SlideShare a Scribd company logo
1 of 46
Credit Seminar on
STUDIES ON DYNAMICS OF SOIL POTASSIUM AND
EFFECT OF DIFFERENT FORMS ON K AVAILABILITY TO
CROPS.
P. SOWMYA
RAM/2018-91
Dept of Soil science
PROF JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY
College of Agriculture, Rajendranagar,PJTSAU,Hyderabad-30
Course-in-charge: Dr. G. Padmaja
Professor and Head
Dept of SSAC
INTRODUCTION - POTASSIUM
• Potassium is the 3rd most important major nutrient in plant Nutrition.
• Potassium is the most abundant macronutrient in soils. It is also the
seventh most common element in the lithosphere which contains on
average 2.6% potassium.
• The total potassium content of Indian soils varies from 0.5 to 3.0%.
• Total potassium present in soils, more than 98% occurs in primary and
secondary minerals and the rest occurs in either fixed or non
exchangeable form or exchangeable (adsorbed) form or in soil solution.
• The role of potassium in increasing the yield of crops and improving the
quality of produce is the agenda of soil scientists.
ROLE OF POTASSIUM TO INCREASE CROP
YIELD
• Increases growth and improves drought
resistance for crop.
• Activates atleast 60 enzyme systems.
• Maintains turgor; reduces water loss and wilting.
• In photosynthesis and food formation.
• Reduces respiration, preventing energy losses.
• Enhances translocation of sugars and starch.
• Improves weight and quality of grain.
• Builds cellulose and reduces lodging.
• To helps for crop pest and disease resistance.
FIG 1a: POTASSIUM CYCLE
FIG 1b:DYNAMIC EQUILIBRIUM OF POTASSIUM IN SOILS
FIG 2: FORMS OF SOIL K
1.Soil solution k
2.Exchangeable K
3.Non Exchangeable K
4.Mineral K
FIG 3: CONTRIBUTION OF DIFFERENT POTASSIUM
FRACTIONS TO TOTAL K
Akola, Maharastra. Lokya et al, 2018.
FIG 4: MICA WEATHERING AND TRANSFORMATION TO
SECONDARY MINERALS
ISSS
WATER
SOLUBLE K
(mg kg-1)
EXCH K
(mg kg-1)
1 N HNO3
K (mg kg-1)
NON EXC K
(mg kg-1)
CaCl2 K (mg
kg-1)
TOTAL K
(mg kg-1)
0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40
1 9 7.2 171 161 912 968 741 756 22 24.6 4734 4534
2 10.3 7.1 153 153 923 985 803 814 26.6 24 5200 5200
3 9.7 8.1 139 138 826 853 675 684 23.3 23 4866 4800
4 16.9 11.4 176 175 904 924 732 731 26.6 24.6 5600 5266
5 12.6 8.3 140 137 846 864 704 689 23.6 24.3 4900 4534
6 17.1 12.4 180 181 908 962 728 802 24 26.3 5366 5134
7 11.3 9.7 150 147 833 867 672 656 24.6 25.6 5166 5334
Average 12.4 9.2 159 156 879 918 723 736 24 25 5119 4972
Nagaland Odyuo, 2015
TABLE 1: DEPTH WISE DISTRIBUTION OF DIFFERENT FORMS OF K
IN THE SOILS AT DIFFERENT SITES
S
D
TABLE 2: POTASSIUM UPTAKE BY SOYBEAN AS INFLUENCED BY
DIFFERENT LEVELS OF POTASSIUM
K LEVELS (mg kg-1 )
K UPTAKE (mg pot-1)
Grain Stover Total
0 225 36 261
9 291 45 336
18 395 51 446
27 461 58 519
36 478 54 533
45 474 57 531
SEm 7.2 2.0 8.2
CD(P=0.05) 22.3 6.1 25.4
Nagaland Odyuo , 2015
TABLE 3 :DISTRIBUTION OF DIFFERENT FORMS OF POTASSIUM
[c mol(P+)kg-1] IN SOILS
SOIL
ORDER
LOCATION WS K EX K NE K STEP K CR K STEP:CR
K
Inceptisol
Matikata 1.4 21.5 54.3 157.6 1.1 2.9
Sonarpur 1.1 22.6 64.7 124.1 1.4 1.9
Itahar 2.2 33.2 34.1 126.8 2.6 3.7
Mean 1.6 25.8 51 136.2 1.7 2.8
Alfisol
Hutmura 1.9 21.9 56.3 138.8 1.4 2.5
Hura 1.3 21.5 19.7 111 1.1 5.6
Bankura 3.1 25 25 136.7 1.5 4.3
Mean 2.1 22.8 33.7 118.8 1.3 3.5
Entisol
Mithekhali 4.2 29.1 85.5 181.9 1.2 2.1
Itkhola 10.7 21.2 89.8 196.7 1.3 2.2
Meriganj 7.5 24.3 80.1 167.5 1.4 2.1
Mean 7.5 24.9 85.2 182 1.3 2.1
Mohanpur, West Bengal Mani et al., 2016
TABLE 4: CHANGES IN DIFFERENT FORMS OF POTASSIUM [c
mol(p+)kg-1] IN SOILS UPON SUBMERGENCE FOR 30 DAYS
SOIL
ORDER
LOCATION WS K EX K NE K STEP K CR K NET
CHANGE
Inceptisol
Matikata 1.2 -16.9 115.7 147.8 2.2 250
Sonarpur 2.4 -17.2 109.2 291.8 0.3 386.5
Itahar 1.9 -27 138.6 198 1.5 313
Mean 1.8 -20.4 121.2 212.5 1.3 316.4
Alfisol
Hutmura 3.5 -5.1 95.1 166.3 1.5 261.3
Hura 3.7 -11.5 138 200.7 0.3 331.2
Bankura 5.6 -14.3 82.9 220.9 3.4 298.5
Mean 4.3 -10.3 105.3 196 1.8 297.1
Entisol
Mithekhali 5.2 9.4 65.8 246.1 6.7 333.2
Itkhola 3.4 20.4 29.5 270 3.6 326.9
Meriganj 9.2 7.3 72.1 272.8 1.3 362.7
Mean 5.9 12.3 55.8 263 3.9 340.9
Mohanpur, West Bengal Mani et al., 2016
Treatment Water Soluble K Exchangeable K HCl Extractable K Non Exchangeable K
0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45
T1 15.5 13.5 15 39 35.5 35.8 143.9 95 120 616 631 670
T2 13.5 9.4 10.8 51.2 42.8 45.3 155 130 135 625 648 669
T3 10.8 10 10.6 46.6 41 41.1 148.9 125 130 608 639 674
T4 20 17.5 18 66.3 56.6 57.6 180 165 175 682 682 689
T5 22 18 20 77.4 69 70.6 210 185 195 666 671 684
T6 20 15 18 69.4 67 67.8 201.3 175 188.2 667 623 684
T7 20.6 18 20 51.4 48.5 48.8 205 155 185 643 664 716
T8 18 13.4 16.9 70.6 62.9 63.3 180 143.9 155 699 784 785
T9 17.5 10 13.1 58 53.5 56.3 140 135 137.8 609 612 696
T10 23 20 22 72.5 69.4 69.4 185 170 180 739 786 789
LSD
(P=0.05)
0.6 0.6 0.7 1 1.1 1.2 29.5 25.9 28.2 41.28 52.61 54.36
TABLE 5: EFFECT OF CONTINUOUS APPLICATION OF MINERAL FERTILIZERS AND SOIL
AMENDMENTS ON DIFFERENT FORMS OF SOIL K ( mg kg-1)
Palampur Sood et al.2008
T1 control, T2 100% N, T3 100% NP, T4 100% NPK, T5 100% NPK +FYM, T6 100% NPK+Lime,
T7 100% NPK +Zn, T8 100% NPK(-S), T9 50% NPK, T10 150% NPK,
TABLE 6: EFFECT OF CONTINUOUS USE OF MINERAL FERTILIZERS
AND SOIL AMENDMENTS ON YIELD AND K UPTAKE OF MAIZE
TREATMENT GRAIN YIELD ( t ha-1 ) K UPTAKE ( kg ha-1)
T1 control 0.58 6.9
T2 100% N 0.00 0.00
T3 100% NP 3.02 21.3
T4 100% NPK 4.39 37.7
T5 100% NPK +FYM 6.02 53.9
T6 100% NPK+Lime 5.30 42.7
T7 100% NPK +Zn 4.31 32.5
T8 100% NPK(-S) 2.08 18.2
T9 50% NPK 3.26 28.8
T10 150% NPK 4.76 38.7
LSD(P=0.05) 0.54 3.9
Palampur Sood et al.2008
Exch. K
1%
Non-
exch.K
10%
Lattice.K
89%
Inorganic Exch.K
1%
Non-
exch.K
3%
Lattice K
96%
Rice straw
Exch.K
1%
Non-
exch.K
5%
Lattice.
K
94%
FYM
Exch.K
1%
Non-
exch.K
4%
Lattice.K
95%
Rice straw + FYM
Fig 4: Exchangeable (Exch.K), non-exchangeable (Non-exch.K) and lattice K as a proportion of
total K in surface soil (0-7.5 cm depth).
Yadav et al., 2018
PAU, Ludhiana
TREATMENTS POTASSIUM FRACTIONS (mg kg-1)
WS.K EXC.K NON EXC.K LATTICE.K TOTAL K
T1 - 30:75:00 kg
NPK ha-1
26 139 549 10047 10762
T2 - 30:75:30 kg
NPK ha-1
27 143 560 10195 10925
T3 - 30:75:60 kg
NPK ha-1
30 146 572 10351 11098
T4 - 30:75:90 kg
NPK ha-1
34 152 586 10535 11305
SE(m)± 0.43 4.03 1.76 29.68 27.96
CD at 5% 1.31 12.07 5.32 89.45 84.28
TABLE 7 : EFFECT OF DIFFERENT LEVELS OF POTASSIUM ON
ITS FORMS AT HARVEST OF SOYBEAN
Akola, Maharastra Lokya et al, 2018
Treatments Contribution of non-exchangeable K to total K uptake
Yield (q ha-1) Contribution of non-
exchangeable K to
total K uptake
(kg/ha)
Percent
Contribution
(%)
KUE (%)
Grain straw
T1 14.19 21.02 22.39 84.87 -
T2 15.76 25.06 11.53 29.29 5.24
T3 16.56 26.37 5.06 10.24 3.95
T4 17.21 27.04 2.60 9.87 3.36
TABLE 8: CONTRIBUTION OF NON-EXCHANGEABLE K TO
TOTAL K UPTAKE
Akola, Maharastra. Lokya et al, 2018.
POTASSIUM FIXATION
NON EXCHANGEABLE K
SOIL SOLUTION / EXCHANGEABLE K
Factors affecting K Fixation
1.Clay minerals
2.Soil pH
3.Wetting and Drying
4.Potassium Fertilization
TABLE 9 : LEACHING FROM TWO SOILS AFFECTED BY APPLICATION OF
ORGANIC AND INORGANIC FERTILIZERS UNDER FLOODED CONDITION
TREATMENT TOTAL K
ADDED (mg)
TOTAL K LEACHED
(mg/Column)
% OF K APPLIED
Sandy Loam Loam Sandy Loam Loam
RICE STRAW 130.4 58 (18.8) 33 (11.9) 14.4 9.2
