SlideShare a Scribd company logo
1 of 61
Download to read offline
LuaVM
                1 2       L u a V M




2010   2   24
blog:
                         hatena: Isoparametric
                         twitter: isoparametric
                            name:
                  (http://d.hatena.ne.jp/Isoparametric/)




2010   2   24
Lua?


                Lua




                 LL    ANSI C

2010   2   24
LuaVM
                                      Lua

                Lua C
                          if    for
                               Lua

                    Lua


                                VM

2010   2   24
Lua

                      VM   VM




2010   2   24
I think that one cannot completely grok a
                scripting language, or any complex system for
                that matter, without slitting the animal open
                and examining the entrails, organs and other
                yucky stuff that isn’t normally seen.




2010   2   24
LuaVM
                          VM(5.0   )




                Windows




2010   2   24
LuaVM




2010   2   24
VM              CPU
                        ……CPU
                        ……



                       ……




                PC……
2010   2   24
VM              CPU
                        ……CPU
                        ……



                       ……




                PC……
2010   2   24
/*----------------------------------------------------------------------

   38           (5.1.4     )   name	 	      args	 description
                               ------------------------------------------------------------------------*/
                               OP_MOVE,/*	 A B	 R(A) := R(B)		         	     	      	     */
                               OP_LOADK,/*	 A Bx	 R(A) := Kst(Bx)	     	     	      	     	     */
                               OP_LOADBOOL,/*	     A B C	 R(A) := (Bool)B; if (C) pc++	   	     	      */

       R(X)     X              OP_LOADNIL,/*	      A B	 R(A) := ... := R(B) := nil	       	     	      */
                               OP_GETUPVAL,/*	     A B	 R(A) := UpValue[B]	 	       	     	     */
                               OP_GETGLOBAL,/*	    A Bx	 R(A) := Gbl[Kst(Bx)]	      	     	     	      */
                               OP_GETTABLE,/*	     A B C	 R(A) := R(B)[RK(C)]	
                                                                             	      	     	     */
                               OP_SETGLOBAL,/*	    A Bx	 Gbl[Kst(Bx)] := R(A)	      	     	     	      */
                               OP_SETUPVAL,/*	     A B	 UpValue[B] := R(A)	 	       	     	     */
                               OP_SETTABLE,/*	     A B C	 R(A)[RK(B)] := RK(C)	     	     	     	      */
                               OP_NEWTABLE,/*	     A B C	 R(A) := {} (size = B,C)	 	      	     	      */
                               OP_SELF,/*	 A B C	 R(A+1) := R(B); R(A) := R(B)[RK(C)]	 	        */
                               OP_ADD,/*	   A B C	 R(A) := RK(B) + RK(C)	    	      	     	     */
       K(X)     X              OP_SUB,/*	
                               OP_MUL,/*	
                                            A B C	 R(A) := RK(B) - RK(C)	
                                            A B C	 R(A) := RK(B) * RK(C)	
                                                                             	
                                                                             	
                                                                                    	
                                                                                    	
                                                                                          	
                                                                                          	
                                                                                                */
                                                                                                */
                               OP_DIV,/*	   A B C	 R(A) := RK(B) / RK(C)	    	      	     	     */
                               OP_MOD,/*	   A B C	 R(A) := RK(B) % RK(C)	    	      	     	     */
                               OP_POW,/*	   A B C	 R(A) := RK(B) ^ RK(C)	    	      	     	     */
                               OP_UNM,/*	   A B	 R(A) := -R(B)	        	     	      	     	     */
                               OP_NOT,/*	   A B	 R(A) := not R(B)	 	         	      	     */
                               OP_LEN,/*	   A B	 R(A) := length of R(B)	     	      	     	     */
                               OP_CONCAT,/*	A B C	 R(A) := R(B).. ... ..R(C)		      	     */

       RK(X)        R(X)       OP_JMP,/*	
                               OP_EQ,/*	
                               OP_LT,/*	
                                            sBx	 pc+=sBx	       	      	     	      	
                                            A B C	 if ((RK(B) == RK(C)) ~= A) then pc++	 	
                                            A B C	 if ((RK(B) < RK(C)) ~= A) then pc++ 	
                                                                                          */

                                                                                          	
                                                                                                */
                                                                                                */
                               OP_LE,/*	    A B C	 if ((RK(B) <= RK(C)) ~= A) then pc++ 	 	     */

       K(X-k)                  OP_TEST,/*	 A C	 if not (R(A) <=> C) then pc++	 	
                               OP_TESTSET,/*	
                                                                                          	     */
                                                   A B C	 if (R(B) <=> C) then R(A) := R(B) else pc++	 */
                               OP_CALL,/*	 A B C	 R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
                               OP_TAILCALL,/*	     A B C	 return R(A)(R(A+1), ... ,R(A+B-1))	   	      */
                               OP_RETURN,/*	A B	 return R(A), ... ,R(A+B-2)	        (see note)	 */
                               OP_FORLOOP,/*	      A sBx	 R(A)+=R(A+2);
                               	     	      	      if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
                               OP_FORPREP,/*	      A sBx	 R(A)-=R(A+2); pc+=sBx	    	     	     	      */
                               OP_TFORLOOP,/*	     A C	 R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                                                        if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++	 */
                               OP_SETLIST,/*	      A B C	 R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	    */
                               OP_CLOSE,/*	 A 	    close all variables in the stack up to (>=) R(A)*/
                               OP_CLOSURE,/*	      A Bx	 R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))	    */
                               OP_VARARG/*	 A B	 R(A), R(A+1), ..., R(A+B-1) = vararg	 	        */

