	
  parameter	
  
opXmizaXon	
  
Biological	
  systems.	
  COS-­‐7	
  cells	
  expressing	
  EB3-­‐GFP,	
  pineal	
  cells	
  expressing	
  GFP	
  and	
  dorsal	
  forerunner	
  cells	
  expressing	
  
an	
  ac>ne	
  sensor	
  in	
  zebrafish	
  were	
  studied.	
  Live	
  imaging,	
  deconvolu>on	
  and	
  restoring	
  filters	
  were	
  applied.	
  
	
  
Synthe3c	
  control	
  sequences.	
  Convolu>on	
  of	
  microscopic	
  point	
  spread	
  func>ons	
  with	
  basic	
  morphologic	
  models	
  of	
  
single	
  molecules,	
  membranes	
  and	
  protrusions.	
  Different	
  MS-­‐OF	
  approaches	
  combined	
  with	
  ac>ve	
  contour	
  models	
  
were	
  compared	
  to	
  evaluate	
  vector	
  fields	
  for	
  mo>on	
  es>ma>on	
  and	
  object	
  segmenta>on/tracking.	
  	
  
Model	
  
Cell	
  migra*on	
  
Biology	
  
Bleb	
  forma*on	
  
Microtubule	
  *ps	
  
Protein	
  traffic	
  
a)	
  
b)	
  
c)	
  
d)	
  
t=1	
   t=2	
  
t=1	
   t=2	
   t=3	
  
t=1	
   t=2	
   t=3	
   t=1	
   t=2	
   t=3	
  
t=1	
   t=2	
   t=3	
  
t=1	
   t=2	
   t=3	
  
t=1	
   t=2	
   t=3	
  
Growing	
  microtubule	
  *ps,	
  EB3-­‐GFP	
  (end	
  binding	
  protein)	
  	
  
Lucas	
  &	
  
Kanade	
  (LK)	
  
Horn	
  &	
  
Schunk	
  (HS)	
  
MulX-­‐scale	
  HS	
  
Combined	
  
Local	
  Global	
  
(CLG)	
  
MulX-­‐scale	
  
CLG	
  
1	
  pixel	
  jump	
  	
  
(v=1)	
  
3	
  pixel	
  jump	
  
(v=3)	
  
6	
  pixel	
  jump	
  
(v=6)	
  
12	
  pixel	
  jump	
  
(v=12)	
  
20	
  pixel	
  jump	
  
(v=20)	
  
b)	
  
c)	
  a)	
  
a)	
   b)	
  
Speed	
  
[µm/s]	
  
Speed	
  [µm/s]	
  
We	
  show	
  that	
  the	
  parameters	
  of	
  the	
  OF	
  methods	
  can	
  be	
  automaXcally	
  tuned,	
  in	
  order	
  to	
  increase	
  moXon	
  range	
  
and	
   precision.	
   Next,	
   we	
   compare	
   our	
   OF	
   results	
   with	
   standard	
   methods	
   used	
   by	
   biologists	
   (like	
   tracking)	
   to	
  
compute	
  speed,	
  upon	
  manual	
  and	
  automaXc	
  segmentaXon.	
  	
  
t=1	
   t=2	
  
2.	
  For	
  the	
  HS-­‐OF	
  itera>ve	
  scheme,	
  	
  
	
  	
  	
  	
  	
  	
  is	
  important	
  in	
  areas	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  thus	
  its	
  
value	
   should	
   be	
   equal	
   to	
   the	
   gradient	
   in	
   the	
   areas	
   of	
  
interest.	
  
3.	
  	
  For	
  the	
  CLG-­‐OF,	
  a	
  similar	
  argument	
  can	
  be	
  presented:	
  	
  
	
  	
  	
  	
  is	
  important	
  in	
  areas	
  where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  thus	
  its	
  value	
  
should	
  be	
  equal	
  to	
  the	
  gradient	
  in	
  the	
  areas	
  of	
  interest.	
  	
  
Note	
  that	
  	
  	
  	
  	
  	
  	
  from	
  HS-­‐OF	
  is	
  different	
  than	
  CLG-­‐OF,	
  being	
  
1.	
  For	
  LK-­‐OF,	
  the	
  key	
  step	
  is	
  the	
  inversion	
  of	
  the	
  2x2	
  matrix,	
  A.	
  
The	
  condi>on	
  number	
  	
  	
  	
  	
  	
  quan>fies	
  the	
  upper	
  bound	
  error	
  [5].	
  
where	
  	
  	
  denotes	
  the	
  eigenvalues	
  of	
  matrix	
  A	
  (func>on	
  of	
  the	
  
edges	
  of	
  the	
  image).	
  Pixels	
  where	
  	
  	
  	
  	
  	
  	
  	
  will	
  have	
  bounded	
  
confidence.	
  Therefore,	
  selec>ng	
  those	
  pixels	
  in	
  the	
  area	
  of	
  
interest	
  limits	
  the	
  measurement	
  error.	
  	
  
“Real”	
  speed	
  
mean=.055	
  
std=.022	
  
Tracking-­‐es>mated	
  speed	
  
mean=.15	
  
std=.051	
  
A	
  key	
  ques>on	
  to	
  quan>fy	
  mo>on	
  is	
  to	
  determine	
  the	
  
movement	
  of	
  each	
  pixel…	
  
If	
  we	
  assume	
  grey	
  value	
  constancy	
  between	
  two	
  successive	
  
images	
  at	
  >me	
  t	
  and	
  >me	
  t+1,	
  or	
  
the	
  search	
  for	
  the	
  “best”	
  movement	
  of	
  each	
  pixel	
  (u,v)	
  pixel,	
  
can	
  be	
  formulated	
  as	
  a	
  minimiza>on	
  problem	
  for	
  f(u,v),	
  
Look	
  for	
  (u,v)	
  vectors	
  which	
  are	
  similar	
  in	
  a	
  small	
  image	
  
region	
  p,	
  giving	
  more	
  importance	
  to	
  the	
  center,	
  
In	
  computer	
  vision,	
  methods	
  to	
  minimize	
  f(u,v)	
  have	
  been	
  
proposed	
  assuming	
  different	
  constraints.	
  
