SlideShare a Scribd company logo
1 of 24
Download to read offline
The geothermal reservoir and the development of
a new production eld in Hellisheiði
Gunnar Gunnarsson
Reykjavik Energy  OR
IGC March 7, 2013
Introduction
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
The Hengill is a central
volcano.
Two production elds are in
the area: Nesjavellir
(120 MWe) and Hellisheiði
(303 MWe).
Nesjavellir Power Plant
commissioned in 1990. First
wells drilled in 1972 last
unit commissioned in 2005.
In Hellisheiði drilling started
in 2002, rst units were
commissioned 2006 and the
last in 2011.
The Hengill Area  Surface exploration
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
The Hengill Area is a central
volcano  Volcanic craters,
hot springs and fumaroles.
The Hengill Area  Surface exploration
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
The Hengill Area is a central
volcano  Volcanic craters,
hot springs and fumaroles.
Highest degree of alteration
in the highest part of the
Hengill Mountains.
The Hengill Area  Surface exploration
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
The Hengill Area is a central
volcano  Volcanic craters,
hot springs and fumaroles.
Highest degree of alteration
in the highest part of the
Hengill Mountains.
Resistivity measurements
(TEM) show large area
where high resistivity core is
under low resistivity cap.
The Hengill Area  Surface exploration
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
The Hengill Area is a central
volcano  Volcanic craters,
hot springs and fumaroles.
Highest degree of alteration
in the highest part of the
Hengill Mountains.
Resistivity measurements
(TEM) show large area
where high resistivity core is
under low resistivity cap.
Power estimates based on
resistivity survey.
Conceptual model of a Volcanic geothermal system
Old Conceptual model of the Hengill Area
The rst wells in Hellisheiði
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
390
392
394
396
398
400
402
404
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
0
200
400
600
800
m y.s.
Bitra
Hverahlíð
Hellisheiði
Nesjavellir
Hengill
Reykjavík
He-04
He-07
He-03
He-06
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−03
T [°C]
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−04
T [°C]
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−06
T [°C]
0
500
1000
1500
2000
2500
0 100 200 300
d[m]
HE−07
T [°C]
Formation temperature  Hengill
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
120
120
160
160
160
200
200
200
200
240
240
240
240
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 500 m b.s.l.
Well data  formation
temperature.
The formation temperature
unveils the thermodynamics
of the geothermal system.
The formation temperature
in the Hengill Area is
characterize by sharp
structures.
Hotter areas separated by
cooler ones  separate heat
sources...
...or sharp changes in
permeability.
Formation temperature  Hengill
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
200
200
200
240
240
240240
240
240
280
280
280
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 1000 m b.s.l.
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
240
240
240
240
240
280
280
280
280
388
390
392
394
396
398
400
402
404
406
ISNETY[km]
380 382 384 386 388 390 392
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 1500 m b.s.l.
Formation temperature in Hellisheiði
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
120
160
160
200
200
200
240
240
240
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 500 m b.s.l.
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
200
240
240
240
280
280
280
280
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 1500 m b.s.l.
Formation temperature in Hellisheiði
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
200
200
240
240
240
240
240
280
280
280
280
HE−03
HE−04
HE−06
HE−07
HE−57
HE−36
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
100
150
200
250
300
T [°C]
Form. temp. 1000 m b.s.l.
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−03
T [°C]
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−04
T [°C]
0
500
1000
1500
2000
0 100 200 300
d[m]
HE−06
T [°C]
0
500
1000
1500
2000
2500
0 100 200 300
d[m]
HE−07
T [°C]
0
500
1000
1500
2000
2500
0 100 200 300
d[m]
HE−36
T [°C]
0
500
1000
1500
2000
2500
3000
0 100 200 300
d[m]
HE−57
T [°C]
Formation temperature in Hellisheiði
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
200
200
240
240
240
240
240
280
280
280
280
HE−26
Reykjafell
HE−10
HE−36
HN−01
HE−21
Gráuhnúkar
A
A’
B
B’
389
390
391
392
393
394
395
396
397
398
399
400
401
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
100
150
200
250
300
T [°C]
Berghiti 1000 m u.s. 0
20
406080100120140160
180 200
220
220
240
240
260
260
280
280
300
−3000
−2000
−1000
0
1000
Elevationa.s.l.[m]
−2000 −1000 0 1000 2000