2010   2   24
/*----------------------------------------------------------------------

   38           (5.1.4     )   name	 	      args	 description
                               ------------------------------------------------------------------------*/
                               OP_MOVE,/*	 A B	 R(A) := R(B)		         	     	      	     */
                               OP_LOADK,/*	 A Bx	 R(A) := Kst(Bx)	     	     	      	     	     */
                               OP_LOADBOOL,/*	     A B C	 R(A) := (Bool)B; if (C) pc++	   	     	      */

       R(X)     X              OP_LOADNIL,/*	      A B	 R(A) := ... := R(B) := nil	       	     	      */
                               OP_GETUPVAL,/*	     A B	 R(A) := UpValue[B]	 	       	     	     */
                               OP_GETGLOBAL,/*	    A Bx	 R(A) := Gbl[Kst(Bx)]	      	     	     	      */
                               OP_GETTABLE,/*	     A B C	 R(A) := R(B)[RK(C)]	
                                                                             	      	     	     */
                               OP_SETGLOBAL,/*	    A Bx	 Gbl[Kst(Bx)] := R(A)	      	     	     	      */
                               OP_SETUPVAL,/*	     A B	 UpValue[B] := R(A)	 	       	     	     */
                               OP_SETTABLE,/*	     A B C	 R(A)[RK(B)] := RK(C)	     	     	     	      */
                               OP_NEWTABLE,/*	     A B C	 R(A) := {} (size = B,C)	 	      	     	      */
                               OP_SELF,/*	 A B C	 R(A+1) := R(B); R(A) := R(B)[RK(C)]	 	        */
                               OP_ADD,/*	   A B C	 R(A) := RK(B) + RK(C)	    	      	     	     */
       K(X)     X              OP_SUB,/*	
                               OP_MUL,/*	
                                            A B C	 R(A) := RK(B) - RK(C)	
                                            A B C	 R(A) := RK(B) * RK(C)	
                                                                             	
                                                                             	
                                                                                    	
                                                                                    	
                                                                                          	
                                                                                          	
                                                                                                */
                                                                                                */
                               OP_DIV,/*	   A B C	 R(A) := RK(B) / RK(C)	    	      	     	     */
                               OP_MOD,/*	   A B C	 R(A) := RK(B) % RK(C)	    	      	     	     */
                               OP_POW,/*	   A B C	 R(A) := RK(B) ^ RK(C)	    	      	     	     */
                               OP_UNM,/*	   A B	 R(A) := -R(B)	        	     	      	     	     */
                               OP_NOT,/*	   A B	 R(A) := not R(B)	 	         	      	     */
                               OP_LEN,/*	   A B	 R(A) := length of R(B)	     	      	     	     */
                               OP_CONCAT,/*	A B C	 R(A) := R(B).. ... ..R(C)		      	     */

       RK(X)        R(X)       OP_JMP,/*	
                               OP_EQ,/*	
                               OP_LT,/*	
                                            sBx	 pc+=sBx	       	      	     	      	
                                            A B C	 if ((RK(B) == RK(C)) ~= A) then pc++	 	
                                            A B C	 if ((RK(B) < RK(C)) ~= A) then pc++ 	
                                                                                          */

                                                                                          	
                                                                                                */
                                                                                                */
                               OP_LE,/*	    A B C	 if ((RK(B) <= RK(C)) ~= A) then pc++ 	 	     */

       K(X-k)                  OP_TEST,/*	 A C	 if not (R(A) <=> C) then pc++	 	
                               OP_TESTSET,/*	
                                                                                          	     */
                                                   A B C	 if (R(B) <=> C) then R(A) := R(B) else pc++	 */
                               OP_CALL,/*	 A B C	 R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
                               OP_TAILCALL,/*	     A B C	 return R(A)(R(A+1), ... ,R(A+B-1))	   	      */
                               OP_RETURN,/*	A B	 return R(A), ... ,R(A+B-2)	        (see note)	 */
                               OP_FORLOOP,/*	      A sBx	 R(A)+=R(A+2);
                               	     	      	      if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
                               OP_FORPREP,/*	      A sBx	 R(A)-=R(A+2); pc+=sBx	    	     	     	      */
                               OP_TFORLOOP,/*	     A C	 R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
                                                        if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++	 */
                               OP_SETLIST,/*	      A B C	 R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	    */
                               OP_CLOSE,/*	 A 	    close all variables in the stack up to (>=) R(A)*/
                               OP_CLOSURE,/*	      A Bx	 R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n))	    */
                               OP_VARARG/*	 A B	 R(A), R(A+1), ..., R(A+B-1) = vararg	 	        */

2010   2   24
MOVE

                 LOADK

                LOADBOOL

                 LOADNIL    nil

                GETUPVAL

                GETGLOBAL

                GETTABLE

                SETGLOBAL

                SETUPVAL

                SETTABLE
2010   2   24
NEWTABLE

                  SELF

                  ADD

                  SUB

                  MUL

                  DIV

                  MOD

                  POW

                  UNM

                  NOT
2010   2   24
LEN

                CONCAT

                  JMP

                  EQ

                   LT

                  LE

                 TEST

                TESTSET

                 CALL

                TAILCALL
2010   2   24
RETURN

                FORLOOP    for         FORPREP

                FORPREP          for

                TFORLOOP                  for

                 SETLIST

                 CLOSE

                CLOSURE

                 VARARG




2010   2   24
0   1   2   3   4   5   6   7   8    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