WHEAT STRAW 43.6 40.7 (1.5) 24.1 (3.0) 3.4 6.8
POULTRY MANURE 55.3 48.8 (9.6) 26 (4.9) 17.3 8.8
FYM 102.7 41 (1.8) 23.5(2.4) 1.8 2.3
GREEN MANURE 67.3 41.3 (2.1) 23.1(2.0) 3.1 2.9
FERTILIZER K 39.3 45.4 (6.2) 29.8 (8.7) 15.8 22.2
CONTROL - 39.2 21.1 - -
Ludhiana, Punjab Singh et al., 2005
*Amount of K leached (Total – Control)
TABLE 10 : WATER SOLUBLE K IN UPLAND MOISTURE
CONDITIONS
TREATMENT SOIL TYPE
loam (mg/kg) sandy loam (mg/kg)
RICE STRAW 15 9
WHEAT STRAW 10 8
POULTRY MANURE 14 8
FYM 12 8
GREEN MANURE 14 10
FERTILIZER K 12 10
CONTROL 10 6
CD 3.8 2.7
Ludhiana, Punjab Singh et al., 2005
LANDUSE SYSTEM WS K EX K NE K MINERAL K TOTAL K FIX : EXC K
Agri - Rice 12.1 137.5 228.8 1.31 1.35 1.66
Agri - Tobacco 13.6 65.4 205.8 1.36 1.39 3.16
Horti – Arecanut 14.8 120.7 303.4 0.99 1.04 2.51
Silvi - Eucalyptus 12.9 104.5 303.1 1.15 1.20 2.90
Control 11.9 64.4 168.1 1.23 1.26 2.63
TABLE 11: POTASSIUM FIXATION CAPACITY OF SURFACE SOIL
SAMPLES UNDER DIFFERENT LAND USE SYSTEMS
LANDUSE SYSTEM BWD( mg/kg) AWD(mg/kg) K FIXED[Cmol (p+) kg-1] % K fixed
Agri - Rice 1155 1046 0.27 10.7
Agri - Tobacco 1138 984 0.39 15.4
Horti – Arecanut 1157 967 0.48 18.8
Silvi - Eucalyptus 1129 883 0.62 24.5
Control 1288 1063 0.57 22.4
Gurumurthy and Prakasha, 2011
Karnataka
TABLE 12: CORRELATION BETWEEN UPTAKE OF K AND DIFFERENT K
FORMS IN SOIL
Stage Forms of K
Water Soluble Exchangeable Hcl Soluble Non
Exchangeable
0-15 15-30 0-15 15-30 0-15 15-30 0-15 15-30
Stolonization 0.48 0.36 0.50 0.40 0.39 0.38 -0.10 0.21
Tuberisation 0.62* 0.74** 0.69** 0.54* 0.67*
*
0.59* -0.43 0.29
Harvest 0.56* 0.58* 0.90** 0.83** 0.79*
*
0.85** 0.64* -0.30
Subehia et al., 2003
Palampur, Himachal Pradesh
Correlation among different forms of soil Potassium
Soil
Properties
Forms of Potassium
Water
soluble
Exchangeable Available Non-
Exchangeable
Lattice Total
Sand 0.17 -0.176 -0.168 0.205 0.453* 0.436*
Silt -0.09 -0.028 -0.029 -0.306 -0.184 -0.200
Clay -0.164 0.249 0.240 -0.184 -0.447* -0.413*
pH -0.230 -0.098 -0.100 -0.249 -0.362* -0.375*
EC 0.411* 0.518** 0.514** 0.236 0.359 0.402*
Organic
Carbon
0.091 0.171 0.171 0.058 -0.017 0.002
Free CaCO3 -0.041 -0.211 -0.206 0.046 0.117 0.159
Kaskar et al., 2001
Dapoli, Maharashtra
TABLE 13: QUANTITY INTENSITY RELATIONSHIP IN
AVAILABILITY OF POTASSIUM
• Beckett (1964)
• The Theory is based on exchange reactions
between Ca, Mg, and K.
• The Q/I concept is used for predicting the
status of potassium in soils
• It is the quantity relationship between
exchangeable K (Q quantity) and the activity
of potassium in the soil solution (I intensity).
Fig 6: A typical Q/I relationship showing different parameters
in relation to potassium availability in soils.
• ∆K = Amount through which the soil
gains or losses potassium in bringing
equilibrium (Q, quantity factor).
• ARK = Activity ratio of potassium (I,
intensity factor).
• ARK
e = Activity ratio of potassium at
equilibrium
• ∆Kex = Exchangeable or labile pool of
potassium
• Ksp = Specific sites for potassium
• PBCK = Potential buffering capacity
TABLE 14: FORMS OF POTASSIUM IN KHAMMAM SOILS OF
ANDHRA PRADESH
VILLAGE TEXTURE WS K EX K NE K TOTAL K
Vasanthavada Sand 37.3 117.5 883 19680
Kunavaram Loamy Sand 35.4 148.8 608 13607
Narsapuram Sandy Loam 23.9 130.9 575 18421
N.P.Banjar Sandy Loam 44.2 276.6 1009 15755
Vaddigudem Clay Loam 11.3 135.3 378 8233
Velerupadu Silty Clay Loam 19.8 330.2 914 9234
Amaravaram Silty Clay Loam 18.2 259.1 676 10513
Kukunur Clay 15.8 358.9 1532 11883
Khammam Rao and Murthy, 2007
SOIL TEXTURE KL K0 Kx ARK
O PBC K
Vasanthavada Sand 0.41 0.20 0.21 10.0 40
Kunavaram Loamy Sand 0.59 0.37 0.22 4.0 65
Narsapuram Sandy Loam 0.50 0.25 0.25 3.0 70
N.P.Banjar Sandy Loam 0.60 0.27 0.33 7.0 70
Vaddigudem Clay Loam 0.40 0.20 0.20 2.5 90
Velerupadu Silty Clay
Loam
0.20 0.10 0.10 1.6 90
Amaravaram Silty Clay
Loam
0.50 0.34 0.16 1.6 200
Kukunur Clay 0.60 0.43 0.17 2.2 340
TABLE 15: QUANTITY INTENSITY PARAMETERS OF
KHAMMAM SOILS , ANDHRA PRADESH
Khammam Rao and Krishnamurthy, 2007
Units : cmol kg-1
TABLE 16: EFFECT OF K RATES ON DIFFERENT K FRACTIONS
K LEVEL(Kg ha-1) WSK EX.K AV.K HNO3 K NEK
mg/Kg
0 11 40 52 430 378
25 16 59 75 487 412
50 17 61 79 509 430
75 20 68 89 498 409
100 21 74 95 518 423
CD(P=0.05) 5 8 8 20 14
TABLE 17: EFFECT OF K RATES ON Q/I PARAMETERS OF K
K LEVEL(Kg ha-1) KL K0 KX AreK(×10-3) PBC K[cmol(p+)kg-1] ×10-3
cmol(p+)kg-1
0 0.10 0.06 0.04 2.85 28.35
25 0.13 0.09 0.04 2.99 35.20
50 0.20 0.12 0.08 3.52 41.19
75 0.26 0.18 0.08 4.91 47.02
100 0.30 0.23 0.07 7.69 38.18
CD(p=0.05) 0.06 0.06 NS 1.31 NS
Bhubaneswar, Orissa Byju et al., 2002.
FIG 7: POTASSIUM RELEASING POWER OF DIFFERENT SOIL
TYPES IN PULSE GROWING REGIONS OF INDIA
Kanpur, Uttar
Pradesh
Rao et al., 2003
(Alfisol) (Vertisol)
(Inceptisol)
FIG 8: K RELEASE IN DIFFERENT TYPES OF SOILS
Kanpur, Uttar
Pradesh
Rao et al., 2003
• CONCENTRATION RATIO
OF POTASSIUM IN
SATURATION EXTRACT (
CRK
Se )
• BUFFERING CAPACITY (
BCK
Se )
• UNIFIED SOIL QUANTITY
INTENSITY CHARACTER
(USQI factor)
PARAMETERS DERIVED FROM K CONCENTRATION IN
SATURATION EXTRACT
CRK
Se = CK/(Ca+ Mg)0.5
BCK
Se = Kam/ CRK
Se
USQI Factor = Kam ×ρ CRK
Se
ρ= -ve log of CRK
Se
TABLE 18: PARAMETERS DERIVED FROM CONCENTRATION OF K IN SATURATION
EXTRACT AND 1N NH4OAC EXTRACTABLE K OF RANGA REDDY DISTRICT
S.No Village Composition of the
saturation extract
CRK
Se (me
l-1)
Kam in
me
100g-1
BCK
Se (me 100g-
1) /(me l-1)0.5
USQI Factor (me
100g-1)0.5*(me l-
1)0.5
K me l-1 Ca + Mg in me l-1
1 Chenvelli 0.24 7.6 0.086 0.48 5.62 0.741
2 Kathagadi 0.23 6.4 0.089 0.40 4.48 0.663
3 Masireddypalli 0.27 5.4 0.118 0.17 1.47 0.387
4 Muduchinthala
palli
1.41 13.8 0.378 1.14 3.02 0.451
5 Keesara 0.32 6.2 0.128 0.64 5.01 0.715
6 Bogaram 0.39 6.0 0.158 0.32 2.04 0.455
7 Manchal 0.38 22.2 0.081 0.32 3.99 0.620
8 Kongarakonal 0.40 9.2 0.133 0.58 4.35 0.666
9 Kocharam 0.56 22.0 0.119 0.42 3.50 0.597
10 Rajendranagar 0.26 7.0 0.100 0.36 3.56 0.567
Range 0.23-
1.41
5.4-22 0.081-
0.378
0.21-
1.14
1.47-12.36 0.387-1.104
Chaitanya, 2016
Rajendranagar
TABLE 19: ESTIMATION OF POTASSIUM IN SOILS THROUGH CHEMICAL
EXTRACTANTS
METHOD COMPOSITION OF EXTRACTANT SOIL:
EXTRACTA
NT RATIO
SHAKIN
G TIME
(MIN)
REFERENCE
Distilled water Distilled water 1: 10 60 Grewal and Kanwar (1966)
1 N NH4OAC 1 N Ammonium Acetate at pH (7.0) 1 : 5 5 Stanford and English (1949)
0.01 M CaCl2 0.01 M CaCl2 1: 10 120 Houba et al. (1990)
1 N HNO3 1 N HNO3 1 : 10 10 DeTurk. 1941
AB-DTPA 1 M NH4HCO3 + 0.005 M DTPA 1 : 2 15 Soltanpour and Schwab
(1977
0.03M NaBPh4 sodium tetraphenylboron 1 : 6 15 Scott et al. (1960)
1.38 N H2SO4 1.38 N H2SO4 1 : 10 15 (Hunter and Pratt, 1958)
TABLE 20: EXTRACTION OF DIFFERENT FORMS OF K (mg kg-1) USING
VARIOUS EXTRACTANTS IN SOILS OF RANGA REDDY DISTRICT
S.No Village Distilled water
extractable K
1N NH4OAc
extractable K
1.38N H2SO4
extractable K
0.03M Na BPh4
extractable K
Boiling 1HNO3
extractable K
1 Chenvelli 18 188 396 81 1100
2 Kathagadi 20 156 376 81 1000
3 Masireddypalli 45 68 356 82 850
4 Muduchinthalapal
li
56 446 500 82 2340
5 Keesara 25 250 412 81 1700
6 Bogaram 51 126 376 83 1210
7 Manchal 25 126 380 82 1140
8 Kongarakonal 57 226 416 82 1300
9 Kocharam 25 163 388 83 1690
10 Rajendranagar 24 139 396 81 1300
Range 18-57 68-446 356-500 81-85 850-2340
Chaitanya, 2016
Rajendranagar