Position [m]
50
100
150
200
250
300
T °C
HE−10
HE−26
Reykjafell
A A’
−20
0
20
406080100120140
160
180
200
200
220
220
240
240
260
260
280
280
280
300
300
320
−3000
−2000
−1000
0
1000
Elevationa.s.l.[m]
−3000 −2000 −1000 0 1000 2000 3000
Position [m]
50
100
150
200
250
300
T °C
HE−21
HE−36
HN−01
Gráuhnúkar
B B’
Formation temperature in the Hengill Area
Localized maxima in formation temperature cooler regions in
between. Sharp structures.
Reversed temperature gradient on the edge of the hottest
regions.
Separate heat sources drive the geothermal activity.
Older conceptual models that postulate a single heat source
under the highest part of the Hengill Mountains that drives the
geothermal elds in the Hengill Area are in contradiction with
observed distribution of formation temperature.
New conceptual model assume that the geothermal elds in
the area are driven by individual heat sources1.
1
Here a heat sources means the hot body that interacts to the water
circulation
The development of a eld and conceptual models
Conceptual models do evolve during the development of a
geothermal eld when new information become available.
This is why it has been postulated that geothermal operation
should be developed in steps.
All decisions on the size of the Hellisheiði Power Plant were
made before the data from the drilling operation became
available.
These decisions were based on limited information on the
initial state of the reservoir and no production history data.
Production in the Hellisheiði Field is concentrated on the
hottest part of the system.
Distribution of production
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
100
100
200
200
300
300
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
Distribution of the total mass production
0
50
100
150
200
250
300
kg/s/km2
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
50
50
100
150
150
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
392
393
394
395
396
397
398
399
400
ISNETN[km]
382 383 384 385 386 387 388
ISNET A [km]
Distribution of the steam production
0
50
100
150
200
250
300
kg/s/km2
Distribution of production  playing with numbers
The mass production pro km2 is
 300 kg/s/km2 in the center of
the production eld.
If no recharge drawdown in the
time interval ∆T is given by:
∆d =
Q
A
1
ρφ
∆T
If porosity is 10% and temperature
275◦C (ρ = 759 kg/m3)
drawdown in a year is:
∆d =
3 × 10−4 kg/m2/s
759 kg/m3
· 0.1
3.16 × 107
s
∆d = 125 m
Pressure drawdown  Mass in and out
Drawdown is dependent on two
more important parameters.
Natural recharge (Qnr ) and
Reinjection (Qri ).
Drawdown taking those
parameters into account is given
by:
∆d =
Qp − Qnr − Qri
Aρφ
∆T.
Drawdown can be decreased by
reinjecting and spreading the
production.
Managing the reservoir  reinjection
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
390
392
394
396
398
400
ISNETY[km]
376 378 380 382 384 386 388
ISNET X [km]
H
e l l i s h e i ð i
H
úsm
úli
G
ráuhnúkar
Reykjavík
20 km
Reinjection zones of the
Hellisheiði Power Plant.
The Gráuhnúkar Reinjection
Zone commissioned in 2007
 High formation
temperature ( 300◦C).
The Húsmúli Reinjection
Zone commissioned in 2011.
The Gráuhnúkar Zone
viewed as a possible zone
for make-up wells.
Pressure Drawdown in Hellisheiði
−40
−35
−30
−25
−20
−15
−10
−5
0
2000 2005 2010 2015 2020 2025 2030 2035 2040
Drawdown∆P[bar]
year
Pressure drawdown in well HE−04
Measured
Model
Reference
Future management of the Hellisheiði Field
390
391
392
393
394
395
396
397
398
399
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
200
200
240
240
240
240
280
280
280
280
390
391
392
393
394
395
396
397
398
399
ISNETY[km]
380 381 382 383 384 385 386 387
ISNET X [km]
100
150
200
250
300
T [°C]
Hverahlíð
H
ellisheiði
Gráuhnúkar
Húsmúli
Form. temp. 1000 m b.s.l.
The Hellisheiði Field is
narrow and needs to be
enlarged.
The Gráuhnúkar Zone
viewed as a possible zone
for make-up wells.
Injection supports the
pressure in the center of the
system.
Disposal of geothermal
water needs to be
addressed.
The Hverahlíð Field  a new
production zone or make-up
zone for Hellisheiði?
Summary and conclusion
Surface exploration gives a limited information on the size and
state of the of the geothermal reservoir.
Direct measurements on the size of the reservoir rst become
available with exploratory drilling.
The development of the production eld in Hellisheiði was
undertaken in a very fast pace  Decisions were often based on
limited information.
The production in the Hellisheiði Field is concentrated in a
narrow strip, where the density of production is very high.
Managing the production in the Hellisheiði Field will be a
challenge due to the high production rate per area.
It is desirable to enlarge the production area: Possible make-up
zones Gráuhnúkar and Hverahlíð.
Thank you for your attention.