                                 OP                            A                         B                         C
                                 OP                            A                                    Bx
                                 OP                            A                                   sBx

                                                             Figure 6: Instruction layout
                                                         OP                                  6bit
                function max (a,b)
                  local m = a                                      1   MOVE          2   0 0        ;   R(2) = R(0)
                  if b > a then                                    2   LT            0   0 1        ;   R(0) < R(1) ?
                    m = b
                  end
                                                                   3
                                                                   4
                                                                        A
                                                                       JMP
                                                                       MOVE
                                                                                     1
                                                                                     2   1 0
                                                                                                    ;
                                                                                                    ;
                                                                                                               8bit
                                                                                                        to 5 (4+1)
                                                                                                        R(2) = R(1)
                  return m                                         5   RETURN        2   2 0        ;   return R(2)
                end                                                6    B C 9bit
                                                                       RETURN        0   1 0        ;   return

                                         18bit 7: Bytecode for a Lua function
                                           Figure

                                     Bx(unsigned) or sBx(signed)
                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
2010   2   24
OP             A                          Bx
                             OP             A                          sBx

                                          Figure 6: Instruction layout

                function max (a,b)
                  local m = a                   1   MOVE     2   0 0   ;   R(2) = R(0)
                  if b > a then                 2   LT       0   0 1   ;   R(0) < R(1) ?
                    m = b                       3   JMP      1         ;   to 5 (4+1)
                  end                           4   MOVE     2   1 0   ;   R(2) = R(1)
                  return m                      5   RETURN   2   2 0   ;   return R(2)
                end                             6   RETURN   0   1 0   ;   return


                                     Figure 7: Bytecode for a Lua function


                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
                For instance, the increment of a local variable, such as a = a + 1, is coded
                as ADD x x y, where x represents the register holding the local variable and y
                represents the constant 1. An assignment like a = b.f, when both a and b are
                local variables, is also coded as the single instruction GETTABLE x y z, where x
                is the register for a, y is the register for b, and z is the index of the string
                constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b
2010   2   24   indexed by the string "f".)
OP             A                          Bx
                             OP             A                          sBx

                                          Figure 6: Instruction layout

                function max (a,b)
                  local m = a                   1   MOVE     2   0 0   ;   R(2) = R(0)
                  if b > a then                 2   LT       0   0 1   ;   R(0) < R(1) ?
                    m = b                       3   JMP      1         ;   to 5 (4+1)
                  end                           4   MOVE     2   1 0   ;   R(2) = R(1)
                  return m                      5   RETURN   2   2 0   ;   return R(2)
                end                             6   RETURN   0   1 0   ;   return


                                     Figure 7: Bytecode for a Lua function



                                                    R(0) == a, R(1) == b
                a register or a constant (using the representation RK(X) explained above). With
                this format, several typical operations in Lua can be coded in a single instruction.
       LT       For instance, the increment of a local variable, such as a = a + 1, is coded
                as ADD x x y, where x represents the register holding the local variable and y
                           PC++                                   JMP
                represents the constant 1. An assignment like a = b.f, when both a and b are
                local variables, is also coded as the single instruction GETTABLE x y z, where x

       OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++
                is the register for a, y is the register for b, and z is the index of the string
                constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b
                                                                                                   */
2010   2   24   indexed by the string "f".)
256
                        B/C 9bit==1bit

                Lua


                18bit               (131071   )
2010   2   24
VM         Lua


                     VM
                          lua -l
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
Lua
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                constructors                        •     •     •     •     •     •     •     •     •     •     •     •
                garbage collection                  •     •     •     •     •     •     •     •     •     •     •     •
                extensible semantics                ◦     ◦     •     •     •     •     •     •     •     •     •     •
                support for OOP                     ◦     ◦     •     •     •     •     •     •     •     •     •     •
                long strings                        ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                debug API                           ◦     ◦     ◦     •     •     •     •     •     •     •     •     •
                external compiler                   ◦     ◦     ◦     ◦     •     •     •     •     •     •     •     •
                vararg functions                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                pattern matching                    ◦     ◦     ◦     ◦     ◦     •     •     •     •     •     •     •
                conditional compilation             ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     ◦     ◦     ◦
                anonymous functions, closures       ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •     •
                debug library                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •     •
                multi-state API                     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                for statement                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •     •
                long comments                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                full lexical scoping                ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                booleans                            ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                coroutines                          ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •     •
                incremental garbage collection      ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                module system                       ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     ◦     •
                                                   1.0   1.1   2.1   2.2   2.4   2.5   3.0    3.1   3.2   4.0   5.0   5.1
                libraries                           4     4     4     4     4     4     4       4    5     6     8     9
                built-in functions                  5     7    11    11    13    14    25      27   35     0     0     0
                API functions                      30    30    30    30    32    32    33      47   41    60    76    79
                vm type (stack × register)          S     S     S     S     S     S     S      S     S     S     R     R
                vm instructions                    64    65    69    67    67    68    69     128   64    49    35    38
                keywords                           16    16    16    16    16    16    16      16   16    18    21    21
                other tokens                       21    21    23    23    23    23    24      25   25    25    24    26
                                                 Table 1. The evolution of features in Lua.
2010   2   24
VM
                V S   V M