TABLE 21: EFFECT OF RATE OF K APPLICATION ON AVAILABLE K STATUS OF SOIL
AFTER HARVEST
Season Crop K Levels (kg K2O ha-1 ) CD (p=0.05)
0 20 40 60
Initial 2002 160 160 159 160 -
Kharif 2002 Cluster bean (direct) 158 159 162 163 NS
Rabi 2002-03 Mustard (residual) 156 157 159 161 NS
Kharif 2003 Cluster bean (direct) 155 158 160 164 8
Rabi 2003-04 Mustard (residual) 153 156 158 162 7
Kharif 2004 Cluster bean (direct) 152 156 158 162 7
Rabi 2004-05 Mustard (residual) 151 156 159 163 8
Kharif 2005 Pearlmillet (direct) 145 153 158 162 8
Rabi 2005-06 Mustard (residual) 142 151 156 161 8
Kharif 2006 Pearlmillet (direct) 137 147 153 159 8
Rabi 2006-07 Mustard (residual) 133 145 152 157 7
Kharif 2007 Pearlmillet (direct) 128 142 150 156 7
Rabi 2007-08 Mustard (residual) 125 140 148 155 7
Haryana Yadav et al., 2011
TABLE 22: EFFECT OF POTASSIUM APPLICATION ON MEAN YIELD AND
K UPTAKE BY CLUSTER BEAN – MUSTARD CROPPING SYSTEM
K LEVEL (kg/ha) YIELD (t/ha) K UPTAKE (kg/ha)
Cluster bean Mustard Cluster bean Mustard
Seed Straw Seed Straw Seed Straw Seed Straw
0 0.85 1.70 1.81 5.82 9.3 30.1 8.8 58.7
20 0.95 1.87 1.93 6.02 12 37 11.5 68.7
40 1.01 1.93 2.02 6.15 13.3 41.5 13.8 76.9
60 1.02 2.01 2.06 6.23 14.1 45.2 14.7 83.4
CD (p=0.05) 0.09 0.12 0.16 0.39 1.1 3.0 0.8 4.1
Pearl millet Mustard Pearl Millet Mustard
0 2.41 5.24 1.76 4.75 10 113 8.9 46.7
20 2.55 5.50 1.81 4.87 11.2 127.8 10.6 54
40 2.68 5.76 1.86 4.98 12.6 151.1 12.5 58.9
60 2.75 5.99 1.93 5.14 13.6 174.6 14 64
CD (p=0.05) 0.19 0.37 0.13 0.32 0.8 5.4 0.6 2
Haryana Yadav et al., 2011
FIG 9: NON-EXCHANGEABLE (FIXED) K AFTER 23 YEARS OF
EXHAUSTIVE CROPPING (kg/ha)
0
200
400
600
800
1000
1200
1400
1600
1800
2000
100% NP 100%NPKZnS 100%NPKZnS + FYM FYM
NEK
(
kg/ha
)
TREATMENTS
MANDYA
MARUTERU
TITABAR
Rao et al., 2013
TABLE 23: DISTRIBUTION OF POTASSIUM FRACTIONS (mg kg-1)
IN SOIL PROFILE
Treatm
ents
WATER SOLUBLE
K
EXCH.K NON EXCH. K LATTICE K TOTAL K
DEPTH 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
50% NPK 18.6 16.1 15.6 105.1 102.9 96.9 750 721 705 3933 3409 3132 4807 4249 3950
100% NPK 21.9 18.3 17.6 112.8 108.3 101.9 770 742 724 4035 3507 3421 4939 4375 4265
150% NPK 22.8 20.6 19.5 119.3 117.5 112.4 813 773 763 4353 3656 3447 5307 4567 4342
100% NPK
+FYM
24.9 22.8 21.9 122.8 120.1 115.6 885 818 786 4366 3756 3518 5398 4716 4441
CONTROL 15.6 12.1 10.6 85.8 83.9 79.7 736 706 694 3856 3319 2848 4693 4121 3632
CD(p=0.05
)
4.4 2.1 2.9 9.6 8.2 7.1 88 114 85 588 436 437 598 419 459
INITIAL
VALUE(197
2)
35.3 149.7 910 4419 5514
Sawarkar, 2013
Jabalpur, Madhya Pradesh
Depth 1 : 0-20 cm, 2 : 20-40 cm, 3 : 40-60 cm.
TABLE 24: EFFECT OF DIFFERENT TREATMENTS ON AVAILABLE K
AFTER 36 CYCLES
TREATMENTS AVAILABLE K CHANGES
FROM
INITIAL
TOTAL K
ADDED
TOTAL K
UPTAKE
K BALANCE
50% NPK 247 -123 830 5113 -4283
100% NPK 269 -101 1660 6974 -5314
150% NPK 284 -86 2490 8284 -5794
100%NPK
+FYM
295 -75 5703 9134 -3431
CONTROL 202 -168 5113 1994 -1994
Jabalpur, Madhya Pradesh Sawarkar, 2013
Initial (1972) : 370 kg/ha
TABLE 26: DIFFERENT FORMS OF K (mg/kg) INFLUENCED BY
MANURES AND FERTILIZERS
TREATMENTS WSK EXK AVAIL.K NEK TOTAL K
CONTROL 4 45 49 241 6012
100 % N 5 45 50 299 6987
100 % NP 6 44 50 315 6026
50 % NPK 5.7 49.3 55 342 6375
100% NPK 6 56 62 337 6812
150 % NPK 8 61 69 339 6987
100 % NPK-S 6 55 61 298 6415
100% NPK + Zn 7 55 62 369 6638
100 % NPK + FYM 10 57 67 377 7262
CD (P=0.05) NS 7.2 9.2 108 905
INITIAL 10 48 58 355 6467
Pantnagar, Uttarakhand Singh et al., 2014
TABLE 25: K BALANCE AFFECTED BY 40 YEARS OF APPLICATION OF OM
AND FERTILIZERS
TREATMENT K ADDED (kg/ha) K
REMOVE
D(kg/ha)
K
BALANCE
(kg/ha)
K
BALANCE
(kg/ha/Yr)
FERT OM IW TOTAL
CONTROL 0 - 2000 2000 3911 -1911 -47.8
100 % N 0 - 2000 2000 6845 -4845 -121.1
100 % NP 0 - 2000 2000 7088 -5088 -127.2
50 % NPK 1460 - 2000 3460 6847 -3027 -75.7
100% NPK 2920 - 2000 4920 7171 -2251 -56.3
150 % NPK 4380 - 2000 6380 7354 -974 -24.4
100 % NPK-S 2920 - 2000 4920 7224 -2304 -57.6
100% NPK + Zn 2920 - 2000 4920 7645 -2725 -68.1
100 % NPK + FYM 2920 4800 2000 9720 8218 +1502 +37.6
Pantnagar, Uttarakhand Singh et al., 2014
IW Contains 5 mg K L-1. Hence, annual addition of K is 50 kg/ha/yr.
FERT – Fertilizer, OM – Organic Manure, IW – Irrigation Water.
TABLE 27: ACCUMULATION OF DIFFERENT FORMS OF
K AFTER HARVEST
TREATMENT AV.K WS.K EXC.K NEXC.K
N0P0K0 720 78 560 11890
N120P0K0 682 74.8 500 11742
N180P0K0 662 64.4 476 10266
N120P40K0 622 55.6 484 9518
N180P40K0 536 58.2 382 9786
N120P80K0 530 58.4 458 10048
N180P80K0 598 51.6 438 10542
N120P40K40 838 83.6 628 12064
N180P40K40 718 91.2 490 12256
N120P80K40 660 86 448 11912
N180P80K40 702 71.2 524 11416
Ludhiana, Punjab Setia et al., 2004.
TABLE 29: EFFECT OF K APPLICATION ON DRYMATTER ACCUMULATION (g plot -1)
IN MAIZE
S.No Village Levels of K (mg kg-1 soil)
K0 K50 K100 K200 Mean
1 Mayaluru 13.83 15.58(12.7) 16.43(18.8) 15.84(14.5) 15.42
2 G.puram 16.75 18.20(8.7) 17.94(7.1) 18.36(9.6) 17.81
3 Bodavada 15.12 18.14(20.0) 17.63(16.6) 17.33(14.6) 17.06
4 Lam 15.62 17.40(11.4) 18.43(18.0) 19.22(23.1) 17.67
5 P.prolu 14.65 15.33(4.6) 15.60(6.5) 15.20(3.8) 15.20
6 Arepet 13.40 15.05(12.3) 15.61(16.5) 15.30(14.2) 14.84
7 T.Palle 12.25 13.87(13.2) 14.15(15.5) 14.48(18.8) 13.69
8 Mudhole 16.10 18.08(12.3) 19.26(19.6) 18.53(15.1) 17.99
9 Buppapur 16.54 17.92(8.4) 18.10(9.4) 18.44(11.5) 17.75
10 Sultanpur 18.95 19.10(1.0) 19.87(4.9) 21.63(14.1) 19.89
Mean 16.16 17.53 18.23 18.64
C.D Values K levels= 0.391
Soils = 0.781
K levels*soils=1.563
Figures in parentheses indicate the % response.
Surekha et al., 1997
Andhra Pradesh
TABLE 28: POTASSIUM UPTAKE OF RICE (g pot-1) AT THREE PHYSIOLOGICAL
STAGES
Treatments Active tillering Panicle
Initiation
Harvest
Grain Straw Root
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2
Control 0.038 0.049 0.151 0.105 0.057 0.047 0117 0.096 0.025 0.017
NPK 0.098 0.86 0.256 0.173 0.123 0.100 0.384 0.252 0.043 0.078
NPK+GM 0.083 0.105 0.868 0.748 0.329 0.312 0.689 0.572 0.101 0.091
NPK + Gypsum 0.079 0.098 0.344 0.217 0.200 0.124 0.442 0.27 0.048 0.032
NPK+ ZnSO4+ GM 0.109 0.131 1.015 0.729 0.352 0.364 0.734 0.655 0.119 0.092
NPK+ EDTA-Zn+ GM 0.095 0.121 0.965 1.07 0.356 0.365 0.762 0.781 0.156 0.128
NPK+ Gypsum + GM 0.111 0.094 1.099 0.840 0.357 0.325 0.779 0.667 0.153 0.125
NPK+ ZnSO4+ Gypsum+Gm 0.123 0.164 1.173 0.888 0.454 0.377 1.025 0.804 0.202 0.160
Mean 0.089 0.099 0.646 0.523 0.254 0.240 0.563 0.460 0.091 0.079
S*T 0.013 0.026 0.045 0.093 0.016 0.033 0.020 0.042 0.017 0.034
Coimbatore, Tamil Nadu Mythili & Natarajan. 2003
S1: ClayLoam S2 : Sandyloam
CONCLUSIONS
• Recycling through crop residue management holds a great promise
in this respect as 80% of the K assimilated is contained in vegetative
parts
• Soils require judicious and frequent application of potash fertilizers
to prevent leaching losses for better crop production..
• There is a need to consider K fixing capacity of soils, soil texture, soil
type and other factors for giving potassium recommendation to
crops.
• Continuous cropping without manures and fertilizers devoid of K
results in imbalanced fertilization by reducing availability of K. So,
use of chemical fertilizers along with organic manures improves the
availability of K to plants which increases yields.
-Mata Bhumih Putroham
Prithivyah
-The Nation that destroys
it’s soils, destroys itself