More Related Content

Similar to The geothermal reservoir and the development of a new production feld in Hellisheiði

97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate0197fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
Vinoth Kanna
 
Eltherm ELKM-AS Heat Trace Cable - Spec Sheet
Eltherm ELKM-AS Heat Trace Cable - Spec SheetEltherm ELKM-AS Heat Trace Cable - Spec Sheet
Eltherm ELKM-AS Heat Trace Cable - Spec Sheet
Thorne & Derrick UK
 
Final Evaluation
Final EvaluationFinal Evaluation
Final Evaluation
Shahroz Ali
 
Cy3210661070
Cy3210661070Cy3210661070
Cy3210661070
IJMER
 
Eltherm ELKM-AE Heat Trace Cable - Spec Sheet
Eltherm ELKM-AE Heat Trace Cable - Spec SheetEltherm ELKM-AE Heat Trace Cable - Spec Sheet
Eltherm ELKM-AE Heat Trace Cable - Spec Sheet
Thorne & Derrick UK
 

Similar to The geothermal reservoir and the development of a new production feld in Hellisheiði (20)

A1 Future production from the Seltjarnarnes geothermal field Hrefna Kristmann...
A1 Future production from the Seltjarnarnes geothermal field Hrefna Kristmann...A1 Future production from the Seltjarnarnes geothermal field Hrefna Kristmann...
A1 Future production from the Seltjarnarnes geothermal field Hrefna Kristmann...
 
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate0197fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
97fd01fe-d033-40ce-964b-f2b030a90d30-150210013729-conversion-gate01
 
Eltherm ELKM-AS Heat Trace Cable - Spec Sheet
Eltherm ELKM-AS Heat Trace Cable - Spec SheetEltherm ELKM-AS Heat Trace Cable - Spec Sheet
Eltherm ELKM-AS Heat Trace Cable - Spec Sheet
 
Msc Thesis Final1
Msc Thesis Final1Msc Thesis Final1
Msc Thesis Final1
 
Final Evaluation
Final EvaluationFinal Evaluation
Final Evaluation
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
COAL FIRED BOILER -PRINCIPALS.pdf
COAL FIRED BOILER -PRINCIPALS.pdfCOAL FIRED BOILER -PRINCIPALS.pdf
COAL FIRED BOILER -PRINCIPALS.pdf
 
MBDA 13.03.13
MBDA 13.03.13MBDA 13.03.13
MBDA 13.03.13
 
ppt-presentation of Practical Design and Thermal Analysis of Thermosiphon Sol...
ppt-presentation of Practical Design and Thermal Analysis of Thermosiphon Sol...ppt-presentation of Practical Design and Thermal Analysis of Thermosiphon Sol...
ppt-presentation of Practical Design and Thermal Analysis of Thermosiphon Sol...
 
Cy3210661070
Cy3210661070Cy3210661070
Cy3210661070
 
2006 Fall MRS Presentation: "Gas Cluster Ge Infusion for Si(1-x)Ge(x) Straine...
2006 Fall MRS Presentation: "Gas Cluster Ge Infusion for Si(1-x)Ge(x) Straine...2006 Fall MRS Presentation: "Gas Cluster Ge Infusion for Si(1-x)Ge(x) Straine...
2006 Fall MRS Presentation: "Gas Cluster Ge Infusion for Si(1-x)Ge(x) Straine...
 
PRESENTATION SEEP
PRESENTATION SEEPPRESENTATION SEEP
PRESENTATION SEEP
 
Design of 50 MW CSP - parabolic trough power plant.
Design of 50 MW CSP - parabolic trough power plant.Design of 50 MW CSP - parabolic trough power plant.
Design of 50 MW CSP - parabolic trough power plant.
 