Solu>ons	
  for	
  (u,v)	
  are	
  required	
  to	
  be	
  also	
  smooth,	
  
Solu>ons	
  for	
  (u,v)	
  are	
  required	
  to	
  give	
  more	
  importance	
  
to	
  the	
  local	
  informa>on	
  and	
  also	
  to	
  be	
  smooth,	
  
Lucas	
  &	
  Kanade	
  LK-­‐OF	
  [1]	
  
Horn	
  &	
  Schunck	
  HS-­‐OF	
  [2]	
  
Bruhn	
  et	
  al.	
  CLG-­‐OF	
  [3]	
  
Time	
  1	
  
Time	
  2	
  
In	
  order	
  to	
  apply	
  OF	
  methods	
  in	
  biological	
  problems,	
  it	
  is	
  important	
  to	
  know:	
  
(i)  their	
  limits	
  (minimum/maximum	
  speed,	
  error),	
  in	
  order	
  to	
  correctly	
  setup	
  experimental	
  condiXons	
  like	
  sampling	
  rate.	
  	
  
(ii)  how	
  to	
  esXmate	
  opXmal	
  method	
  parameters.	
  
From	
  our	
  model	
  scenarios,	
  we	
  consider	
  the	
  case	
  of	
  >p	
  growing	
  or	
  filopodia	
  (Fig.	
  1c).	
  
First,	
  we	
  use	
  the	
  error	
  in	
  the	
  speed	
  es>ma>on	
  to	
  find	
  an	
  op>mal	
  parameters	
  set	
  when	
  using	
  OF	
  methods	
  (Fig.	
  2a),	
  
and	
  then	
  we	
  test	
  the	
  range	
  of	
  maximum	
  speeds	
  we	
  were	
  able	
  to	
  detect	
  with	
  OF	
  (Fig.	
  2b).	
  	
  
Microtubule	
  network	
  is	
  highly	
  dynamic	
  and	
  it	
  has	
  been	
  shown	
  that	
  it	
  has	
  a	
  typical	
  growing	
  speed	
  due	
  to	
  the	
  
underlying	
  molecular	
  mechanism.	
  
Our	
  goal	
  is	
  to	
  verify	
  that	
  the	
  >p	
  speed	
  can	
  be	
  retrieved	
  using	
  OF,	
  and	
  show	
  the	
  advantages	
  of	
  the	
  technique	
  
when	
  compared	
  with	
  the	
  standard	
  technique	
  of	
  manually	
  marking	
  and	
  measuring	
  the	
  displacement	
  of	
  each	
  >p.	
  
	
  
OF-­‐es>mated	
  speed	
  
mean=.051	
  
std=.029	
  
Results	
  
II.	
  Numerical	
  evaluaXon	
  of	
  OF	
  methods	
  and	
  parameter	
  selecXon	
  for	
  syntheXc	
  models	
  
III.	
  ApplicaXon	
  to	
  microtubule	
  Xp	
  growing	
  (speed	
  detecXon)	
  
Conclusion	
  
MulX-­‐scale	
  CLG	
  (MS-­‐CLG)	
  yields	
  the	
  largest	
  range	
  and	
  lowest	
  error:	
  12	
  pixels/frame,	
  error	
  <	
  1.	
  pixel.	
  
For	
  instance,	
  if	
  a	
  pixel	
  corresponds	
  to	
  0.04	
  [µm]	
  (63x	
  objecXve),	
  an	
  accurate	
  measurement	
  for	
  a	
  movement	
  of	
  
0.08	
  [µm/s]	
  requires	
  at	
  least	
  1	
  image	
  acquired	
  each	
  6	
  seconds.	
  	
  
A	
  pixel’s	
  moXon	
  is	
  represented	
  with	
  a	
  vector	
  (u,v).	
  Over	
  an	
  
image	
  this	
  forms	
  a	
  vector	
  field.	
  
0	
  
0.5	
  
1	
  
1.5	
  
2	
  
2.5	
  
3	
  
3.5	
  
4	
  
4.5	
  
8.333333	
  
33.333332	
  
75	
  
133.33333	
  
208.33333	
  
300	
  
408.33334	
  
533.33331	
  
675	
  
833.33331	
  
1008.3333	
  
1200	
  
1408.3334	
  
1633.3334	
  
1875	
  
2133.3333	
  
2408.3333	
  
2700	
  
3008.3333	
  
3333.3333	
  
3675	
  
4033.3333	
  
4408.3335	
  
4800	
  
5208.3335	
  
v=1	
  
v=2	
  
v=3	
  
v=4	
  
v=5	
  
v=6	
  
Mean	
  error	
  [pixels]	
  
CLG-­‐	
  
0	
  
5	
  
10	
  
15	
  
20	
  
25	
  
v=1	
  
v=2	
  
v=3	
  
v=4	
  
v=5	
  
v=6	
  
v=7	
  
v=8	
  
v=9	
  
v=10	
  
v=11	
  
v=12	
  
v=13	
  
v=14	
  
v=15	
  
v=16	
  
v=17	
  
v=18	
  
v=19	
  
v=20	
  
LK	
  
LK-­‐MS(4)	
  
HS	
  
HS-­‐MS(4)	
  
CLG	
  
CLG-­‐MS(4)	
  
Control	
  
Est.	
  speed	
  [pixels/frame]	
  
Input	
  speed	
  [pixels/frame]	
  
Cell	
  1	
  
Cell	
  2	
  
Microtubule	
  >p	
  segmenta>on	
  approach:	
  
•  First,	
  automa>cally	
  segment	
  microtubule	
  >p	
  using	
  an	
  intensity	
  threshold	
  on	
  the	
  images.	
  