More Related Content

What's hot

Unit 1 lecture-1 soil fertility and soil productivity
Unit 1 lecture-1 soil fertility and soil productivityUnit 1 lecture-1 soil fertility and soil productivity
Unit 1 lecture-1 soil fertility and soil productivityLuxmiKantTripathi
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUESUNITA MEHER
 
Fertilizer Use Efficiency.pptx
Fertilizer Use Efficiency.pptxFertilizer Use Efficiency.pptx
Fertilizer Use Efficiency.pptxManasaChowdary17
 
Acid soil and their management
Acid soil and their managementAcid soil and their management
Acid soil and their managementAbhilash Panju
 
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUES
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUESFERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUES
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUESYallanagouda Madagoudra
 
Sodic soil pkm
Sodic soil  pkmSodic soil  pkm
Sodic soil pkmP.K. Mani
 
Soil fertility evaluation and fertilizer recommendation
Soil fertility evaluation and fertilizer recommendationSoil fertility evaluation and fertilizer recommendation
Soil fertility evaluation and fertilizer recommendationBharathM64
 
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...Rahul Raj Tandon
 
Phosphate fixation
Phosphate fixation Phosphate fixation
Phosphate fixation IGKV
 
Transformations and dynamics of potassium
Transformations and dynamics of potassiumTransformations and dynamics of potassium
Transformations and dynamics of potassiumSushmitaGarg1
 
Role of zinc in crop production
Role of zinc in crop productionRole of zinc in crop production
Role of zinc in crop productionDibakar Roy
 
Fertilizer reaction in soil (1)
Fertilizer reaction in soil (1)Fertilizer reaction in soil (1)
Fertilizer reaction in soil (1)aakvd
 
CK Dotaniya = Role of Potassium In Soil and Plant
CK Dotaniya = Role of Potassium In Soil and PlantCK Dotaniya = Role of Potassium In Soil and Plant
CK Dotaniya = Role of Potassium In Soil and PlantC. Dotaniya
 
DRIS METHOD OF SOIL
DRIS METHOD OF SOILDRIS METHOD OF SOIL
DRIS METHOD OF SOILShekhAlisha
 
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant Nutrient
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant NutrientB Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant Nutrient
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant NutrientRai University
 
Micronutrient chelate (1)
Micronutrient chelate (1)Micronutrient chelate (1)
Micronutrient chelate (1)aakvd
 

What's hot (20)

DRIS
DRISDRIS
DRIS
 
Unit 1 lecture-1 soil fertility and soil productivity
Unit 1 lecture-1 soil fertility and soil productivityUnit 1 lecture-1 soil fertility and soil productivity
Unit 1 lecture-1 soil fertility and soil productivity
 
Agronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUEAgronomic,Chemical,and Physiological methods of increasing FUE
Agronomic,Chemical,and Physiological methods of increasing FUE
 
Fertilizer Use Efficiency.pptx
Fertilizer Use Efficiency.pptxFertilizer Use Efficiency.pptx
Fertilizer Use Efficiency.pptx
 
Acid soil and their management
Acid soil and their managementAcid soil and their management
Acid soil and their management
 
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUES
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUESFERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUES
FERTILIZER RECOMMENDATION BASED ON SOIL TEST VALUES
 
Sodic soil pkm
Sodic soil  pkmSodic soil  pkm
Sodic soil pkm
 
Soil fertility evaluation and fertilizer recommendation
Soil fertility evaluation and fertilizer recommendationSoil fertility evaluation and fertilizer recommendation
Soil fertility evaluation and fertilizer recommendation
 
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...
Site Specific nutrient Management for Precision Agriculture - Anjali Patel (I...
 
Phosphate fixation
Phosphate fixation Phosphate fixation
Phosphate fixation
 
Transformations and dynamics of potassium
Transformations and dynamics of potassiumTransformations and dynamics of potassium
Transformations and dynamics of potassium
 
Role of zinc in crop production
Role of zinc in crop productionRole of zinc in crop production
Role of zinc in crop production
 
Nutrient use efficiency
Nutrient  use efficiency Nutrient  use efficiency
Nutrient use efficiency
 
Fertilizer reaction in soil (1)
Fertilizer reaction in soil (1)Fertilizer reaction in soil (1)
Fertilizer reaction in soil (1)
 
CK Dotaniya = Role of Potassium In Soil and Plant
CK Dotaniya = Role of Potassium In Soil and PlantCK Dotaniya = Role of Potassium In Soil and Plant
CK Dotaniya = Role of Potassium In Soil and Plant
 
Soil fertility evaluation
Soil fertility evaluationSoil fertility evaluation
Soil fertility evaluation
 
DRIS METHOD OF SOIL
DRIS METHOD OF SOILDRIS METHOD OF SOIL
DRIS METHOD OF SOIL
 
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant Nutrient
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant NutrientB Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant Nutrient
B Sc Agri II Sc,Sf & Nm, U 1 Soil And Plant Nutrient
 
Micronutrient chelate (1)
Micronutrient chelate (1)Micronutrient chelate (1)
Micronutrient chelate (1)
 
Balanced nutrition
Balanced nutrition Balanced nutrition
Balanced nutrition
 

Similar to dynamics of soil potassium

Physiology of potassium in crop production
Physiology of potassium in crop productionPhysiology of potassium in crop production
Physiology of potassium in crop productionHema Boopathi
 
impact of organic manures and agricultural wastes on soil fertility and produ...
impact of organic manures and agricultural wastes on soil fertility and produ...impact of organic manures and agricultural wastes on soil fertility and produ...
impact of organic manures and agricultural wastes on soil fertility and produ...Vinayak K Kumbar
 
2017 long term effect of balance nutrient management through integration on r...
2017 long term effect of balance nutrient management through integration on r...2017 long term effect of balance nutrient management through integration on r...
2017 long term effect of balance nutrient management through integration on r...Suraj Mali
 