Eltherm ELKM-AE Heat Trace Cable - Spec Sheet
Eltherm ELKM-AE Heat Trace Cable - Spec SheetEltherm ELKM-AE Heat Trace Cable - Spec Sheet
Eltherm ELKM-AE Heat Trace Cable - Spec Sheet
 
CLC project
CLC projectCLC project
CLC project
 
3 calculating condensate loads
3 calculating condensate loads3 calculating condensate loads
3 calculating condensate loads
 
Footing-Biaxial_pdf-a.pdf
Footing-Biaxial_pdf-a.pdfFooting-Biaxial_pdf-a.pdf
Footing-Biaxial_pdf-a.pdf
 
Therminol 66 Synthetic Heat Transfer Fluid. Therminol Venezuela
Therminol 66 Synthetic Heat Transfer Fluid. Therminol VenezuelaTherminol 66 Synthetic Heat Transfer Fluid. Therminol Venezuela
Therminol 66 Synthetic Heat Transfer Fluid. Therminol Venezuela
 
WASTE HEAT RECOVERY IN CEMENT PLANTS - IDEAS
WASTE HEAT RECOVERY IN CEMENT PLANTS - IDEASWASTE HEAT RECOVERY IN CEMENT PLANTS - IDEAS
WASTE HEAT RECOVERY IN CEMENT PLANTS - IDEAS
 
ResearchSummary
ResearchSummaryResearchSummary
ResearchSummary
 

More from Iceland Geothermal

More from Iceland Geothermal (20)

Geothermal Landscape study final
Geothermal Landscape study finalGeothermal Landscape study final
Geothermal Landscape study final
 
A1 Winning Public Acceptance: Preparation of Geothermal Sustainability Asses...
A1  Winning Public Acceptance: Preparation of Geothermal Sustainability Asses...A1  Winning Public Acceptance: Preparation of Geothermal Sustainability Asses...
A1 Winning Public Acceptance: Preparation of Geothermal Sustainability Asses...
 
C4 - Geothermal Fuels Prosperity: How Geothermal Direct Use Projects Enable ...
C4 - Geothermal Fuels Prosperity:  How Geothermal Direct Use Projects Enable ...C4 - Geothermal Fuels Prosperity:  How Geothermal Direct Use Projects Enable ...
C4 - Geothermal Fuels Prosperity: How Geothermal Direct Use Projects Enable ...
 
C4 - Climeworks: Capturing CO2 from air
C4 - Climeworks: Capturing CO2 from airC4 - Climeworks: Capturing CO2 from air
C4 - Climeworks: Capturing CO2 from air
 
C4 - Opportunities to develop low-enthalpy geothermal project in Mexico
C4 - Opportunities to develop low-enthalpy geothermal project in MexicoC4 - Opportunities to develop low-enthalpy geothermal project in Mexico
C4 - Opportunities to develop low-enthalpy geothermal project in Mexico
 
C4 - Lithium recovery from high temperature geothermal brines.
C4 - Lithium recovery from high temperature geothermal brines.C4 - Lithium recovery from high temperature geothermal brines.
C4 - Lithium recovery from high temperature geothermal brines.
 
C4 - Transforming CO2 into a commercial product
C4 - Transforming CO2 into a commercial productC4 - Transforming CO2 into a commercial product
C4 - Transforming CO2 into a commercial product
 
C3 - Production Modelling for Sustainability
C3 - Production Modelling for SustainabilityC3 - Production Modelling for Sustainability
C3 - Production Modelling for Sustainability
 
C3 - IDDP2 A better tomorrow
C3 - IDDP2 A better tomorrowC3 - IDDP2 A better tomorrow
C3 - IDDP2 A better tomorrow
 
C3 - Production and reinjection at Hellisheiði: Holistic approach
C3 - Production and reinjection at Hellisheiði: Holistic approachC3 - Production and reinjection at Hellisheiði: Holistic approach
C3 - Production and reinjection at Hellisheiði: Holistic approach
 
C3 - Geothermal reservoir management and sustainable use
C3 - Geothermal reservoir management and sustainable useC3 - Geothermal reservoir management and sustainable use
C3 - Geothermal reservoir management and sustainable use
 
C2 - Optimization of existing systems: Improvement of plants in operation and...
C2 - Optimization of existing systems: Improvement of plants in operation and...C2 - Optimization of existing systems: Improvement of plants in operation and...
C2 - Optimization of existing systems: Improvement of plants in operation and...
 