2010   2   24
VM
                        VM
                 push




                VM            VM
2010   2   24
VM
                Lua
                VM Lua


                            local



                 push/pop


2010   2   24
LuaVM
                Lua




2010   2   24
==   ==




2010   2   24
==   ==
                Lua        VM        ……




                                VM
2010   2   24
2010   2   24
LuaVM
                         4byte           Lua
                1byte   2byte




2010   2   24
ADD
                ADD
                          ADD




                ADD
                      +
2010   2   24
JavaVM   goto   2byte)




                2byte
2010   2   24
Lua   4byte   Lua   1 or 2byte




2010   2   24
local a,t,i
                a=a+i
                a=a+100       YO

                a=t[i]




2010   2   24
local a,t,i
                a=a+i
                a=a+100                      YO

                a=t[i]



             1	
              [1]	
                 PUSHNIL      	   3
             2	
              [2]	
                 GETLOCAL     	   0	 ; a
             3	
              [2]	
                 GETLOCAL     	   2	 ; i
             4	
              [2]	
                 ADD          	
             5	
              [2]	
                 SETLOCAL     	   0	 ;   a
             6	
              [3]	
                 GETLOCAL     	   0	 ;   a
             7	
              [3]	
                 ADDI         	   100
             8	
              [3]	
                 SETLOCAL     	   0	 ;   a
             9	
              [4]	
                 GETLOCAL     	   1	 ;   t
            10	
              [4]	
                 GETINDEXED   	   2	 ;   i
            11	
              [4]	
                 SETLOCAL     	   0	 ;   a
            12	
              [4]	
                 END          	
2010   2   24
local a,t,i
                a=a+i
                a=a+100                                                   YO

                a=t[i]



             1	
              [1]	
                 PUSHNIL      	   3          1   [2]ADD        0   0 2
             2	
              [2]	
                 GETLOCAL     	   0	 ; a     2   [3]ADD        0   0 -1   ; - 100
             3	
              [2]	
                 GETLOCAL     	   2	 ; i     3   [4]GETTABLE   0   1 2
             4	
              [2]	
                 ADD          	              4   [4]RETURN     0   1
             5	
              [2]	
                 SETLOCAL     	   0	 ;   a
             6	
              [3]	
                 GETLOCAL     	   0	 ;   a
             7	
              [3]	
                 ADDI         	   100
             8	
              [3]	
                 SETLOCAL     	   0	 ;   a
             9	
              [4]	
                 GETLOCAL     	   1	 ;   t
            10	
              [4]	
                 GETINDEXED   	   2	 ;   i
            11	
              [4]	
                 SETLOCAL     	   0	 ;   a
            12	
              [4]	
                 END          	
2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i   a=t[i]
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	




2010   2   24
Lua 4.0.1

main <0:@test.lua> (12 instructions/96 bytes at 0x100100650)
0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5
lines
      1	
       [1]	
          PUSHNIL    	 3        local a,t,i
      2	
       [2]	
          GETLOCAL   	 0	 ; a
      3	
       [2]	
          GETLOCAL   	 2	 ; i   a=a+i
      4	
       [2]	
          ADD        	
      5	
       [2]	
          SETLOCAL   	 0	 ; a
      6	
       [3]	
          GETLOCAL   	 0	 ; a
      7	
       [3]	
          ADDI       	 100
                                a=a+100
      8	
       [3]	
          SETLOCAL   	 0	 ; a
      9	
       [4]	
          GETLOCAL   	 1	 ; t
    10	[4]	
          GETINDEXED 	 2	 ; i   a=t[i]
    11	[4]	
          SETLOCAL   	 0	 ; a
    12	[4]	
          END        	
                                                      YO!
                ADD        ADDI
                                             ……
2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2
                2     [3]       ADD        0 0 -1   ; - 100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100   a=a+100
                3     [4]       GETTABLE   0 1 2
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1     [2]       ADD        0 0 2              a=a+i
                2     [3]       ADD        0 0 -1   ; - 100   a=a+100
                3     [4]       GETTABLE   0 1 2              a=t[i]
                4     [4]       RETURN     0 1




2010   2   24
Lua 5.1.4

  main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050)
  0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions
                1         [2]     ADD        0 0 2              a=a+i
                2         [3]     ADD        0 0 -1   ; - 100   a=a+100
                3         [4]     GETTABLE   0 1 2              a=t[i]
                4         [4]     RETURN     0 1




                    local a,t,i                       ……



2010   2   24
2010   2   24
Lua   :-p




                            ……
2010   2   24
Lua


                Lua     12byte   tag+
                union




2010   2   24
ual machine with the new optimization for arrays can reduce the runnin
 up to 40%.
The complete code of Lua 5.0 is available for browsing at Lua’s web site
p://www.lua.org/source/5.0/.