•  Second,	
  manual	
  refinement	
  leaving	
  only	
  the	
  >ps	
  that	
  appear	
  in	
  three	
  consecu>ve	
  frames.	
  
	
  
We	
  compare	
  different	
  speed	
  esXmaXon	
  approaches	
  for	
  Xp	
  moXon:	
  
•  Manual	
  segmentaXon 	
  +	
  standard	
  tracking	
  ImageJ	
  plug-­‐in	
  [6].	
  
•  AutomaXc	
  segmentaXon 	
  +	
  OF	
  with	
  opXmum	
  parameters	
  
•  AutomaXc	
  segmentaXon 	
  +	
  standard	
  tracking	
  ImageJ	
  plug-­‐in.	
  
“Real”	
  
CLG	
  OF-­‐esXm.	
  
HS	
  OF-­‐esXm.	
  
LK	
  OF-­‐esXm.	
  
n=1475	
  
n=38	
  
n=14681	
  
n=14681	
  
n=14681	
  
n=3467	
  
Es*mated	
  speed	
  [µm/s]	
  
histograms	
  
c)	
  
1Laboratory	
  for	
  Scien>fic	
  Image	
  Analysis	
  (SCIAN-­‐Lab),	
  2Laboratory	
  of	
  Cellular	
  and	
  Molecular	
  Neurobiology,	
  and	
  3Laboratory	
  of	
  Experimental	
  Ontogeny	
  (LEO)	
  at	
  Biomedical	
  Neuroscience	
  Ins>tute	
  (BNI)	
  
and	
  Faculty	
  of	
  Medicine;	
  4Department	
  of	
  Computer	
  Sciences	
  (DCC)	
  at	
  Faculty	
  of	
  Physical	
  and	
  Mathema>cal	
  Sciences;	
  Universidad	
  de	
  Chile.	
  5Universidad	
  de	
  Granada.	
  
Materials	
  &	
  Methods	
  
Cell	
   migra>on,	
   forma>on	
   of	
   cellular	
   protrusions	
   (e.g.	
   blebs,	
   filopodia),	
   and	
   structural	
   reorganiza>on	
   are	
   important	
   phenomena	
   in	
   cell	
  
biology.	
  Precise	
  quan>fica>ons	
  of	
  movement/deforma>on	
  are	
  crucial	
  to	
  understand	
  these	
  processes	
  at	
  different	
  levels	
  of	
  organiza>on.	
  We	
  
apply	
   computer	
   vision	
   methods	
   for	
   combined	
   op>cal	
   flow	
   (OF)	
   and	
   mul>-­‐scale	
   (MS)	
   mo>on	
   es>ma>on	
   of	
   membrane	
   transla>ons,	
   end	
  
growing	
  and	
  protrusion	
  forma>on	
  in	
  fluorescence	
  microscopy	
  images.	
  For	
  these	
  cases	
  we	
  bound	
  OF	
  error	
  and	
  op>mal	
  sampling	
  rate,	
  in	
  
order	
   to	
   guide	
   biologists	
   on	
   their	
   experimental	
   condi>ons.	
   We	
   also	
   show	
   the	
   advantages	
   of	
   OF	
   methods	
   compared	
   with	
   manual	
  
segmenta>on	
  and	
  tracking.	
  
→	
  “Real”	
  speed	
  
→	
  OF-­‐es3mated	
  speed	
  
→	
  Tracking-­‐es3mated	
  speed	
  
n=14681	
  
n=14681	
  
n=14681	
  
n=40	
  
Tracking-­‐
esXm.	
  
“Real”	
  
CLG	
  OF-­‐esXm.	
  
HS	
  OF-­‐esXm.	
  
LK	
  OF-­‐esXm.	
  
Tracking-­‐
esXm.	
  
Speed	
  [µm/s]	
  
We	
  propose	
  how	
  to	
  address	
  both	
  ques>ons	
  in	
  five	
  cases	
  that	
  represent	
  any	
  cell	
  deforma>on,	
  as	
  shown	
  in	
  the	
  next	
  sec>on.	
  
Funding:	
  ICM-­‐P09-­‐015-­‐F	
  (BNI);	
  CONICYT	
  scholarships	
  (JJ,	
  AC,	
  JT,	
  EP,	
  CGL);	
  FONDECYT	
  1120579	
  (SH),	
  3110157	
  (MC),	
  1120558	
  (OR)	
  
Abstract	
  
agreement	
  -­‐	
  disagreement	
  

More Related Content

What's hot

Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...
Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...
Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...sipij
 
Object Elimination and Reconstruction Using an Effective Inpainting Method
Object Elimination and Reconstruction Using an Effective Inpainting MethodObject Elimination and Reconstruction Using an Effective Inpainting Method
Object Elimination and Reconstruction Using an Effective Inpainting MethodIOSR Journals
 
