SlideShare a Scribd company logo
1 of 36
Chapter 10 - 1
ISSUES TO ADDRESS...
• Transforming one phase into another takes time.
• How does the rate of transformation depend on time and T ?
• How can we slow down the transformation so that
we can engineer non-equilibrium structures?
• Are the mechanical properties of non-equilibrium
structures better?
Fe
γ
(Austenite)
Eutectoid
transformation
C FCC
Fe3C
(cementite)
α
(ferrite)
+
(BCC)
Chapter 10:
Phase Transformations
Chapter 10 - 2
Phase Transformation and Structure
Processing
Structure Properties
Phase Transformation  Altering Structure
Changing Temperature (on phase diagram)
Chapter 10 - 3
Phase Transformations
Nucleation
– nuclei (seeds) act as template to grow crystals
– for nucleus to form: rate of addition of atoms to
nucleus must be faster than rate of loss
– once nucleated, grow until reach equilibrium
Driving force to nucleate increases as we increase ∆T
– supercooling (eutectic, eutectoid)
Small supercooling  few nuclei - large crystals
Large supercooling  rapid nucleation - many nuclei,
small crystals
Chapter 10 - 4
Solidification: Nucleation Processes
• Homogeneous nucleation
– nuclei form in the bulk of liquid metal
– requires supercooling (typically 80-300°C max)
• Heterogeneous nucleation
– much easier since stable “nucleus” is already present
Could be wall of mold or impurities in the liquid phase
– allows solidification with only 0.1-10ºC supercooling
Chapter 10 - 5
Rate of Phase Transformations
Kinetics - measure approach to equilibrium vs. time
• Hold temperature constant
& measure conversion vs. time
sound waves – one sample
electrical conductivity – follow one sample
X-ray diffraction – have to do many samples
How is conversion measured?
Chapter 10 - 6
Rate of Phase Transformation
Avrami rate equation => y = 1- exp (-ktn
)
– k & n fit for specific sample (from experiments)
All out of material - done
log t
Fractiontransformed,y
Fixed T
fraction
transformed
time
0.5
By convention r = 1 / t0.5
maximum rate reached – now amount
unconverted decreases so rate slows
t0.5
rate increases as surface area increases
& nuclei grow
Chapter 10 - 7
Rate of Phase Transformations
• In general, rate increases as T ↑
r = 1/t0.5 = A e -Q/RT
– R = gas constant
– T = temperature (K)
– A = preexponential factor
– Q = activation energy
Arrhenius
expression
• r often small: equilibrium not possible!
135°C 119°C 113°C 102°C 88°C 43°C
1 10 102
104
∆T
supercooling
Chapter 10 - 8
Eutectoid Transformation Rate
Course pearlite  formed at higher T - softer
Fine pearlite  formed at low T - harder
Diffusive flow
of C needed
α
α
γ
γ
α
• Growth of pearlite from austenite:
γα
α
α
α
α
α
pearlite
growth
direction
Austenite (γ)
grain
boundary
cementite (Fe3C)
Ferrite (α)
γ
• Recrystallization
rate increases
with ∆T. 675°C
(∆T smaller)
0
50
y(%pearlite)
600°C
(∆T larger)
650°C
100
Chapter 10 - 9
• Reaction rate is a result of nucleation and growth of crystals.
• Examples:
Nucleation and Growth
% Pearlite
0
50
100
Nucleation
regime
Growth
regime
log(time)t0.5
Nucleation rate increases with ∆T
Growth rate increases with T
T just below TE
Nucleation rate low
Growth rate high
γ
pearlite
colony
T moderately below TE
γ
Nucleation rate medium.
Growth rate medium.
Nucleation rate high
T way below TE
γ
Growth rate low
Chapter 10 -10
Transformations & Undercooling
• Can make it occur at:
...727ºC (cool it slowly)
...below 727ºC (“undercool” it!)
• Eutectoid transf. (Fe-C System): γ ⇒ α + Fe3C
0.76 wt% C
0.022 wt% C
6.7 wt% C
Fe3C(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ +Fe3C
α +Fe3C
L+Fe3C
δ
(Fe) Co, wt%C
1148°C
T(°C)
α
ferrite
727°C
Eutectoid:
Equil. Cooling: Ttransf. = 727ºC
∆T
Undercooling by ∆Ttransf. < 727°C
0.76
0.022
Chapter 10 -11
Isothermal Transformation Diagrams
• Fe-C system, Co = 0.76 wt% C
• Transformation at T = 675°C.