                 program          Lua 4.0     Lua 5’       Lua 5.0
                 sum (2e7)         1.23     0.54   (44%) 0.54   (44%)
                 fibo (30)          0.95     0.68   (72%) 0.69   (73%)
                 ack (8)           1.00     0.86   (86%) 0.88   (88%)
                 random (1e6)      1.04     0.96   (92%) 0.96   (92%)
                 sieve (100)       0.93     0.82   (88%) 0.57   (61%)
                 heapsort (5e4)    1.08     1.05   (97%) 0.70   (65%)
                 matrix (50)       0.84     0.82   (98%) 0.59   (70%)

 re 10: Benchmarks (times in seconds; percentages are relative to Lua 4.0)
                      Lua


 2010   2   24
L u a V M




2010   2   24
Lua
                Lua



                              Lua
                      local




2010   2   24
Lua

2010   2   24
LuaVM
                Lua-Alchemy(Lua on Flash)

                kahlua(Lua on Java[J2ME])

                Yueliang(Lua on Lua)

                LuaCLR(Lua on .NET)

                Lua2js(Lua on JavaScript)

                        http://lua-users.org/wiki/
                LuaImplementations
2010   2   24
The Implementation of Lua 5.0

                The Evolution of Lua

                A No-Frills Introduction to Lua 5.1 VM
                Instructions

                Lua           lvm.c    lopcodes.h



2010   2   24
Lua




                Lua




2010   2   24
Lua
                              C



                Lua     JIT
                                  C



                VM
2010   2   24
2010   2   24

More Related Content

What's hot

外部キー制約に伴うロックの小話
外部キー制約に伴うロックの小話外部キー制約に伴うロックの小話
外部キー制約に伴うロックの小話ichirin2501
 
Scapyで作る・解析するパケット
Scapyで作る・解析するパケットScapyで作る・解析するパケット
Scapyで作る・解析するパケットTakaaki Hoyo
 
TensorFlow Lite Delegateとは?
TensorFlow Lite Delegateとは?TensorFlow Lite Delegateとは?
TensorFlow Lite Delegateとは?Mr. Vengineer
 
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜Preferred Networks
 
async/await のしくみ
async/await のしくみasync/await のしくみ
async/await のしくみ信之 岩永
 
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しようUnityTechnologiesJapan002
 
Java仮想マシンの実装技術
Java仮想マシンの実装技術Java仮想マシンの実装技術
Java仮想マシンの実装技術Kiyokuni Kawachiya
 
カスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてカスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてalwei
 
Parser combinatorってなんなのさ
Parser combinatorってなんなのさParser combinatorってなんなのさ
Parser combinatorってなんなのさcct-inc
 
ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14Ryo Suzuki
 
Cognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようCognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようShuto Suzuki
 
DockerとPodmanの比較
DockerとPodmanの比較DockerとPodmanの比較
DockerとPodmanの比較Akihiro Suda
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門Norishige Fukushima
 
非同期処理の基礎
非同期処理の基礎非同期処理の基礎
非同期処理の基礎信之 岩永
 
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013GPUが100倍速いという神話をぶち殺せたらいいな ver.2013
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013Ryo Sakamoto
 
初心者向けCTFのWeb分野の強化法
初心者向けCTFのWeb分野の強化法初心者向けCTFのWeb分野の強化法
初心者向けCTFのWeb分野の強化法kazkiti
 
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015CODE BLUE
 
Gocon2017:Goのロギング周りの考察
Gocon2017:Goのロギング周りの考察Gocon2017:Goのロギング周りの考察
Gocon2017:Goのロギング周りの考察貴仁 大和屋
 

What's hot (20)

LLVM最適化のこつ
LLVM最適化のこつLLVM最適化のこつ
LLVM最適化のこつ
 
外部キー制約に伴うロックの小話
外部キー制約に伴うロックの小話外部キー制約に伴うロックの小話
外部キー制約に伴うロックの小話
 
Scapyで作る・解析するパケット
Scapyで作る・解析するパケットScapyで作る・解析するパケット
Scapyで作る・解析するパケット
 
TensorFlow Lite Delegateとは?
TensorFlow Lite Delegateとは?TensorFlow Lite Delegateとは?
TensorFlow Lite Delegateとは?
 
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
Pythonの理解を試みる 〜バイトコードインタプリタを作成する〜
 
async/await のしくみ
async/await のしくみasync/await のしくみ
async/await のしくみ
 
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう
【Unite Tokyo 2019】Unity Test Runnerを活用して内部品質を向上しよう
 
Java仮想マシンの実装技術
Java仮想マシンの実装技術Java仮想マシンの実装技術
Java仮想マシンの実装技術
 
カスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについてカスタムメモリマネージャと高速なメモリアロケータについて
カスタムメモリマネージャと高速なメモリアロケータについて
 
Parser combinatorってなんなのさ
Parser combinatorってなんなのさParser combinatorってなんなのさ
Parser combinatorってなんなのさ
 
ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14ゲーム開発者のための C++11/C++14
ゲーム開発者のための C++11/C++14
 
Cognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しようCognitive Complexity でコードの複雑さを定量的に計測しよう
Cognitive Complexity でコードの複雑さを定量的に計測しよう
 
DockerとPodmanの比較
DockerとPodmanの比較DockerとPodmanの比較
DockerとPodmanの比較
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
 
非同期処理の基礎
非同期処理の基礎非同期処理の基礎
非同期処理の基礎
 
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013GPUが100倍速いという神話をぶち殺せたらいいな ver.2013
GPUが100倍速いという神話をぶち殺せたらいいな ver.2013
 