V.KARTHIKEYAN PUBLISHED ARTICLE
V.KARTHIKEYAN PUBLISHED ARTICLEV.KARTHIKEYAN PUBLISHED ARTICLE
V.KARTHIKEYAN PUBLISHED ARTICLEKARTHIKEYAN V
 
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...CSCJournals
 
Analysis of pavement management activities programming by particle swarm opti...
Analysis of pavement management activities programming by particle swarm opti...Analysis of pavement management activities programming by particle swarm opti...
Analysis of pavement management activities programming by particle swarm opti...IDES Editor
 
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony OptimizationA Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony OptimizationIRJET Journal
 
Kurmi 2015-ijca-905317
Kurmi 2015-ijca-905317Kurmi 2015-ijca-905317
Kurmi 2015-ijca-905317Yashwant Kurmi
 
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...IJERA Editor
 
Nonlinear prediction of human resting state functional connectivity based on ...
Nonlinear prediction of human resting state functional connectivity based on ...Nonlinear prediction of human resting state functional connectivity based on ...
Nonlinear prediction of human resting state functional connectivity based on ...eSAT Journals
 
Master_paper
Master_paperMaster_paper
Master_paperJoey Hsu
 
Multiple Ant Colony Optimizations for Stereo Matching
Multiple Ant Colony Optimizations for Stereo MatchingMultiple Ant Colony Optimizations for Stereo Matching
Multiple Ant Colony Optimizations for Stereo MatchingCSCJournals
 
NON - EUCLIDEAN METRIC AND PATH PLANNING
NON - EUCLIDEAN METRIC AND PATH PLANNINGNON - EUCLIDEAN METRIC AND PATH PLANNING
NON - EUCLIDEAN METRIC AND PATH PLANNINGIJCSES Journal
 
Ijarcet vol-2-issue-2-471-476
Ijarcet vol-2-issue-2-471-476Ijarcet vol-2-issue-2-471-476
Ijarcet vol-2-issue-2-471-476Editor IJARCET
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

What's hot (18)

Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...
Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...
Speech Recognition Using HMM with MFCC-An Analysis Using Frequency Specral De...
 
Object Elimination and Reconstruction Using an Effective Inpainting Method
Object Elimination and Reconstruction Using an Effective Inpainting MethodObject Elimination and Reconstruction Using an Effective Inpainting Method
Object Elimination and Reconstruction Using an Effective Inpainting Method
 
V.KARTHIKEYAN PUBLISHED ARTICLE
V.KARTHIKEYAN PUBLISHED ARTICLEV.KARTHIKEYAN PUBLISHED ARTICLE
V.KARTHIKEYAN PUBLISHED ARTICLE
 
paper
paperpaper
paper
 
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...
Robust Block-Matching Motion Estimation of Flotation Froth Using Mutual Infor...
 
L046056365
L046056365L046056365
L046056365
 
Analysis of pavement management activities programming by particle swarm opti...
Analysis of pavement management activities programming by particle swarm opti...Analysis of pavement management activities programming by particle swarm opti...
Analysis of pavement management activities programming by particle swarm opti...
 
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony OptimizationA Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
A Survey of Solving Travelling Salesman Problem using Ant Colony Optimization
 
Kurmi 2015-ijca-905317
Kurmi 2015-ijca-905317Kurmi 2015-ijca-905317
Kurmi 2015-ijca-905317
 
D111823
D111823D111823
D111823
 
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...
Compressive Sensing in Speech from LPC using Gradient Projection for Sparse R...
 
Nonlinear prediction of human resting state functional connectivity based on ...
Nonlinear prediction of human resting state functional connectivity based on ...Nonlinear prediction of human resting state functional connectivity based on ...
Nonlinear prediction of human resting state functional connectivity based on ...
 
Master_paper
Master_paperMaster_paper
Master_paper
 
Multiple Ant Colony Optimizations for Stereo Matching
Multiple Ant Colony Optimizations for Stereo MatchingMultiple Ant Colony Optimizations for Stereo Matching
Multiple Ant Colony Optimizations for Stereo Matching
 
NON - EUCLIDEAN METRIC AND PATH PLANNING
NON - EUCLIDEAN METRIC AND PATH PLANNINGNON - EUCLIDEAN METRIC AND PATH PLANNING
NON - EUCLIDEAN METRIC AND PATH PLANNING
 
Ijarcet vol-2-issue-2-471-476
Ijarcet vol-2-issue-2-471-476Ijarcet vol-2-issue-2-471-476
Ijarcet vol-2-issue-2-471-476
 
L0351007379
L0351007379L0351007379
L0351007379
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

Viewers also liked

Herramientas de google
Herramientas de googleHerramientas de google
Herramientas de googleJenifer Procel
 
Folleto la rayuela . kevin linares proyeto 5 2-2
Folleto la rayuela . kevin linares proyeto 5 2-2Folleto la rayuela . kevin linares proyeto 5 2-2
Folleto la rayuela . kevin linares proyeto 5 2-2Vicky Isabel Mayorga
 
Hager c.v (2016)
Hager c.v (2016)Hager c.v (2016)
Hager c.v (2016)Hager Adly
 
1 апреля в мбдоу д
1 апреля  в мбдоу д1 апреля  в мбдоу д
1 апреля в мбдоу дvirtualtaganrog
 
Aprendemos matemática usando redes
Aprendemos matemática usando redesAprendemos matemática usando redes
Aprendemos matemática usando redesnildagramendez
 
Equipo de gestion 2013
Equipo de gestion 2013Equipo de gestion 2013
Equipo de gestion 2013manuelm2014
 