Crop residue management in rice based cropping system
Crop residue management in rice based cropping systemCrop residue management in rice based cropping system
Crop residue management in rice based cropping systemP.K. Mani
 
Use of tank silt in Agricultural lands
Use of tank silt in Agricultural landsUse of tank silt in Agricultural lands
Use of tank silt in Agricultural landskirankumar2916
 
Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Tamilnadu agricultural university
 
NUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYNUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYSHRAVAN KUMAR REDDY
 
Phosphorus Dynamics in Calcareous soils with respect to crop growth
Phosphorus Dynamics in Calcareous soils with respect to crop growthPhosphorus Dynamics in Calcareous soils with respect to crop growth
Phosphorus Dynamics in Calcareous soils with respect to crop growthDileepKumar9535017438
 
sustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemsustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemRajni Sinha
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementC. Dotaniya
 
precision water and nutrient management for preventing nitrate pollution
precision water and nutrient management for preventing nitrate pollutionprecision water and nutrient management for preventing nitrate pollution
precision water and nutrient management for preventing nitrate pollutionchethanhgowda
 
Effects of organic and inorganic inputs on phosphorus and potassium transform...
Effects of organic and inorganic inputs on phosphorus and potassium transform...Effects of organic and inorganic inputs on phosphorus and potassium transform...
Effects of organic and inorganic inputs on phosphorus and potassium transform...P.K. Mani
 
Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...PRAVEEN KUMAR
 
Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...koushalya T.N
 
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...PratheepRaj7
 

Similar to dynamics of soil potassium (20)

1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics1 integrated nutrient management in various agroecosystems in tropics
1 integrated nutrient management in various agroecosystems in tropics
 
Physiology of potassium in crop production
Physiology of potassium in crop productionPhysiology of potassium in crop production
Physiology of potassium in crop production
 
impact of organic manures and agricultural wastes on soil fertility and produ...
impact of organic manures and agricultural wastes on soil fertility and produ...impact of organic manures and agricultural wastes on soil fertility and produ...
impact of organic manures and agricultural wastes on soil fertility and produ...
 
2017 long term effect of balance nutrient management through integration on r...
2017 long term effect of balance nutrient management through integration on r...2017 long term effect of balance nutrient management through integration on r...
2017 long term effect of balance nutrient management through integration on r...
 
Crop residue management in rice based cropping system
Crop residue management in rice based cropping systemCrop residue management in rice based cropping system
Crop residue management in rice based cropping system
 
Use of tank silt in Agricultural lands
Use of tank silt in Agricultural landsUse of tank silt in Agricultural lands
Use of tank silt in Agricultural lands
 
Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.Effect of raw materials and methods on quality and process of composting.
Effect of raw materials and methods on quality and process of composting.
 
Management of potassium for stress tolerance and quality improvement of agric...
Management of potassium for stress tolerance and quality improvement of agric...Management of potassium for stress tolerance and quality improvement of agric...
Management of potassium for stress tolerance and quality improvement of agric...
 
Straw management
Straw management Straw management
Straw management
 
NUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDYNUTRIENT INTERACTIONS SHRAVAN REDDY
NUTRIENT INTERACTIONS SHRAVAN REDDY
 
Phosphorus Dynamics in Calcareous soils with respect to crop growth
Phosphorus Dynamics in Calcareous soils with respect to crop growthPhosphorus Dynamics in Calcareous soils with respect to crop growth
Phosphorus Dynamics in Calcareous soils with respect to crop growth
 
sustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping systemsustainabilty of rice wheat cropping system
sustainabilty of rice wheat cropping system
 
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient ManagementCK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
CK Dotaniya= Role of Biofertilizers in Integrated Nutrient Management
 
precision water and nutrient management for preventing nitrate pollution
precision water and nutrient management for preventing nitrate pollutionprecision water and nutrient management for preventing nitrate pollution
precision water and nutrient management for preventing nitrate pollution
 
Effects of organic and inorganic inputs on phosphorus and potassium transform...
Effects of organic and inorganic inputs on phosphorus and potassium transform...Effects of organic and inorganic inputs on phosphorus and potassium transform...
Effects of organic and inorganic inputs on phosphorus and potassium transform...
 
Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...Effect of integrated nutrient management and mulching practices on performanc...
Effect of integrated nutrient management and mulching practices on performanc...
 
Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...Soil management strategies to enhance carbon sequestration potential of degra...
Soil management strategies to enhance carbon sequestration potential of degra...
 
INM in legumes
INM in legumesINM in legumes
INM in legumes
 
SOIL CARBON DYNAMICS UNDER INTENSIVE CROPPING SYSTEM
SOIL  CARBON  DYNAMICS  UNDER  INTENSIVE  CROPPING  SYSTEMSOIL  CARBON  DYNAMICS  UNDER  INTENSIVE  CROPPING  SYSTEM
SOIL CARBON DYNAMICS UNDER INTENSIVE CROPPING SYSTEM
 
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...
“STUDIES ON THE RESPONSE OF BIOINOCULANT ON GROWTH AND YIELD OF CHILLI (Capsi...
 

Recently uploaded

X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsDeepika Singh
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Cherry
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptxArvind Kumar
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxRenuJangid3
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteRaunakRastogi4
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationSérgio Sacani
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professormuralinath2
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .Poonam Aher Patil
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cherry
 

Recently uploaded (20)

X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot GirlsKanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
Kanchipuram Escorts 🥰 8617370543 Call Girls Offer VIP Hot Girls
 
Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.Selaginella: features, morphology ,anatomy and reproduction.
Selaginella: features, morphology ,anatomy and reproduction.
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
Role of AI in seed science Predictive modelling and Beyond.pptx
Role of AI in seed science  Predictive modelling and  Beyond.pptxRole of AI in seed science  Predictive modelling and  Beyond.pptx
Role of AI in seed science Predictive modelling and Beyond.pptx
 
Use of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptxUse of mutants in understanding seedling development.pptx
Use of mutants in understanding seedling development.pptx
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
ONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for voteONLINE VOTING SYSTEM SE Project for vote
ONLINE VOTING SYSTEM SE Project for vote
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Factory Acceptance Test( FAT).pptx .
Factory Acceptance Test( FAT).pptx       .Factory Acceptance Test( FAT).pptx       .
Factory Acceptance Test( FAT).pptx .
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 