初心者向けCTFのWeb分野の強化法
初心者向けCTFのWeb分野の強化法初心者向けCTFのWeb分野の強化法
初心者向けCTFのWeb分野の強化法
 
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015
Master Canary Forging: 新しいスタックカナリア回避手法の提案 by 小池 悠生 - CODE BLUE 2015
 
Gocon2017:Goのロギング周りの考察
Gocon2017:Goのロギング周りの考察Gocon2017:Goのロギング周りの考察
Gocon2017:Goのロギング周りの考察
 
入門 シェル実装
入門 シェル実装入門 シェル実装
入門 シェル実装
 

Similar to 12 分くらいで知るLuaVM

Lab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxLab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxDIPESH30
 
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdfarihantmobileselepun
 
Lab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxLab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxDIPESH30
 
C++ Advanced
C++ AdvancedC++ Advanced
C++ AdvancedVivek Das
 
Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Sri Ambati
 
Codigo fuente
Codigo fuenteCodigo fuente
Codigo fuenteBlackD10
 
Please fix my errors class Iterator public Construc.pdf
Please fix my errors   class Iterator  public  Construc.pdfPlease fix my errors   class Iterator  public  Construc.pdf
Please fix my errors class Iterator public Construc.pdfkitty811
 

Similar to 12 分くらいで知るLuaVM (10)

Lab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docxLab08Lab08.cppLab08Lab08.cpp.docx
Lab08Lab08.cppLab08Lab08.cpp.docx
 
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf
(1)Objective Binary Search Tree traversal (2 points)Use traversal.pdf
 
Lab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docxLab11.cppLab11.cpp.docx
Lab11.cppLab11.cpp.docx
 
C++ Advanced
C++ AdvancedC++ Advanced
C++ Advanced
 
ECMAScript 6
ECMAScript 6ECMAScript 6
ECMAScript 6
 
Quiz using C++
Quiz using C++Quiz using C++
Quiz using C++
 
About Go
About GoAbout Go
About Go
 
Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala Michal Malohlava presents: Open Source H2O and Scala
Michal Malohlava presents: Open Source H2O and Scala
 
Codigo fuente
Codigo fuenteCodigo fuente
Codigo fuente
 
Please fix my errors class Iterator public Construc.pdf
Please fix my errors   class Iterator  public  Construc.pdfPlease fix my errors   class Iterator  public  Construc.pdf
Please fix my errors class Iterator public Construc.pdf
 

More from Yuki Tamura

失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)Yuki Tamura
 
ネイティブ開発アンチパターン
ネイティブ開発アンチパターンネイティブ開発アンチパターン
ネイティブ開発アンチパターンYuki Tamura
 
デザインパターンとは何か?
デザインパターンとは何か?デザインパターンとは何か?
デザインパターンとは何か?Yuki Tamura
 
ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半Yuki Tamura
 
ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半Yuki Tamura
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)Yuki Tamura
 
最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~Yuki Tamura
 

More from Yuki Tamura (9)

失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
失敗から学ぶゲーム開発(ドラゴンジェネシス〜聖戦の絆〜の場合)
 
ネイティブ開発アンチパターン
ネイティブ開発アンチパターンネイティブ開発アンチパターン
ネイティブ開発アンチパターン
 
デザインパターンとは何か?
デザインパターンとは何か?デザインパターンとは何か?
デザインパターンとは何か?
 
ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半ソーシャルアプリ開発におけるチーム開発戦略後半
ソーシャルアプリ開発におけるチーム開発戦略後半
 
ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半ソーシャルアプリ開発におけるチーム開発戦略前半
ソーシャルアプリ開発におけるチーム開発戦略前半
 
Boost study#4
Boost study#4Boost study#4
Boost study#4
 
Djangoの話
Djangoの話Djangoの話
Djangoの話
 
C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)C++の話(本当にあった怖い話)
C++の話(本当にあった怖い話)
 
最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~最速の言語Lua ~Python Hack-a-thon #3~
最速の言語Lua ~Python Hack-a-thon #3~
 

Recently uploaded

Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 

Recently uploaded (20)

Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 

12 分くらいで知るLuaVM

  • 1. LuaVM 1 2 L u a V M 2010 2 24
  • 2. blog: hatena: Isoparametric twitter: isoparametric name: (http://d.hatena.ne.jp/Isoparametric/) 2010 2 24
  • 3. Lua? Lua LL ANSI C 2010 2 24
  • 4. LuaVM Lua Lua C if for Lua Lua VM 2010 2 24
  • 5. Lua VM VM 2010 2 24
  • 6. I think that one cannot completely grok a scripting language, or any complex system for that matter, without slitting the animal open and examining the entrails, organs and other yucky stuff that isn’t normally seen. 2010 2 24
  • 7. LuaVM VM(5.0 ) Windows 2010 2 24
  • 8. LuaVM 2010 2 24
  • 9. VM CPU ……CPU …… …… PC…… 2010 2 24
  • 10. VM CPU ……CPU …… …… PC…… 2010 2 24
  • 11. /*---------------------------------------------------------------------- 38 (5.1.4 ) name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ R(X) X OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ K(X) X OP_SUB,/* OP_MUL,/* A B C R(A) := RK(B) - RK(C) A B C R(A) := RK(B) * RK(C) */ */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ RK(X) R(X) OP_JMP,/* OP_EQ,/* OP_LT,/* sBx pc+=sBx A B C if ((RK(B) == RK(C)) ~= A) then pc++ A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ */ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ K(X-k) OP_TEST,/* A C if not (R(A) <=> C) then pc++ OP_TESTSET,/* */ A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 2010 2 24
  • 12. /*---------------------------------------------------------------------- 38 (5.1.4 ) name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADK,/* A Bx R(A) := Kst(Bx) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ R(X) X OP_LOADNIL,/* A B R(A) := ... := R(B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_GETGLOBAL,/* A Bx R(A) := Gbl[Kst(Bx)] */ OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ OP_SETGLOBAL,/* A Bx Gbl[Kst(Bx)] := R(A) */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ K(X) X OP_SUB,/* OP_MUL,/* A B C R(A) := RK(B) - RK(C) A B C R(A) := RK(B) * RK(C) */ */ OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ RK(X) R(X) OP_JMP,/* OP_EQ,/* OP_LT,/* sBx pc+=sBx A B C if ((RK(B) == RK(C)) ~= A) then pc++ A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ */ */ OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ K(X-k) OP_TEST,/* A C if not (R(A) <=> C) then pc++ OP_TESTSET,/* */ A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ OP_FORLOOP,/* A sBx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ OP_TFORLOOP,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); if R(A+3) ~= nil then R(A+2)=R(A+3) else pc++ */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSE,/* A close all variables in the stack up to (>=) R(A)*/ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx], R(A), ... ,R(A+n)) */ OP_VARARG/* A B R(A), R(A+1), ..., R(A+B-1) = vararg */ 2010 2 24
  • 13. MOVE LOADK LOADBOOL LOADNIL nil GETUPVAL GETGLOBAL GETTABLE SETGLOBAL SETUPVAL SETTABLE 2010 2 24
  • 14. NEWTABLE SELF ADD SUB MUL DIV MOD POW UNM NOT 2010 2 24
  • 15. LEN CONCAT JMP EQ LT LE TEST TESTSET CALL TAILCALL 2010 2 24
  • 16. RETURN FORLOOP for FORPREP FORPREP for TFORLOOP for SETLIST CLOSE CLOSURE VARARG 2010 2 24
  • 17. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 OP A B C OP A Bx OP A sBx Figure 6: Instruction layout OP 6bit function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b end 3 4 A JMP MOVE 1 2 1 0 ; ; 8bit to 5 (4+1) R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 B C 9bit RETURN 0 1 0 ; return 18bit 7: Bytecode for a Lua function Figure Bx(unsigned) or sBx(signed) a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. 2010 2 24
  • 18. OP A Bx OP A sBx Figure 6: Instruction layout function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b 3 JMP 1 ; to 5 (4+1) end 4 MOVE 2 1 0 ; R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 RETURN 0 1 0 ; return Figure 7: Bytecode for a Lua function a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. For instance, the increment of a local variable, such as a = a + 1, is coded as ADD x x y, where x represents the register holding the local variable and y represents the constant 1. An assignment like a = b.f, when both a and b are local variables, is also coded as the single instruction GETTABLE x y z, where x is the register for a, y is the register for b, and z is the index of the string constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b 2010 2 24 indexed by the string "f".)
  • 19. OP A Bx OP A sBx Figure 6: Instruction layout function max (a,b) local m = a 1 MOVE 2 0 0 ; R(2) = R(0) if b > a then 2 LT 0 0 1 ; R(0) < R(1) ? m = b 3 JMP 1 ; to 5 (4+1) end 4 MOVE 2 1 0 ; R(2) = R(1) return m 5 RETURN 2 2 0 ; return R(2) end 6 RETURN 0 1 0 ; return Figure 7: Bytecode for a Lua function R(0) == a, R(1) == b a register or a constant (using the representation RK(X) explained above). With this format, several typical operations in Lua can be coded in a single instruction. LT For instance, the increment of a local variable, such as a = a + 1, is coded as ADD x x y, where x represents the register holding the local variable and y PC++ JMP represents the constant 1. An assignment like a = b.f, when both a and b are local variables, is also coded as the single instruction GETTABLE x y z, where x OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ is the register for a, y is the register for b, and z is the index of the string constant "f". (In Lua, the syntax b.f is syntactic sugar for b["f"], that is, b */ 2010 2 24 indexed by the string "f".)