PPS Online Presentation Pygmy Marmoset-Cindy Henry
PPS Online Presentation Pygmy Marmoset-Cindy HenryPPS Online Presentation Pygmy Marmoset-Cindy Henry
PPS Online Presentation Pygmy Marmoset-Cindy Henrychenry2316
 
SWR Brochure v1.5.1_small
SWR Brochure v1.5.1_smallSWR Brochure v1.5.1_small
SWR Brochure v1.5.1_smallJon Frosdick
 

Viewers also liked (16)

Herramientas de google
Herramientas de googleHerramientas de google
Herramientas de google
 
Folleto la rayuela . kevin linares proyeto 5 2-2
Folleto la rayuela . kevin linares proyeto 5 2-2Folleto la rayuela . kevin linares proyeto 5 2-2
Folleto la rayuela . kevin linares proyeto 5 2-2
 
Sem3_nivel1_pérezalonso
Sem3_nivel1_pérezalonsoSem3_nivel1_pérezalonso
Sem3_nivel1_pérezalonso
 
Hager c.v (2016)
Hager c.v (2016)Hager c.v (2016)
Hager c.v (2016)
 
Dfd
DfdDfd
Dfd
 
1 апреля в мбдоу д
1 апреля  в мбдоу д1 апреля  в мбдоу д
1 апреля в мбдоу д
 
Aprendemos matemática usando redes
Aprendemos matemática usando redesAprendemos matemática usando redes
Aprendemos matemática usando redes
 
Big data
Big dataBig data
Big data
 
Equipo de gestion 2013
Equipo de gestion 2013Equipo de gestion 2013
Equipo de gestion 2013
 
Guia de informatica
Guia de informaticaGuia de informatica
Guia de informatica
 
PPS Online Presentation Pygmy Marmoset-Cindy Henry
PPS Online Presentation Pygmy Marmoset-Cindy HenryPPS Online Presentation Pygmy Marmoset-Cindy Henry
PPS Online Presentation Pygmy Marmoset-Cindy Henry
 
SWR Brochure v1.5.1_small
SWR Brochure v1.5.1_smallSWR Brochure v1.5.1_small
SWR Brochure v1.5.1_small
 
Gzzvaldez 2
Gzzvaldez 2Gzzvaldez 2
Gzzvaldez 2
 
distribución normal
distribución normaldistribución normal
distribución normal
 
Plantilla de trabajo del video
Plantilla de trabajo del videoPlantilla de trabajo del video
Plantilla de trabajo del video
 
Proyecto Valeria Duque Castaño
Proyecto Valeria  Duque Castaño Proyecto Valeria  Duque Castaño
Proyecto Valeria Duque Castaño
 

Similar to 2012_SBCCH

A comparison of particle swarm optimization and the genetic algorithm by Rani...
A comparison of particle swarm optimization and the genetic algorithm by Rani...A comparison of particle swarm optimization and the genetic algorithm by Rani...
A comparison of particle swarm optimization and the genetic algorithm by Rani...Pim Piepers
 
Blind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
Blind Source Separation of Super and Sub-Gaussian Signals with ABC AlgorithmBlind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
Blind Source Separation of Super and Sub-Gaussian Signals with ABC AlgorithmIDES Editor
 
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...CSCJournals
 
Investigation of Chaotic-Type Features in Hyperspectral Satellite Data
Investigation of Chaotic-Type Features in Hyperspectral Satellite DataInvestigation of Chaotic-Type Features in Hyperspectral Satellite Data
Investigation of Chaotic-Type Features in Hyperspectral Satellite Datacsandit
 
Multisite UTE 31P Rosette MRSI(PETALUTE)
Multisite UTE 31P Rosette MRSI(PETALUTE)Multisite UTE 31P Rosette MRSI(PETALUTE)
Multisite UTE 31P Rosette MRSI(PETALUTE)Uzay Emir
 
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...IOSRJVSP
 
A comparison of SIFT, PCA-SIFT and SURF
A comparison of SIFT, PCA-SIFT and SURFA comparison of SIFT, PCA-SIFT and SURF
A comparison of SIFT, PCA-SIFT and SURFCSCJournals
 
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemHybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemIOSR Journals
 
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemHybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemIOSR Journals
 
IEEE Bio medical engineering 2016 Title and Abstract
IEEE Bio medical engineering  2016 Title and Abstract IEEE Bio medical engineering  2016 Title and Abstract
IEEE Bio medical engineering 2016 Title and Abstract tsysglobalsolutions
 
Final Paper
Final PaperFinal Paper
Final PaperM M
 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...IJRESJOURNAL
 
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...IOSR Journals
 
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...cscpconf
 
A Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierA Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierCSCJournals
 
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...Christo Ananth
 
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...Pourya Jafarzadeh
 

Similar to 2012_SBCCH (20)

A comparison of particle swarm optimization and the genetic algorithm by Rani...
A comparison of particle swarm optimization and the genetic algorithm by Rani...A comparison of particle swarm optimization and the genetic algorithm by Rani...
A comparison of particle swarm optimization and the genetic algorithm by Rani...
 
Blind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
Blind Source Separation of Super and Sub-Gaussian Signals with ABC AlgorithmBlind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
Blind Source Separation of Super and Sub-Gaussian Signals with ABC Algorithm
 
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
International Journal of Biometrics and Bioinformatics(IJBB) Volume (1) Issue...
 