C2 - Managing Silica Deposits in Geothermal: Pros & Cons of pH Mod vs. Silica...
C2 - Managing Silica Deposits in Geothermal: Pros & Cons of pH Mod vs. Silica...C2 - Managing Silica Deposits in Geothermal: Pros & Cons of pH Mod vs. Silica...
C2 - Managing Silica Deposits in Geothermal: Pros & Cons of pH Mod vs. Silica...
 
C2 - BINARY POWER PLANTS FOR HIGH-ENTHALPY WELL-HEAD GENERATION
C2 - BINARY POWER PLANTS FOR HIGH-ENTHALPY WELL-HEAD GENERATIONC2 - BINARY POWER PLANTS FOR HIGH-ENTHALPY WELL-HEAD GENERATION
C2 - BINARY POWER PLANTS FOR HIGH-ENTHALPY WELL-HEAD GENERATION
 
C2 - ENGINEERING THE ENERGY TRANSITION
C2 - ENGINEERING THE  ENERGY TRANSITIONC2 - ENGINEERING THE  ENERGY TRANSITION
C2 - ENGINEERING THE ENERGY TRANSITION
 
C1 - Impacting Operating Costs and Revenues: If Geothermal is so Clever, wher...
C1 - Impacting Operating Costs and Revenues: If Geothermal is so Clever, wher...C1 - Impacting Operating Costs and Revenues: If Geothermal is so Clever, wher...
C1 - Impacting Operating Costs and Revenues: If Geothermal is so Clever, wher...
 
C1 - Operation: Ownership Structure and its Effects
C1 - Operation: Ownership Structure and its EffectsC1 - Operation: Ownership Structure and its Effects
C1 - Operation: Ownership Structure and its Effects
 
C1 - STATUS OF GEOTHERMAL DEVELOPMENT IN MENENGAI AND BARINGO- SILALI PROJECTS
C1 - STATUS OF GEOTHERMAL DEVELOPMENT IN MENENGAI AND BARINGO- SILALI PROJECTSC1 - STATUS OF GEOTHERMAL DEVELOPMENT IN MENENGAI AND BARINGO- SILALI PROJECTS
C1 - STATUS OF GEOTHERMAL DEVELOPMENT IN MENENGAI AND BARINGO- SILALI PROJECTS
 
C1 - Financing Geothermal Development: Overview, Challenges and opportunities...
C1 - Financing Geothermal Development: Overview, Challenges and opportunities...C1 - Financing Geothermal Development: Overview, Challenges and opportunities...
C1 - Financing Geothermal Development: Overview, Challenges and opportunities...
 
B4 - Successful Implementation of a Modular Geothermal Wellhead Strategy
B4 - Successful Implementation of a Modular Geothermal Wellhead StrategyB4 - Successful Implementation of a Modular Geothermal Wellhead Strategy
B4 - Successful Implementation of a Modular Geothermal Wellhead Strategy
 

Recently uploaded

Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
MateoGardella
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
SanaAli374401
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
MateoGardella
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Recently uploaded (20)

Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 

The geothermal reservoir and the development of a new production feld in Hellisheiði