100
50
0
1 102 104
T = 675°C
y,
%transformed
time (s)
400
500
600
700
1 10 102 103 104 105
0%pearlite
100%
50%
Austenite (stable)
TE (727°C)Austenite
(unstable)
Pearlite
T(°C)
time (s)
isothermal transformation at 675°C
Chapter 10 -12
• Eutectoid composition, Co = 0.76 wt% C
• Begin at T > 727°C
• Rapidly cool to 625°C and hold isothermally.
Effect of Cooling History in Fe-C System
400
500
600
700
0%pearlite
100%
50%
Austenite (stable)
TE (727°C)
Austenite
(unstable)
Pearlite
T(°C)
1 10 102 103 104 105
time (s)
γ γ
γ
γ γ
γ
Chapter 10 -13
Transformations with
Proeutectoid Materials
Hypereutectoid composition – proeutectoid cementite
α
CO = 1.13 wt% C
TE (727°C)
T(°C)
time (s)
A
A
A
+
C
P
1 10 102
103
104
500
700
900
600
800
A
+
P
Adapted from Fig. 10.16,
Callister 7e.
Adapted from Fig. 9.24,
Callister 7e.
Fe3C(cementite)
1600
1400
1200
1000
800
600
400
0 1 2 3 4 5 6 6.7
L
γ
(austenite)
γ+L
γ +Fe3C
α+Fe3C
L+Fe3C
δ
(Fe)
Co, wt%C
T(°C)
727°C
∆T
0.76
0.022
1.13
Chapter 10 -14
Non-Equilibrium Structure of Fe-C
• Bainite:
− α lathes (strips) with long rods of Fe3C
- Needles of Fe3C in α
- Very fine structure
--diffusion controlled.
Obtained from moderate cooling
i.e. no enough time for diffusion
Fe3C
(cementite)
5 µm
α (ferrite)
Chapter 10 -15
• Spheroidite:
--α grains with spherical Fe3C
--diffusion dependent.
--heat bainite or pearlite for long times
--reduces interfacial area (driving force)
Spheroidite: Fe-C System
60 µm
α
(ferrite)
(cementite)
Fe3C
Chapter 10 -16
• Martensite:
--γ (FCC) to Martensite (BCT)
NON-Equilibrium
single phase
Hard and Brittle
• γ to M transformation..
-- is rapid!
-- % transf. depends on T only.
Martensite: Fe-C System
Martensite needles
Austenite
60µm
x
x x
x
x
x
potential
C atom sites
Fe atom
sites
(involves single atom jumps)
Chapter 10 -17
γ (FCC) α (BCC) + Fe3C
Martensite Formation
slow cooling
tempering
quench
M (BCT)
M = martensite is body centered tetragonal (BCT)
Diffusionless transformation BCT if C > 0.15 wt%
BCT  few slip planes  hard, brittle
Chapter 10 -18
Mechanical Prop: Effect Of Carbon Content
Increasing wt% C: TS and YS increase
%EL decreases
.
• Effect of wt% C
Co < 0.76 wt% C
Hypoeutectoid
Pearlite (med)
ferrite (soft)
Co > 0.76 wt% C
Hypereutectoid
Pearlite (med)
Cementite
(hard)
300
500
700
900
1100
YS(MPa)
TS(MPa)
wt% C
0 0.5 1
hardness
0.76
Hypo Hyper
wt% C
0 0.5 1
0
50
100
%EL
Impactenergy(Izod,ft-lb)
0
40
80
0.76
Hypo Hyper
Chapter 10 -19
Mechanical Prop: Effect Of Size
• Fine vs coarse pearlite vs spheroidite
• Hardness:
• %RA:
fine > coarse > spheroidite
fine < coarse < spheroidite
80
160
240
320
wt%C
0 0.5 1
Brinellhardness
fine
pearlite
coarse
pearlite
spheroidite
Hypo Hyper
0
30
60
90
wt%C
Ductility(%RA)
fine
pearlite
coarse
pearlite
spheroidite
Hypo Hyper
0 0.5 1
Chapter 10 -20
Mechanical Prop: Effect Of Structure Type
• Fine Pearlite vs Martensite:
• Hardness: fine pearlite << martensite.