dynamics of soil potassium

  • 1. Credit Seminar on STUDIES ON DYNAMICS OF SOIL POTASSIUM AND EFFECT OF DIFFERENT FORMS ON K AVAILABILITY TO CROPS. P. SOWMYA RAM/2018-91 Dept of Soil science PROF JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY College of Agriculture, Rajendranagar,PJTSAU,Hyderabad-30 Course-in-charge: Dr. G. Padmaja Professor and Head Dept of SSAC
  • 2. INTRODUCTION - POTASSIUM • Potassium is the 3rd most important major nutrient in plant Nutrition. • Potassium is the most abundant macronutrient in soils. It is also the seventh most common element in the lithosphere which contains on average 2.6% potassium. • The total potassium content of Indian soils varies from 0.5 to 3.0%. • Total potassium present in soils, more than 98% occurs in primary and secondary minerals and the rest occurs in either fixed or non exchangeable form or exchangeable (adsorbed) form or in soil solution. • The role of potassium in increasing the yield of crops and improving the quality of produce is the agenda of soil scientists.
  • 3. ROLE OF POTASSIUM TO INCREASE CROP YIELD • Increases growth and improves drought resistance for crop. • Activates atleast 60 enzyme systems. • Maintains turgor; reduces water loss and wilting. • In photosynthesis and food formation. • Reduces respiration, preventing energy losses. • Enhances translocation of sugars and starch. • Improves weight and quality of grain. • Builds cellulose and reduces lodging. • To helps for crop pest and disease resistance.
  • 5. FIG 1b:DYNAMIC EQUILIBRIUM OF POTASSIUM IN SOILS
  • 6. FIG 2: FORMS OF SOIL K 1.Soil solution k 2.Exchangeable K 3.Non Exchangeable K 4.Mineral K
  • 7. FIG 3: CONTRIBUTION OF DIFFERENT POTASSIUM FRACTIONS TO TOTAL K Akola, Maharastra. Lokya et al, 2018.
  • 8. FIG 4: MICA WEATHERING AND TRANSFORMATION TO SECONDARY MINERALS ISSS
  • 9. WATER SOLUBLE K (mg kg-1) EXCH K (mg kg-1) 1 N HNO3 K (mg kg-1) NON EXC K (mg kg-1) CaCl2 K (mg kg-1) TOTAL K (mg kg-1) 0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40 0-20 20-40 1 9 7.2 171 161 912 968 741 756 22 24.6 4734 4534 2 10.3 7.1 153 153 923 985 803 814 26.6 24 5200 5200 3 9.7 8.1 139 138 826 853 675 684 23.3 23 4866 4800 4 16.9 11.4 176 175 904 924 732 731 26.6 24.6 5600 5266 5 12.6 8.3 140 137 846 864 704 689 23.6 24.3 4900 4534 6 17.1 12.4 180 181 908 962 728 802 24 26.3 5366 5134 7 11.3 9.7 150 147 833 867 672 656 24.6 25.6 5166 5334 Average 12.4 9.2 159 156 879 918 723 736 24 25 5119 4972 Nagaland Odyuo, 2015 TABLE 1: DEPTH WISE DISTRIBUTION OF DIFFERENT FORMS OF K IN THE SOILS AT DIFFERENT SITES S D
  • 10. TABLE 2: POTASSIUM UPTAKE BY SOYBEAN AS INFLUENCED BY DIFFERENT LEVELS OF POTASSIUM K LEVELS (mg kg-1 ) K UPTAKE (mg pot-1) Grain Stover Total 0 225 36 261 9 291 45 336 18 395 51 446 27 461 58 519 36 478 54 533 45 474 57 531 SEm 7.2 2.0 8.2 CD(P=0.05) 22.3 6.1 25.4 Nagaland Odyuo , 2015
  • 11. TABLE 3 :DISTRIBUTION OF DIFFERENT FORMS OF POTASSIUM [c mol(P+)kg-1] IN SOILS SOIL ORDER LOCATION WS K EX K NE K STEP K CR K STEP:CR K Inceptisol Matikata 1.4 21.5 54.3 157.6 1.1 2.9 Sonarpur 1.1 22.6 64.7 124.1 1.4 1.9 Itahar 2.2 33.2 34.1 126.8 2.6 3.7 Mean 1.6 25.8 51 136.2 1.7 2.8 Alfisol Hutmura 1.9 21.9 56.3 138.8 1.4 2.5 Hura 1.3 21.5 19.7 111 1.1 5.6 Bankura 3.1 25 25 136.7 1.5 4.3 Mean 2.1 22.8 33.7 118.8 1.3 3.5 Entisol Mithekhali 4.2 29.1 85.5 181.9 1.2 2.1 Itkhola 10.7 21.2 89.8 196.7 1.3 2.2 Meriganj 7.5 24.3 80.1 167.5 1.4 2.1 Mean 7.5 24.9 85.2 182 1.3 2.1 Mohanpur, West Bengal Mani et al., 2016
  • 12. TABLE 4: CHANGES IN DIFFERENT FORMS OF POTASSIUM [c mol(p+)kg-1] IN SOILS UPON SUBMERGENCE FOR 30 DAYS SOIL ORDER LOCATION WS K EX K NE K STEP K CR K NET CHANGE Inceptisol Matikata 1.2 -16.9 115.7 147.8 2.2 250 Sonarpur 2.4 -17.2 109.2 291.8 0.3 386.5 Itahar 1.9 -27 138.6 198 1.5 313 Mean 1.8 -20.4 121.2 212.5 1.3 316.4 Alfisol Hutmura 3.5 -5.1 95.1 166.3 1.5 261.3 Hura 3.7 -11.5 138 200.7 0.3 331.2 Bankura 5.6 -14.3 82.9 220.9 3.4 298.5 Mean 4.3 -10.3 105.3 196 1.8 297.1 Entisol Mithekhali 5.2 9.4 65.8 246.1 6.7 333.2 Itkhola 3.4 20.4 29.5 270 3.6 326.9 Meriganj 9.2 7.3 72.1 272.8 1.3 362.7 Mean 5.9 12.3 55.8 263 3.9 340.9 Mohanpur, West Bengal Mani et al., 2016
  • 13. Treatment Water Soluble K Exchangeable K HCl Extractable K Non Exchangeable K 0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45 0-15 15-30 30-45 T1 15.5 13.5 15 39 35.5 35.8 143.9 95 120 616 631 670 T2 13.5 9.4 10.8 51.2 42.8 45.3 155 130 135 625 648 669 T3 10.8 10 10.6 46.6 41 41.1 148.9 125 130 608 639 674 T4 20 17.5 18 66.3 56.6 57.6 180 165 175 682 682 689 T5 22 18 20 77.4 69 70.6 210 185 195 666 671 684 T6 20 15 18 69.4 67 67.8 201.3 175 188.2 667 623 684 T7 20.6 18 20 51.4 48.5 48.8 205 155 185 643 664 716 T8 18 13.4 16.9 70.6 62.9 63.3 180 143.9 155 699 784 785 T9 17.5 10 13.1 58 53.5 56.3 140 135 137.8 609 612 696 T10 23 20 22 72.5 69.4 69.4 185 170 180 739 786 789 LSD (P=0.05) 0.6 0.6 0.7 1 1.1 1.2 29.5 25.9 28.2 41.28 52.61 54.36 TABLE 5: EFFECT OF CONTINUOUS APPLICATION OF MINERAL FERTILIZERS AND SOIL AMENDMENTS ON DIFFERENT FORMS OF SOIL K ( mg kg-1) Palampur Sood et al.2008 T1 control, T2 100% N, T3 100% NP, T4 100% NPK, T5 100% NPK +FYM, T6 100% NPK+Lime, T7 100% NPK +Zn, T8 100% NPK(-S), T9 50% NPK, T10 150% NPK,
  • 14. TABLE 6: EFFECT OF CONTINUOUS USE OF MINERAL FERTILIZERS AND SOIL AMENDMENTS ON YIELD AND K UPTAKE OF MAIZE TREATMENT GRAIN YIELD ( t ha-1 ) K UPTAKE ( kg ha-1) T1 control 0.58 6.9 T2 100% N 0.00 0.00 T3 100% NP 3.02 21.3 T4 100% NPK 4.39 37.7 T5 100% NPK +FYM 6.02 53.9 T6 100% NPK+Lime 5.30 42.7 T7 100% NPK +Zn 4.31 32.5 T8 100% NPK(-S) 2.08 18.2 T9 50% NPK 3.26 28.8 T10 150% NPK 4.76 38.7 LSD(P=0.05) 0.54 3.9 Palampur Sood et al.2008
  • 15. Exch. K 1% Non- exch.K 10% Lattice.K 89% Inorganic Exch.K 1% Non- exch.K 3% Lattice K 96% Rice straw Exch.K 1% Non- exch.K 5% Lattice. K 94% FYM Exch.K 1% Non- exch.K 4% Lattice.K 95% Rice straw + FYM Fig 4: Exchangeable (Exch.K), non-exchangeable (Non-exch.K) and lattice K as a proportion of total K in surface soil (0-7.5 cm depth). Yadav et al., 2018 PAU, Ludhiana
  • 16. TREATMENTS POTASSIUM FRACTIONS (mg kg-1) WS.K EXC.K NON EXC.K LATTICE.K TOTAL K T1 - 30:75:00 kg NPK ha-1 26 139 549 10047 10762 T2 - 30:75:30 kg NPK ha-1 27 143 560 10195 10925 T3 - 30:75:60 kg NPK ha-1 30 146 572 10351 11098 T4 - 30:75:90 kg NPK ha-1 34 152 586 10535 11305 SE(m)± 0.43 4.03 1.76 29.68 27.96 CD at 5% 1.31 12.07 5.32 89.45 84.28 TABLE 7 : EFFECT OF DIFFERENT LEVELS OF POTASSIUM ON ITS FORMS AT HARVEST OF SOYBEAN Akola, Maharastra Lokya et al, 2018
  • 17. Treatments Contribution of non-exchangeable K to total K uptake Yield (q ha-1) Contribution of non- exchangeable K to total K uptake (kg/ha) Percent Contribution (%) KUE (%) Grain straw T1 14.19 21.02 22.39 84.87 - T2 15.76 25.06 11.53 29.29 5.24 T3 16.56 26.37 5.06 10.24 3.95 T4 17.21 27.04 2.60 9.87 3.36 TABLE 8: CONTRIBUTION OF NON-EXCHANGEABLE K TO TOTAL K UPTAKE Akola, Maharastra. Lokya et al, 2018.
  • 18. POTASSIUM FIXATION NON EXCHANGEABLE K SOIL SOLUTION / EXCHANGEABLE K Factors affecting K Fixation 1.Clay minerals 2.Soil pH 3.Wetting and Drying 4.Potassium Fertilization