  • 1. The geothermal reservoir and the development of a new production eld in Hellisheiði Gunnar Gunnarsson Reykjavik Energy OR IGC March 7, 2013
  • 2. Introduction 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík The Hengill is a central volcano. Two production elds are in the area: Nesjavellir (120 MWe) and Hellisheiði (303 MWe). Nesjavellir Power Plant commissioned in 1990. First wells drilled in 1972 last unit commissioned in 2005. In Hellisheiði drilling started in 2002, rst units were commissioned 2006 and the last in 2011.
  • 3. The Hengill Area Surface exploration 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík The Hengill Area is a central volcano Volcanic craters, hot springs and fumaroles.
  • 4. The Hengill Area Surface exploration 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík The Hengill Area is a central volcano Volcanic craters, hot springs and fumaroles. Highest degree of alteration in the highest part of the Hengill Mountains.
  • 5. The Hengill Area Surface exploration 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík The Hengill Area is a central volcano Volcanic craters, hot springs and fumaroles. Highest degree of alteration in the highest part of the Hengill Mountains. Resistivity measurements (TEM) show large area where high resistivity core is under low resistivity cap.
  • 6. The Hengill Area Surface exploration 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík The Hengill Area is a central volcano Volcanic craters, hot springs and fumaroles. Highest degree of alteration in the highest part of the Hengill Mountains. Resistivity measurements (TEM) show large area where high resistivity core is under low resistivity cap. Power estimates based on resistivity survey.
  • 7. Conceptual model of a Volcanic geothermal system
  • 8. Old Conceptual model of the Hengill Area
  • 9. The rst wells in Hellisheiði 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 390 392 394 396 398 400 402 404 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 0 200 400 600 800 m y.s. Bitra Hverahlíð Hellisheiði Nesjavellir Hengill Reykjavík He-04 He-07 He-03 He-06 0 500 1000 1500 2000 0 100 200 300 d[m] HE−03 T [°C] 0 500 1000 1500 2000 0 100 200 300 d[m] HE−04 T [°C] 0 500 1000 1500 2000 0 100 200 300 d[m] HE−06 T [°C] 0 500 1000 1500 2000 2500 0 100 200 300 d[m] HE−07 T [°C]
  • 10. Formation temperature Hengill 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 120 120 160 160 160 200 200 200 200 240 240 240 240 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 500 m b.s.l. Well data formation temperature. The formation temperature unveils the thermodynamics of the geothermal system. The formation temperature in the Hengill Area is characterize by sharp structures. Hotter areas separated by cooler ones separate heat sources... ...or sharp changes in permeability.
  • 11. Formation temperature Hengill 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 200 200 200 240 240 240240 240 240 280 280 280 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 1000 m b.s.l. 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 240 240 240 240 240 280 280 280 280 388 390 392 394 396 398 400 402 404 406 ISNETY[km] 380 382 384 386 388 390 392 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 1500 m b.s.l.
  • 12. Formation temperature in Hellisheiði 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 120 160 160 200 200 200 240 240 240 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 500 m b.s.l. 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 200 240 240 240 280 280 280 280 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 1500 m b.s.l.
  • 13. Formation temperature in Hellisheiði 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 200 200 240 240 240 240 240 280 280 280 280 HE−03 HE−04 HE−06 HE−07 HE−57 HE−36 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 100 150 200 250 300 T [°C] Form. temp. 1000 m b.s.l. 0 500 1000 1500 2000 0 100 200 300 d[m] HE−03 T [°C] 0 500 1000 1500 2000 0 100 200 300 d[m] HE−04 T [°C] 0 500 1000 1500 2000 0 100 200 300 d[m] HE−06 T [°C] 0 500 1000 1500 2000 2500 0 100 200 300 d[m] HE−07 T [°C] 0 500 1000 1500 2000 2500 0 100 200 300 d[m] HE−36 T [°C] 0 500 1000 1500 2000 2500 3000 0 100 200 300 d[m] HE−57 T [°C]
  • 14. Formation temperature in Hellisheiði 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 200 200 240 240 240 240 240 280 280 280 280 HE−26 Reykjafell HE−10 HE−36 HN−01 HE−21 Gráuhnúkar A A’ B B’ 389 390 391 392 393 394 395 396 397 398 399 400 401 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 100 150 200 250 300 T [°C] Berghiti 1000 m u.s. 0 20 406080100120140160 180 200 220 220 240 240 260 260 280 280 300 −3000 −2000 −1000 0 1000 Elevationa.s.l.[m] −2000 −1000 0 1000 2000 Position [m] 50 100 150 200 250 300 T °C HE−10 HE−26 Reykjafell A A’ −20 0 20 406080100120140 160 180 200 200 220 220 240 240 260 260 280 280 280 300 300 320 −3000 −2000 −1000 0 1000 Elevationa.s.l.[m] −3000 −2000 −1000 0 1000 2000 3000 Position [m] 50 100 150 200 250 300 T °C HE−21 HE−36 HN−01 Gráuhnúkar B B’