Investigation of Chaotic-Type Features in Hyperspectral Satellite Data
Investigation of Chaotic-Type Features in Hyperspectral Satellite DataInvestigation of Chaotic-Type Features in Hyperspectral Satellite Data
Investigation of Chaotic-Type Features in Hyperspectral Satellite Data
 
Multisite UTE 31P Rosette MRSI(PETALUTE)
Multisite UTE 31P Rosette MRSI(PETALUTE)Multisite UTE 31P Rosette MRSI(PETALUTE)
Multisite UTE 31P Rosette MRSI(PETALUTE)
 
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...
ElectroencephalographySignalClassification based on Sub-Band Common Spatial P...
 
A comparison of SIFT, PCA-SIFT and SURF
A comparison of SIFT, PCA-SIFT and SURFA comparison of SIFT, PCA-SIFT and SURF
A comparison of SIFT, PCA-SIFT and SURF
 
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemHybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
 
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning SystemHybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
Hybrid Algorithm for Dose Calculation in Cms Xio Treatment Planning System
 
IEEE Bio medical engineering 2016 Title and Abstract
IEEE Bio medical engineering  2016 Title and Abstract IEEE Bio medical engineering  2016 Title and Abstract
IEEE Bio medical engineering 2016 Title and Abstract
 
Dycops2019
Dycops2019 Dycops2019
Dycops2019
 
Final Paper
Final PaperFinal Paper
Final Paper
 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
 
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...
Simulation of the Linear Boltzmann Transport Equation in Modelling Of Photon ...
 
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...
TERRIAN IDENTIFICATION USING CO-CLUSTERED MODEL OF THE SWARM INTELLEGENCE & S...
 
Colombo14a
Colombo14aColombo14a
Colombo14a
 
A Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target ClassifierA Non Parametric Estimation Based Underwater Target Classifier
A Non Parametric Estimation Based Underwater Target Classifier
 
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...
ENHANCING SEGMENTATION APPROACHES FROM FUZZY K-C-MEANS TO FUZZY-MPSO BASED LI...
 
FinalReport
FinalReportFinalReport
FinalReport
 
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...
Online Multi-Person Tracking Using Variance Magnitude of Image colors and Sol...
 