  • 19. TABLE 9 : LEACHING FROM TWO SOILS AFFECTED BY APPLICATION OF ORGANIC AND INORGANIC FERTILIZERS UNDER FLOODED CONDITION TREATMENT TOTAL K ADDED (mg) TOTAL K LEACHED (mg/Column) % OF K APPLIED Sandy Loam Loam Sandy Loam Loam RICE STRAW 130.4 58 (18.8) 33 (11.9) 14.4 9.2 WHEAT STRAW 43.6 40.7 (1.5) 24.1 (3.0) 3.4 6.8 POULTRY MANURE 55.3 48.8 (9.6) 26 (4.9) 17.3 8.8 FYM 102.7 41 (1.8) 23.5(2.4) 1.8 2.3 GREEN MANURE 67.3 41.3 (2.1) 23.1(2.0) 3.1 2.9 FERTILIZER K 39.3 45.4 (6.2) 29.8 (8.7) 15.8 22.2 CONTROL - 39.2 21.1 - - Ludhiana, Punjab Singh et al., 2005 *Amount of K leached (Total – Control)
  • 20. TABLE 10 : WATER SOLUBLE K IN UPLAND MOISTURE CONDITIONS TREATMENT SOIL TYPE loam (mg/kg) sandy loam (mg/kg) RICE STRAW 15 9 WHEAT STRAW 10 8 POULTRY MANURE 14 8 FYM 12 8 GREEN MANURE 14 10 FERTILIZER K 12 10 CONTROL 10 6 CD 3.8 2.7 Ludhiana, Punjab Singh et al., 2005
  • 21. LANDUSE SYSTEM WS K EX K NE K MINERAL K TOTAL K FIX : EXC K Agri - Rice 12.1 137.5 228.8 1.31 1.35 1.66 Agri - Tobacco 13.6 65.4 205.8 1.36 1.39 3.16 Horti – Arecanut 14.8 120.7 303.4 0.99 1.04 2.51 Silvi - Eucalyptus 12.9 104.5 303.1 1.15 1.20 2.90 Control 11.9 64.4 168.1 1.23 1.26 2.63 TABLE 11: POTASSIUM FIXATION CAPACITY OF SURFACE SOIL SAMPLES UNDER DIFFERENT LAND USE SYSTEMS LANDUSE SYSTEM BWD( mg/kg) AWD(mg/kg) K FIXED[Cmol (p+) kg-1] % K fixed Agri - Rice 1155 1046 0.27 10.7 Agri - Tobacco 1138 984 0.39 15.4 Horti – Arecanut 1157 967 0.48 18.8 Silvi - Eucalyptus 1129 883 0.62 24.5 Control 1288 1063 0.57 22.4 Gurumurthy and Prakasha, 2011 Karnataka
  • 22. TABLE 12: CORRELATION BETWEEN UPTAKE OF K AND DIFFERENT K FORMS IN SOIL Stage Forms of K Water Soluble Exchangeable Hcl Soluble Non Exchangeable 0-15 15-30 0-15 15-30 0-15 15-30 0-15 15-30 Stolonization 0.48 0.36 0.50 0.40 0.39 0.38 -0.10 0.21 Tuberisation 0.62* 0.74** 0.69** 0.54* 0.67* * 0.59* -0.43 0.29 Harvest 0.56* 0.58* 0.90** 0.83** 0.79* * 0.85** 0.64* -0.30 Subehia et al., 2003 Palampur, Himachal Pradesh
  • 23. Correlation among different forms of soil Potassium Soil Properties Forms of Potassium Water soluble Exchangeable Available Non- Exchangeable Lattice Total Sand 0.17 -0.176 -0.168 0.205 0.453* 0.436* Silt -0.09 -0.028 -0.029 -0.306 -0.184 -0.200 Clay -0.164 0.249 0.240 -0.184 -0.447* -0.413* pH -0.230 -0.098 -0.100 -0.249 -0.362* -0.375* EC 0.411* 0.518** 0.514** 0.236 0.359 0.402* Organic Carbon 0.091 0.171 0.171 0.058 -0.017 0.002 Free CaCO3 -0.041 -0.211 -0.206 0.046 0.117 0.159 Kaskar et al., 2001 Dapoli, Maharashtra
  • 24. TABLE 13: QUANTITY INTENSITY RELATIONSHIP IN AVAILABILITY OF POTASSIUM • Beckett (1964) • The Theory is based on exchange reactions between Ca, Mg, and K. • The Q/I concept is used for predicting the status of potassium in soils • It is the quantity relationship between exchangeable K (Q quantity) and the activity of potassium in the soil solution (I intensity).
  • 25. Fig 6: A typical Q/I relationship showing different parameters in relation to potassium availability in soils. • ∆K = Amount through which the soil gains or losses potassium in bringing equilibrium (Q, quantity factor). • ARK = Activity ratio of potassium (I, intensity factor). • ARK e = Activity ratio of potassium at equilibrium • ∆Kex = Exchangeable or labile pool of potassium • Ksp = Specific sites for potassium • PBCK = Potential buffering capacity
  • 26. TABLE 14: FORMS OF POTASSIUM IN KHAMMAM SOILS OF ANDHRA PRADESH VILLAGE TEXTURE WS K EX K NE K TOTAL K Vasanthavada Sand 37.3 117.5 883 19680 Kunavaram Loamy Sand 35.4 148.8 608 13607 Narsapuram Sandy Loam 23.9 130.9 575 18421 N.P.Banjar Sandy Loam 44.2 276.6 1009 15755 Vaddigudem Clay Loam 11.3 135.3 378 8233 Velerupadu Silty Clay Loam 19.8 330.2 914 9234 Amaravaram Silty Clay Loam 18.2 259.1 676 10513 Kukunur Clay 15.8 358.9 1532 11883 Khammam Rao and Murthy, 2007
  • 27. SOIL TEXTURE KL K0 Kx ARK O PBC K Vasanthavada Sand 0.41 0.20 0.21 10.0 40 Kunavaram Loamy Sand 0.59 0.37 0.22 4.0 65 Narsapuram Sandy Loam 0.50 0.25 0.25 3.0 70 N.P.Banjar Sandy Loam 0.60 0.27 0.33 7.0 70 Vaddigudem Clay Loam 0.40 0.20 0.20 2.5 90 Velerupadu Silty Clay Loam 0.20 0.10 0.10 1.6 90 Amaravaram Silty Clay Loam 0.50 0.34 0.16 1.6 200 Kukunur Clay 0.60 0.43 0.17 2.2 340 TABLE 15: QUANTITY INTENSITY PARAMETERS OF KHAMMAM SOILS , ANDHRA PRADESH Khammam Rao and Krishnamurthy, 2007 Units : cmol kg-1
  • 28. TABLE 16: EFFECT OF K RATES ON DIFFERENT K FRACTIONS K LEVEL(Kg ha-1) WSK EX.K AV.K HNO3 K NEK mg/Kg 0 11 40 52 430 378 25 16 59 75 487 412 50 17 61 79 509 430 75 20 68 89 498 409 100 21 74 95 518 423 CD(P=0.05) 5 8 8 20 14 TABLE 17: EFFECT OF K RATES ON Q/I PARAMETERS OF K K LEVEL(Kg ha-1) KL K0 KX AreK(×10-3) PBC K[cmol(p+)kg-1] ×10-3 cmol(p+)kg-1 0 0.10 0.06 0.04 2.85 28.35 25 0.13 0.09 0.04 2.99 35.20 50 0.20 0.12 0.08 3.52 41.19 75 0.26 0.18 0.08 4.91 47.02 100 0.30 0.23 0.07 7.69 38.18 CD(p=0.05) 0.06 0.06 NS 1.31 NS Bhubaneswar, Orissa Byju et al., 2002.
  • 29. FIG 7: POTASSIUM RELEASING POWER OF DIFFERENT SOIL TYPES IN PULSE GROWING REGIONS OF INDIA Kanpur, Uttar Pradesh Rao et al., 2003 (Alfisol) (Vertisol) (Inceptisol)
  • 30. FIG 8: K RELEASE IN DIFFERENT TYPES OF SOILS Kanpur, Uttar Pradesh Rao et al., 2003
  • 31. • CONCENTRATION RATIO OF POTASSIUM IN SATURATION EXTRACT ( CRK Se ) • BUFFERING CAPACITY ( BCK Se ) • UNIFIED SOIL QUANTITY INTENSITY CHARACTER (USQI factor) PARAMETERS DERIVED FROM K CONCENTRATION IN SATURATION EXTRACT CRK Se = CK/(Ca+ Mg)0.5 BCK Se = Kam/ CRK Se USQI Factor = Kam ×ρ CRK Se ρ= -ve log of CRK Se
  • 32. TABLE 18: PARAMETERS DERIVED FROM CONCENTRATION OF K IN SATURATION EXTRACT AND 1N NH4OAC EXTRACTABLE K OF RANGA REDDY DISTRICT S.No Village Composition of the saturation extract CRK Se (me l-1) Kam in me 100g-1 BCK Se (me 100g- 1) /(me l-1)0.5 USQI Factor (me 100g-1)0.5*(me l- 1)0.5 K me l-1 Ca + Mg in me l-1 1 Chenvelli 0.24 7.6 0.086 0.48 5.62 0.741 2 Kathagadi 0.23 6.4 0.089 0.40 4.48 0.663 3 Masireddypalli 0.27 5.4 0.118 0.17 1.47 0.387 4 Muduchinthala palli 1.41 13.8 0.378 1.14 3.02 0.451 5 Keesara 0.32 6.2 0.128 0.64 5.01 0.715 6 Bogaram 0.39 6.0 0.158 0.32 2.04 0.455 7 Manchal 0.38 22.2 0.081 0.32 3.99 0.620 8 Kongarakonal 0.40 9.2 0.133 0.58 4.35 0.666 9 Kocharam 0.56 22.0 0.119 0.42 3.50 0.597 10 Rajendranagar 0.26 7.0 0.100 0.36 3.56 0.567 Range 0.23- 1.41 5.4-22 0.081- 0.378 0.21- 1.14 1.47-12.36 0.387-1.104 Chaitanya, 2016 Rajendranagar
  • 33. TABLE 19: ESTIMATION OF POTASSIUM IN SOILS THROUGH CHEMICAL EXTRACTANTS METHOD COMPOSITION OF EXTRACTANT SOIL: EXTRACTA NT RATIO SHAKIN G TIME (MIN) REFERENCE Distilled water Distilled water 1: 10 60 Grewal and Kanwar (1966) 1 N NH4OAC 1 N Ammonium Acetate at pH (7.0) 1 : 5 5 Stanford and English (1949) 0.01 M CaCl2 0.01 M CaCl2 1: 10 120 Houba et al. (1990) 1 N HNO3 1 N HNO3 1 : 10 10 DeTurk. 1941 AB-DTPA 1 M NH4HCO3 + 0.005 M DTPA 1 : 2 15 Soltanpour and Schwab (1977 0.03M NaBPh4 sodium tetraphenylboron 1 : 6 15 Scott et al. (1960) 1.38 N H2SO4 1.38 N H2SO4 1 : 10 15 (Hunter and Pratt, 1958)
  • 34. TABLE 20: EXTRACTION OF DIFFERENT FORMS OF K (mg kg-1) USING VARIOUS EXTRACTANTS IN SOILS OF RANGA REDDY DISTRICT S.No Village Distilled water extractable K 1N NH4OAc extractable K 1.38N H2SO4 extractable K 0.03M Na BPh4 extractable K Boiling 1HNO3 extractable K 1 Chenvelli 18 188 396 81 1100 2 Kathagadi 20 156 376 81 1000 3 Masireddypalli 45 68 356 82 850 4 Muduchinthalapal li 56 446 500 82 2340 5 Keesara 25 250 412 81 1700 6 Bogaram 51 126 376 83 1210 7 Manchal 25 126 380 82 1140 8 Kongarakonal 57 226 416 82 1300 9 Kocharam 25 163 388 83 1690 10 Rajendranagar 24 139 396 81 1300 Range 18-57 68-446 356-500 81-85 850-2340 Chaitanya, 2016 Rajendranagar