  • 20. 256 B/C 9bit==1bit Lua 18bit (131071 ) 2010 2 24
  • 21. VM Lua VM lua -l 2010 2 24
  • 22. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 23. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 24. Lua 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 constructors • • • • • • • • • • • • garbage collection • • • • • • • • • • • • extensible semantics ◦ ◦ • • • • • • • • • • support for OOP ◦ ◦ • • • • • • • • • • long strings ◦ ◦ ◦ • • • • • • • • • debug API ◦ ◦ ◦ • • • • • • • • • external compiler ◦ ◦ ◦ ◦ • • • • • • • • vararg functions ◦ ◦ ◦ ◦ ◦ • • • • • • • pattern matching ◦ ◦ ◦ ◦ ◦ • • • • • • • conditional compilation ◦ ◦ ◦ ◦ ◦ ◦ • • • ◦ ◦ ◦ anonymous functions, closures ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • • debug library ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • • multi-state API ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • for statement ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • • long comments ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • full lexical scoping ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • booleans ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • coroutines ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • incremental garbage collection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • module system ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 1.0 1.1 2.1 2.2 2.4 2.5 3.0 3.1 3.2 4.0 5.0 5.1 libraries 4 4 4 4 4 4 4 4 5 6 8 9 built-in functions 5 7 11 11 13 14 25 27 35 0 0 0 API functions 30 30 30 30 32 32 33 47 41 60 76 79 vm type (stack × register) S S S S S S S S S S R R vm instructions 64 65 69 67 67 68 69 128 64 49 35 38 keywords 16 16 16 16 16 16 16 16 16 18 21 21 other tokens 21 21 23 23 23 23 24 25 25 25 24 26 Table 1. The evolution of features in Lua. 2010 2 24
  • 25. VM V S V M 2010 2 24
  • 26. VM VM push VM VM 2010 2 24
  • 27. VM Lua VM Lua local push/pop 2010 2 24
  • 28. LuaVM Lua 2010 2 24
  • 29. == == 2010 2 24
  • 30. == == Lua VM …… VM 2010 2 24
  • 31. 2010 2 24
  • 32. LuaVM 4byte Lua 1byte 2byte 2010 2 24
  • 33. ADD ADD ADD ADD + 2010 2 24
  • 34. JavaVM goto 2byte) 2byte 2010 2 24
  • 35. Lua 4byte Lua 1 or 2byte 2010 2 24
  • 36. local a,t,i a=a+i a=a+100 YO a=t[i] 2010 2 24
  • 37. local a,t,i a=a+i a=a+100 YO a=t[i] 1 [1] PUSHNIL 3 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 38. local a,t,i a=a+i a=a+100 YO a=t[i] 1 [1] PUSHNIL 3 1 [2]ADD 0 0 2 2 [2] GETLOCAL 0 ; a 2 [3]ADD 0 0 -1 ; - 100 3 [2] GETLOCAL 2 ; i 3 [4]GETTABLE 0 1 2 4 [2] ADD 4 [4]RETURN 0 1 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 39. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 40. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 41. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 42. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 43. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i a=t[i] 11 [4] SETLOCAL 0 ; a 12 [4] END 2010 2 24
  • 44. Lua 4.0.1 main <0:@test.lua> (12 instructions/96 bytes at 0x100100650) 0 params, 5 stacks, 3 locals, 0 strings, 0 numbers, 0 functions, 5 lines 1 [1] PUSHNIL 3 local a,t,i 2 [2] GETLOCAL 0 ; a 3 [2] GETLOCAL 2 ; i a=a+i 4 [2] ADD 5 [2] SETLOCAL 0 ; a 6 [3] GETLOCAL 0 ; a 7 [3] ADDI 100 a=a+100 8 [3] SETLOCAL 0 ; a 9 [4] GETLOCAL 1 ; t 10 [4] GETINDEXED 2 ; i a=t[i] 11 [4] SETLOCAL 0 ; a 12 [4] END YO! ADD ADDI …… 2010 2 24
  • 45. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 2 [3] ADD 0 0 -1 ; - 100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 46. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 47. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 4 [4] RETURN 0 1 2010 2 24
  • 48. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 a=t[i] 4 [4] RETURN 0 1 2010 2 24
  • 49. Lua 5.1.4 main <test.lua:0,0> (4 instructions, 16 bytes at 0x100101050) 0+ params, 3 slots, 0 upvalues, 3 locals, 1 constant, 0 functions 1 [2] ADD 0 0 2 a=a+i 2 [3] ADD 0 0 -1 ; - 100 a=a+100 3 [4] GETTABLE 0 1 2 a=t[i] 4 [4] RETURN 0 1 local a,t,i …… 2010 2 24
  • 50. 2010 2 24
  • 51. Lua :-p …… 2010 2 24
  • 52. Lua Lua 12byte tag+ union 2010 2 24
  • 53. ual machine with the new optimization for arrays can reduce the runnin up to 40%. The complete code of Lua 5.0 is available for browsing at Lua’s web site p://www.lua.org/source/5.0/. program Lua 4.0 Lua 5’ Lua 5.0 sum (2e7) 1.23 0.54 (44%) 0.54 (44%) fibo (30) 0.95 0.68 (72%) 0.69 (73%) ack (8) 1.00 0.86 (86%) 0.88 (88%) random (1e6) 1.04 0.96 (92%) 0.96 (92%) sieve (100) 0.93 0.82 (88%) 0.57 (61%) heapsort (5e4) 1.08 1.05 (97%) 0.70 (65%) matrix (50) 0.84 0.82 (98%) 0.59 (70%) re 10: Benchmarks (times in seconds; percentages are relative to Lua 4.0) Lua 2010 2 24
  • 54. L u a V M 2010 2 24
  • 55. Lua Lua Lua local 2010 2 24
  • 56. Lua 2010 2 24
  • 57. LuaVM Lua-Alchemy(Lua on Flash) kahlua(Lua on Java[J2ME]) Yueliang(Lua on Lua) LuaCLR(Lua on .NET) Lua2js(Lua on JavaScript) http://lua-users.org/wiki/ LuaImplementations 2010 2 24
  • 58. The Implementation of Lua 5.0 The Evolution of Lua A No-Frills Introduction to Lua 5.1 VM Instructions Lua lvm.c lopcodes.h 2010 2 24
  • 59. Lua Lua 2010 2 24
  • 60. Lua C Lua JIT C VM 2010 2 24
  • 61. 2010 2 24