2012_SBCCH

  • 1. OPTICAL  FLOW  FOR  MOTION  ESTIMATION  AND  TRACKING  OF   SUBCELLULAR,  CELLULAR  AND  SUPRACELLULAR  DYNAMICS   Mauricio Cerda1, Jorge Jara1,4, Alex Córdova1, Jorge Toledo1,2, Eduardo Pulgar1,3, Carmen-Gloria Lemus1,3, Omar Ramírez1,2, Jarno Ralli5, Miguel Concha3 and Steffen Härtel1 References   1.  Horn  BKP  &  Schunck  BG  (1981)  Determining  op>cal  flow.  Ar>ficial  Intelligence,  Vol.  17:  185–203.   2.  Lucas  BD  (1985)  Generalized  image  matching  by  the  method  of  differences.  PhD  thesis,  Robo>cs  Ins>tute,  Carnegie  Mellon  University,  PiYsburgh,  PA,  USA.   3.  Bruhn  A  &  Weickert  J  (2005)  Lucas/Kanade  Meets  Horn/Schunck:  Combining  Local  and  Global  Op>c  Flow  Methods.  Int.  J.  of  Computer  Vision  61(3):  211-­‐231.   4.  Delpiano  J,  Jara  J,  Scheer  J,  Ramírez  O,  Ruiz-­‐del-­‐Solar  J  and  S  Härtel  (2012)  Performance  of  op>cal  flow  techniques  for  mo>on  analysis  of  fluorescent  point   signals  in  confocal  microscopy.  Machine  Vision  and  Applica>ons:  23(4):675-­‐689.   5.  Márquez-­‐Valle  P,  Gil  D  &  Hernández-­‐Sabaté  A  (2012)  Error  analysis  for  Lucas-­‐Kanade  Based  Schemes.  LNCS  Vol.  7324:  184-­‐191.   6.  Stuurman  N  (2003-­‐9)  ImageJ  MTrack2  tracking  plug-­‐in.  Ronald  D.  Vale  Lab.  at  U.  of  California,  San  Francisco.   hYp://valelab.ucsf.edu/~nico/IJplugins/MTrack2.html   7.  Friedman  JR  et  al  (2010)  ER  sliding  dynamics  and  ER-­‐mitochondrial  contacts  occur  on  acetylated  microtubules.  J.  Cell  Biol.  Vol.  190  (3):  363–375.   8.  Cai  D  et  al  (2009)  Single  molecule  Imaging  reveals  differences  in  microtubule  track  selec>on  between  kinesin  motors.  PLoS  Biology  7(10)  e1000216.   Figure  1.  Four  dynamical  structures  and  their  simplified  models.   a)  GABABR1  receptors  traffic  in  dendrites  (first  presented  by  Delpiano  et  al  [4].  b)  Cell  migra>on  in  the  Kupffer’s   vesicle.  c)  Microtubule  reorganiza>on  in  COS  cells.  d)  Cell  bleb  forma>on  in  the  parapineal  organ  of  zebra  fish.   IntroducXon   MS-­‐OF  improves  OF  mo>on  es>ma>on  range  by  a  factor  of  three,  and  the  performance  of  HS  and  CLG   methods   are   comparable   at   least   in   the   case   of   >p   growing.   We   quan>fy   and   bound   OF   error   for   mo>on   es>ma>on   in   model   structures.   These   results   can   be   used   directly   to   guide   biologists   in   defining  experimental  spa>o-­‐temporal  sampling  acquisi>on  rates  and  parameter  serngs  when  using   OF  for  mo>on  es>ma>on  and  segmenta>on  in  >me  series.     When   compared   with   automa>c   tracking,   OF   shows   to   be   less   sensi>ve   to   parameters,   and   its   performance  is  comparable  to  manual  segmenta>on  and  tracking  performed  by  an  expert.   Figure  2.  OF  methods  evalua>on  for  model  structures  (sample).   a)  Parameter  op>miza>on  (α)  for  CLG-­‐OF  method  in  the  >p  model  (theore>cal  α  shown  in  black).   b)  Maximum  detectable  speeds.   c)  OF  for  the  >p  model  at  different  input  speeds,  measuring  all  of  the  described  OF  methods.   Figure   3.   Comparison   of   speed   es>ma>on   approaches   for   microtubule  >p  growing.  Reported  values  for  speed:   0.044  [µm/s],  std=0.018  [7]  and  0.08  [µm/s]  std=0.03  [8].     a)  Sample  image  of  the  microtubule  >ps  mo>on  sequence   (Fig.   1c).   b)   OF   vector   field   computed   for   the   segmented   microtubule   >ps.   c)   Es>mated   >p   speeds   with   the   tested   methods,  using  the  best  parameters  for  each  OF  approach.   d)   Frequency   histograms   of   es>mated   the   >p   mo>on   speeds.   I.  TheoreXcal  OF  parameter   opXmizaXon   Biological  systems.  COS-­‐7  cells  expressing  EB3-­‐GFP,  pineal  cells  expressing  GFP  and  dorsal  forerunner  cells  expressing   an  ac>ne  sensor  in  zebrafish  were  studied.  Live  imaging,  deconvolu>on  and  restoring  filters  were  applied.     Synthe3c  control  sequences.  Convolu>on  of  microscopic  point  spread  func>ons  with  basic  morphologic  models  of   single  molecules,  membranes  and  protrusions.  Different  MS-­‐OF  approaches  combined  with  ac>ve  contour  models   were  compared  to  evaluate  vector  fields  for  mo>on  es>ma>on  and  object  segmenta>on/tracking.     Model   Cell  migra*on   Biology   Bleb  forma*on   Microtubule  *ps   Protein  traffic   a)   b)   c)   d)   t=1   t=2   t=1   t=2   t=3   t=1   t=2   t=3   t=1   t=2   t=3   t=1   t=2   t=3   t=1   t=2   t=3   t=1   t=2   t=3   Growing  microtubule  *ps,  EB3-­‐GFP  (end  binding  protein)     Lucas  &   Kanade  (LK)   Horn  &   Schunk  (HS)   MulX-­‐scale  HS   Combined   Local  Global   (CLG)   MulX-­‐scale   CLG   1  pixel  jump     (v=1)   3  pixel  jump   (v=3)   6  pixel  jump   (v=6)   12  pixel  jump   (v=12)   20  pixel  jump   (v=20)   b)   c)  a)   a)   b)   Speed   [µm/s]   Speed  [µm/s]   We  show  that  the  parameters  of  the  OF  methods  can  be  automaXcally  tuned,  in  order  to  increase  moXon  range   and   precision.   Next,   we   compare   our   OF   results   with   standard   methods   used   by   biologists   (like   tracking)   to   compute  speed,  upon  manual  and  automaXc  segmentaXon.     t=1   t=2   2.  For  the  HS-­‐OF  itera>ve  scheme,                is  important  in  areas  where                                        ,  and  thus  its   value   should   be   equal   to   the   gradient   in   the   areas   of   interest.   3.    For  the  CLG-­‐OF,  a  similar  argument  can  be  presented:            is  important  in  areas  where                                                ,  thus  its  value   should  be  equal  to  the  gradient  in  the  areas  of  interest.     Note  that              from  HS-­‐OF  is  different  than  CLG-­‐OF,  being   1.  For  LK-­‐OF,  the  key  step  is  the  inversion  of  the  2x2  matrix,  A.   The  condi>on  number            quan>fies  the  upper  bound  error  [5].   