  • 35. TABLE 21: EFFECT OF RATE OF K APPLICATION ON AVAILABLE K STATUS OF SOIL AFTER HARVEST Season Crop K Levels (kg K2O ha-1 ) CD (p=0.05) 0 20 40 60 Initial 2002 160 160 159 160 - Kharif 2002 Cluster bean (direct) 158 159 162 163 NS Rabi 2002-03 Mustard (residual) 156 157 159 161 NS Kharif 2003 Cluster bean (direct) 155 158 160 164 8 Rabi 2003-04 Mustard (residual) 153 156 158 162 7 Kharif 2004 Cluster bean (direct) 152 156 158 162 7 Rabi 2004-05 Mustard (residual) 151 156 159 163 8 Kharif 2005 Pearlmillet (direct) 145 153 158 162 8 Rabi 2005-06 Mustard (residual) 142 151 156 161 8 Kharif 2006 Pearlmillet (direct) 137 147 153 159 8 Rabi 2006-07 Mustard (residual) 133 145 152 157 7 Kharif 2007 Pearlmillet (direct) 128 142 150 156 7 Rabi 2007-08 Mustard (residual) 125 140 148 155 7 Haryana Yadav et al., 2011
  • 36. TABLE 22: EFFECT OF POTASSIUM APPLICATION ON MEAN YIELD AND K UPTAKE BY CLUSTER BEAN – MUSTARD CROPPING SYSTEM K LEVEL (kg/ha) YIELD (t/ha) K UPTAKE (kg/ha) Cluster bean Mustard Cluster bean Mustard Seed Straw Seed Straw Seed Straw Seed Straw 0 0.85 1.70 1.81 5.82 9.3 30.1 8.8 58.7 20 0.95 1.87 1.93 6.02 12 37 11.5 68.7 40 1.01 1.93 2.02 6.15 13.3 41.5 13.8 76.9 60 1.02 2.01 2.06 6.23 14.1 45.2 14.7 83.4 CD (p=0.05) 0.09 0.12 0.16 0.39 1.1 3.0 0.8 4.1 Pearl millet Mustard Pearl Millet Mustard 0 2.41 5.24 1.76 4.75 10 113 8.9 46.7 20 2.55 5.50 1.81 4.87 11.2 127.8 10.6 54 40 2.68 5.76 1.86 4.98 12.6 151.1 12.5 58.9 60 2.75 5.99 1.93 5.14 13.6 174.6 14 64 CD (p=0.05) 0.19 0.37 0.13 0.32 0.8 5.4 0.6 2 Haryana Yadav et al., 2011
  • 37. FIG 9: NON-EXCHANGEABLE (FIXED) K AFTER 23 YEARS OF EXHAUSTIVE CROPPING (kg/ha) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 100% NP 100%NPKZnS 100%NPKZnS + FYM FYM NEK ( kg/ha ) TREATMENTS MANDYA MARUTERU TITABAR Rao et al., 2013
  • 38. TABLE 23: DISTRIBUTION OF POTASSIUM FRACTIONS (mg kg-1) IN SOIL PROFILE Treatm ents WATER SOLUBLE K EXCH.K NON EXCH. K LATTICE K TOTAL K DEPTH 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 50% NPK 18.6 16.1 15.6 105.1 102.9 96.9 750 721 705 3933 3409 3132 4807 4249 3950 100% NPK 21.9 18.3 17.6 112.8 108.3 101.9 770 742 724 4035 3507 3421 4939 4375 4265 150% NPK 22.8 20.6 19.5 119.3 117.5 112.4 813 773 763 4353 3656 3447 5307 4567 4342 100% NPK +FYM 24.9 22.8 21.9 122.8 120.1 115.6 885 818 786 4366 3756 3518 5398 4716 4441 CONTROL 15.6 12.1 10.6 85.8 83.9 79.7 736 706 694 3856 3319 2848 4693 4121 3632 CD(p=0.05 ) 4.4 2.1 2.9 9.6 8.2 7.1 88 114 85 588 436 437 598 419 459 INITIAL VALUE(197 2) 35.3 149.7 910 4419 5514 Sawarkar, 2013 Jabalpur, Madhya Pradesh Depth 1 : 0-20 cm, 2 : 20-40 cm, 3 : 40-60 cm.
  • 39. TABLE 24: EFFECT OF DIFFERENT TREATMENTS ON AVAILABLE K AFTER 36 CYCLES TREATMENTS AVAILABLE K CHANGES FROM INITIAL TOTAL K ADDED TOTAL K UPTAKE K BALANCE 50% NPK 247 -123 830 5113 -4283 100% NPK 269 -101 1660 6974 -5314 150% NPK 284 -86 2490 8284 -5794 100%NPK +FYM 295 -75 5703 9134 -3431 CONTROL 202 -168 5113 1994 -1994 Jabalpur, Madhya Pradesh Sawarkar, 2013 Initial (1972) : 370 kg/ha
  • 40. TABLE 26: DIFFERENT FORMS OF K (mg/kg) INFLUENCED BY MANURES AND FERTILIZERS TREATMENTS WSK EXK AVAIL.K NEK TOTAL K CONTROL 4 45 49 241 6012 100 % N 5 45 50 299 6987 100 % NP 6 44 50 315 6026 50 % NPK 5.7 49.3 55 342 6375 100% NPK 6 56 62 337 6812 150 % NPK 8 61 69 339 6987 100 % NPK-S 6 55 61 298 6415 100% NPK + Zn 7 55 62 369 6638 100 % NPK + FYM 10 57 67 377 7262 CD (P=0.05) NS 7.2 9.2 108 905 INITIAL 10 48 58 355 6467 Pantnagar, Uttarakhand Singh et al., 2014
  • 41. TABLE 25: K BALANCE AFFECTED BY 40 YEARS OF APPLICATION OF OM AND FERTILIZERS TREATMENT K ADDED (kg/ha) K REMOVE D(kg/ha) K BALANCE (kg/ha) K BALANCE (kg/ha/Yr) FERT OM IW TOTAL CONTROL 0 - 2000 2000 3911 -1911 -47.8 100 % N 0 - 2000 2000 6845 -4845 -121.1 100 % NP 0 - 2000 2000 7088 -5088 -127.2 50 % NPK 1460 - 2000 3460 6847 -3027 -75.7 100% NPK 2920 - 2000 4920 7171 -2251 -56.3 150 % NPK 4380 - 2000 6380 7354 -974 -24.4 100 % NPK-S 2920 - 2000 4920 7224 -2304 -57.6 100% NPK + Zn 2920 - 2000 4920 7645 -2725 -68.1 100 % NPK + FYM 2920 4800 2000 9720 8218 +1502 +37.6 Pantnagar, Uttarakhand Singh et al., 2014 IW Contains 5 mg K L-1. Hence, annual addition of K is 50 kg/ha/yr. FERT – Fertilizer, OM – Organic Manure, IW – Irrigation Water.
  • 42. TABLE 27: ACCUMULATION OF DIFFERENT FORMS OF K AFTER HARVEST TREATMENT AV.K WS.K EXC.K NEXC.K N0P0K0 720 78 560 11890 N120P0K0 682 74.8 500 11742 N180P0K0 662 64.4 476 10266 N120P40K0 622 55.6 484 9518 N180P40K0 536 58.2 382 9786 N120P80K0 530 58.4 458 10048 N180P80K0 598 51.6 438 10542 N120P40K40 838 83.6 628 12064 N180P40K40 718 91.2 490 12256 N120P80K40 660 86 448 11912 N180P80K40 702 71.2 524 11416 Ludhiana, Punjab Setia et al., 2004.
  • 43. TABLE 29: EFFECT OF K APPLICATION ON DRYMATTER ACCUMULATION (g plot -1) IN MAIZE S.No Village Levels of K (mg kg-1 soil) K0 K50 K100 K200 Mean 1 Mayaluru 13.83 15.58(12.7) 16.43(18.8) 15.84(14.5) 15.42 2 G.puram 16.75 18.20(8.7) 17.94(7.1) 18.36(9.6) 17.81 3 Bodavada 15.12 18.14(20.0) 17.63(16.6) 17.33(14.6) 17.06 4 Lam 15.62 17.40(11.4) 18.43(18.0) 19.22(23.1) 17.67 5 P.prolu 14.65 15.33(4.6) 15.60(6.5) 15.20(3.8) 15.20 6 Arepet 13.40 15.05(12.3) 15.61(16.5) 15.30(14.2) 14.84 7 T.Palle 12.25 13.87(13.2) 14.15(15.5) 14.48(18.8) 13.69 8 Mudhole 16.10 18.08(12.3) 19.26(19.6) 18.53(15.1) 17.99 9 Buppapur 16.54 17.92(8.4) 18.10(9.4) 18.44(11.5) 17.75 10 Sultanpur 18.95 19.10(1.0) 19.87(4.9) 21.63(14.1) 19.89 Mean 16.16 17.53 18.23 18.64 C.D Values K levels= 0.391 Soils = 0.781 K levels*soils=1.563 Figures in parentheses indicate the % response. Surekha et al., 1997 Andhra Pradesh
  • 44. TABLE 28: POTASSIUM UPTAKE OF RICE (g pot-1) AT THREE PHYSIOLOGICAL STAGES Treatments Active tillering Panicle Initiation Harvest Grain Straw Root S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 Control 0.038 0.049 0.151 0.105 0.057 0.047 0117 0.096 0.025 0.017 NPK 0.098 0.86 0.256 0.173 0.123 0.100 0.384 0.252 0.043 0.078 NPK+GM 0.083 0.105 0.868 0.748 0.329 0.312 0.689 0.572 0.101 0.091 NPK + Gypsum 0.079 0.098 0.344 0.217 0.200 0.124 0.442 0.27 0.048 0.032 NPK+ ZnSO4+ GM 0.109 0.131 1.015 0.729 0.352 0.364 0.734 0.655 0.119 0.092 NPK+ EDTA-Zn+ GM 0.095 0.121 0.965 1.07 0.356 0.365 0.762 0.781 0.156 0.128 NPK+ Gypsum + GM 0.111 0.094 1.099 0.840 0.357 0.325 0.779 0.667 0.153 0.125 NPK+ ZnSO4+ Gypsum+Gm 0.123 0.164 1.173 0.888 0.454 0.377 1.025 0.804 0.202 0.160 Mean 0.089 0.099 0.646 0.523 0.254 0.240 0.563 0.460 0.091 0.079 S*T 0.013 0.026 0.045 0.093 0.016 0.033 0.020 0.042 0.017 0.034 Coimbatore, Tamil Nadu Mythili & Natarajan. 2003 S1: ClayLoam S2 : Sandyloam
  • 45. CONCLUSIONS • Recycling through crop residue management holds a great promise in this respect as 80% of the K assimilated is contained in vegetative parts • Soils require judicious and frequent application of potash fertilizers to prevent leaching losses for better crop production.. • There is a need to consider K fixing capacity of soils, soil texture, soil type and other factors for giving potassium recommendation to crops. • Continuous cropping without manures and fertilizers devoid of K results in imbalanced fertilization by reducing availability of K. So, use of chemical fertilizers along with organic manures improves the availability of K to plants which increases yields.
  • 46. -Mata Bhumih Putroham Prithivyah -The Nation that destroys it’s soils, destroys itself