  • 15. Formation temperature in the Hengill Area Localized maxima in formation temperature cooler regions in between. Sharp structures. Reversed temperature gradient on the edge of the hottest regions. Separate heat sources drive the geothermal activity. Older conceptual models that postulate a single heat source under the highest part of the Hengill Mountains that drives the geothermal elds in the Hengill Area are in contradiction with observed distribution of formation temperature. New conceptual model assume that the geothermal elds in the area are driven by individual heat sources1. 1 Here a heat sources means the hot body that interacts to the water circulation
  • 16. The development of a eld and conceptual models Conceptual models do evolve during the development of a geothermal eld when new information become available. This is why it has been postulated that geothermal operation should be developed in steps. All decisions on the size of the Hellisheiði Power Plant were made before the data from the drilling operation became available. These decisions were based on limited information on the initial state of the reservoir and no production history data. Production in the Hellisheiði Field is concentrated on the hottest part of the system.
  • 17. Distribution of production 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] 100 100 200 200 300 300 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] Distribution of the total mass production 0 50 100 150 200 250 300 kg/s/km2 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] 50 50 100 150 150 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] 392 393 394 395 396 397 398 399 400 ISNETN[km] 382 383 384 385 386 387 388 ISNET A [km] Distribution of the steam production 0 50 100 150 200 250 300 kg/s/km2
  • 18. Distribution of production playing with numbers The mass production pro km2 is 300 kg/s/km2 in the center of the production eld. If no recharge drawdown in the time interval ∆T is given by: ∆d = Q A 1 ρφ ∆T If porosity is 10% and temperature 275◦C (ρ = 759 kg/m3) drawdown in a year is: ∆d = 3 × 10−4 kg/m2/s 759 kg/m3 · 0.1 3.16 × 107 s ∆d = 125 m
  • 19. Pressure drawdown Mass in and out Drawdown is dependent on two more important parameters. Natural recharge (Qnr ) and Reinjection (Qri ). Drawdown taking those parameters into account is given by: ∆d = Qp − Qnr − Qri Aρφ ∆T. Drawdown can be decreased by reinjecting and spreading the production.
  • 20. Managing the reservoir reinjection 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] 390 392 394 396 398 400 ISNETY[km] 376 378 380 382 384 386 388 ISNET X [km] H e l l i s h e i ð i H úsm úli G ráuhnúkar Reykjavík 20 km Reinjection zones of the Hellisheiði Power Plant. The Gráuhnúkar Reinjection Zone commissioned in 2007 High formation temperature ( 300◦C). The Húsmúli Reinjection Zone commissioned in 2011. The Gráuhnúkar Zone viewed as a possible zone for make-up wells.
  • 21. Pressure Drawdown in Hellisheiði −40 −35 −30 −25 −20 −15 −10 −5 0 2000 2005 2010 2015 2020 2025 2030 2035 2040 Drawdown∆P[bar] year Pressure drawdown in well HE−04 Measured Model Reference
  • 22. Future management of the Hellisheiði Field 390 391 392 393 394 395 396 397 398 399 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 200 200 240 240 240 240 280 280 280 280 390 391 392 393 394 395 396 397 398 399 ISNETY[km] 380 381 382 383 384 385 386 387 ISNET X [km] 100 150 200 250 300 T [°C] Hverahlíð H ellisheiði Gráuhnúkar Húsmúli Form. temp. 1000 m b.s.l. The Hellisheiði Field is narrow and needs to be enlarged. The Gráuhnúkar Zone viewed as a possible zone for make-up wells. Injection supports the pressure in the center of the system. Disposal of geothermal water needs to be addressed. The Hverahlíð Field a new production zone or make-up zone for Hellisheiði?
  • 23. Summary and conclusion Surface exploration gives a limited information on the size and state of the of the geothermal reservoir. Direct measurements on the size of the reservoir rst become available with exploratory drilling. The development of the production eld in Hellisheiði was undertaken in a very fast pace Decisions were often based on limited information. The production in the Hellisheiði Field is concentrated in a narrow strip, where the density of production is very high. Managing the production in the Hellisheiði Field will be a challenge due to the high production rate per area. It is desirable to enlarge the production area: Possible make-up zones Gráuhnúkar and Hverahlíð.
  • 24. Thank you for your attention.