where      denotes  the  eigenvalues  of  matrix  A  (func>on  of  the   edges  of  the  image).  Pixels  where                will  have  bounded   confidence.  Therefore,  selec>ng  those  pixels  in  the  area  of   interest  limits  the  measurement  error.     “Real”  speed   mean=.055   std=.022   Tracking-­‐es>mated  speed   mean=.15   std=.051   A  key  ques>on  to  quan>fy  mo>on  is  to  determine  the   movement  of  each  pixel…   If  we  assume  grey  value  constancy  between  two  successive   images  at  >me  t  and  >me  t+1,  or   the  search  for  the  “best”  movement  of  each  pixel  (u,v)  pixel,   can  be  formulated  as  a  minimiza>on  problem  for  f(u,v),   Look  for  (u,v)  vectors  which  are  similar  in  a  small  image   region  p,  giving  more  importance  to  the  center,   In  computer  vision,  methods  to  minimize  f(u,v)  have  been   proposed  assuming  different  constraints.   Solu>ons  for  (u,v)  are  required  to  be  also  smooth,   Solu>ons  for  (u,v)  are  required  to  give  more  importance   to  the  local  informa>on  and  also  to  be  smooth,   Lucas  &  Kanade  LK-­‐OF  [1]   Horn  &  Schunck  HS-­‐OF  [2]   Bruhn  et  al.  CLG-­‐OF  [3]   Time  1   Time  2   In  order  to  apply  OF  methods  in  biological  problems,  it  is  important  to  know:   (i)  their  limits  (minimum/maximum  speed,  error),  in  order  to  correctly  setup  experimental  condiXons  like  sampling  rate.     (ii)  how  to  esXmate  opXmal  method  parameters.   From  our  model  scenarios,  we  consider  the  case  of  >p  growing  or  filopodia  (Fig.  1c).   First,  we  use  the  error  in  the  speed  es>ma>on  to  find  an  op>mal  parameters  set  when  using  OF  methods  (Fig.  2a),   and  then  we  test  the  range  of  maximum  speeds  we  were  able  to  detect  with  OF  (Fig.  2b).     Microtubule  network  is  highly  dynamic  and  it  has  been  shown  that  it  has  a  typical  growing  speed  due  to  the   underlying  molecular  mechanism.   Our  goal  is  to  verify  that  the  >p  speed  can  be  retrieved  using  OF,  and  show  the  advantages  of  the  technique   when  compared  with  the  standard  technique  of  manually  marking  and  measuring  the  displacement  of  each  >p.     OF-­‐es>mated  speed   mean=.051   std=.029   Results   II.  Numerical  evaluaXon  of  OF  methods  and  parameter  selecXon  for  syntheXc  models   III.  ApplicaXon  to  microtubule  Xp  growing  (speed  detecXon)   Conclusion   MulX-­‐scale  CLG  (MS-­‐CLG)  yields  the  largest  range  and  lowest  error:  12  pixels/frame,  error  <  1.  pixel.   For  instance,  if  a  pixel  corresponds  to  0.04  [µm]  (63x  objecXve),  an  accurate  measurement  for  a  movement  of   0.08  [µm/s]  requires  at  least  1  image  acquired  each  6  seconds.     A  pixel’s  moXon  is  represented  with  a  vector  (u,v).  Over  an   image  this  forms  a  vector  field.   0   0.5   1   1.5   2   2.5   3   3.5   4   4.5   8.333333   33.333332   75   133.33333   208.33333   300   408.33334   533.33331   675   833.33331   1008.3333   1200   1408.3334   1633.3334   1875   2133.3333   2408.3333   2700   3008.3333   3333.3333   3675   4033.3333   4408.3335   4800   5208.3335   v=1   v=2   v=3   v=4   v=5   v=6   Mean  error  [pixels]   CLG-­‐   0   5   10   15   20   25   v=1   v=2   v=3   v=4   v=5   v=6   v=7   v=8   v=9   v=10   v=11   v=12   v=13   v=14   v=15   v=16   v=17   v=18   v=19   v=20   LK   LK-­‐MS(4)   HS   HS-­‐MS(4)   CLG   CLG-­‐MS(4)   Control   Est.  speed  [pixels/frame]   Input  speed  [pixels/frame]   Cell  1   Cell  2   Microtubule  >p  segmenta>on  approach:   •  First,  automa>cally  segment  microtubule  >p  using  an  intensity  threshold  on  the  images.   •  Second,  manual  refinement  leaving  only  the  >ps  that  appear  in  three  consecu>ve  frames.     We  compare  different  speed  esXmaXon  approaches  for  Xp  moXon:   •  Manual  segmentaXon  +  standard  tracking  ImageJ  plug-­‐in  [6].   •  AutomaXc  segmentaXon  +  OF  with  opXmum  parameters   •  AutomaXc  segmentaXon  +  standard  tracking  ImageJ  plug-­‐in.   “Real”   CLG  OF-­‐esXm.   HS  OF-­‐esXm.   LK  OF-­‐esXm.   n=1475   n=38   n=14681   n=14681   n=14681   n=3467   Es*mated  speed  [µm/s]   histograms   c)   1Laboratory  for  Scien>fic  Image  Analysis  (SCIAN-­‐Lab),  2Laboratory  of  Cellular  and  Molecular  Neurobiology,  and  3Laboratory  of  Experimental  Ontogeny  (LEO)  at  Biomedical  Neuroscience  Ins>tute  (BNI)   and  Faculty  of  Medicine;  4Department  of  Computer  Sciences  (DCC)  at  Faculty  of  Physical  and  Mathema>cal  Sciences;  Universidad  de  Chile.  5Universidad  de  Granada.   Materials  &  Methods   Cell   migra>on,   forma>on   of   cellular   protrusions   (e.g.   blebs,   filopodia),   and   structural   reorganiza>on   are   important   phenomena   in   cell   biology.  Precise  quan>fica>ons  of  movement/deforma>on  are  crucial  to  understand  these  processes  at  different  levels  of  organiza>on.  We   apply   computer   vision   methods   for   combined   op>cal   flow   (OF)   and   mul>-­‐scale   (MS)   mo>on   es>ma>on   of   membrane   transla>ons,   end   growing  and  protrusion  forma>on  in  fluorescence  microscopy  images.  For  these  cases  we  bound  OF  error  and  op>mal  sampling  rate,  in   order   to   guide   biologists   on   their   experimental   condi>ons.   We   also   show   the   advantages   of   OF   methods   compared   with   manual   segmenta>on  and  tracking.   →  “Real”  speed   →  OF-­‐es3mated  speed   →  Tracking-­‐es3mated  speed   n=14681   n=14681   n=14681   n=40   Tracking-­‐ esXm.   “Real”   CLG  OF-­‐esXm.   HS  OF-­‐esXm.   LK  OF-­‐esXm.   Tracking-­‐ esXm.   Speed  [µm/s]   We  propose  how  to  address  both  ques>ons  in  five  cases  that  represent  any  cell  deforma>on,  as  shown  in  the  next  sec>on.   Funding:  ICM-­‐P09-­‐015-­‐F  (BNI);  CONICYT  scholarships  (JJ,  AC,  JT,  EP,  CGL);  FONDECYT  1120579  (SH),  3110157  (MC),  1120558  (OR)   Abstract   agreement  -­‐  disagreement