0
200
wt% C
0 0.5 1
400
600
Brinellhardness
martensite
fine pearlite
Hypo Hyper
Chapter 10 -21
Tempering Martensite
• reduces brittleness of martensite,
• reduces internal stress caused by quenching.
• decreases TS, YS but increases %RA
• produces extremely small Fe3C particles surrounded by α.
9µm
YS(MPa)
TS(MPa)
800
1000
1200
1400
1600
1800
30
40
50
60
200 400 600
Tempering T (°C)
%RA
TS
YS
%RA
Chapter 10 -22
Summary: Processing Options
Austenite (γ)
Bainite
(α + Fe3C plates/needles)
Pearlite
(α + Fe3C layers + a
proeutectoid phase)
Martensite
(BCT phase
diffusionless
transformation)
Tempered
Martensite
(α + very fine
Fe3C particles)
slow
cool
moderate
cool
rapid
quench
reheat
reheat
Spheroidite
The most ductile
Chapter 10 -23
Summary:
Structures versus Mechanical Properties
Strength
Ductility
Martensite
T Martensite
bainite
fine pearlite
coarse pearlite
spheroidite
General Trends
Chapter 10 -24
Annealing: Heat to Tanneal, then cool slowly.
Based on discussion in Section 11.7, Callister 7e.
Thermal Processing of Metals
Types of
Annealing
• Process Anneal:
Negate effect of
cold working by
(recovery/
recrystallization)
• Stress Relief: Reduce
stress caused by:
-plastic deformation
-nonuniform cooling
-phase transform.
• Normalize (steels):
Deform steel with large
grains, then normalize
to make grains small.
• Full Anneal (steels):
Make soft steels for
good forming by heating
to get γ, then cool in
furnace to get coarse P.
• Spheroidize (steels):
Make very soft steels for
good machining. Heat just
below TE & hold for
15-25 h.
Chapter 10 -25
a) Annealing
b) Quenching
Heat Treatments
c)
c) Tempered
Martensite
Adapted from Fig. 10.22, Callister 7e.
time (s)
10 10
3
10
5
10
-1
400
600
800
T(°C)
Austenite (stable)
200
P
B
TE
0%
100%
50%
A
A
M + A
M + A
0%
50%
90%
a)b)
Chapter 10 -26
Hardenability--Steels
• Ability to form martensite
• Jominy end quench test to measure hardenability.
• Hardness versus distance from the quenched end.
Adapted from Fig. 11.11,
Callister 7e. (Fig. 11.11
adapted from A.G. Guy,
Essentials of Materials
Science, McGraw-Hill Book
Company, New York,
1978.)
Adapted from Fig. 11.12,
Callister 7e.
24°C water
specimen
(heated to γ
phase field)
flat ground
Rockwell C
hardness tests
Hardness,HRC
Distance from quenched end
Chapter 10 -27
• The cooling rate varies with position.
Adapted from Fig. 11.13, Callister 7e.
(Fig. 11.13 adapted from H. Boyer (Ed.)
Atlas of Isothermal Transformation and
Cooling Transformation Diagrams,
American Society for Metals, 1977, p.
376.)
Why Hardness Changes W/Position
distance from quenched end (in)
Hardness,HRC
20
40
60
0 1 2 3
600
400
200
A → M
A
→
P
0.1 1 10 100 1000
T(°C)
M(start)
Time (s)
0
0%
100%
M(finish)
M
artensite
M
artensite
+
Pearlite
Fine
Pearlite
Pearlite
Chapter 10 -28
Hardenability vs Alloy Composition
• Jominy end quench
results, C = 0.4 wt% C
• "Alloy Steels"
(4140, 4340, 5140, 8640)
--contain Ni, Cr, Mo
(0.2 to 2wt%)
--these elements shift
the "nose".
--martensite is easier
to form.
Adapted from Fig. 11.14, Callister 7e.
(Fig. 11.14 adapted from figure furnished
courtesy Republic Steel Corporation.)
Cooling rate (°C/s)
Hardness,HRC
20
40
60
100 20 30 40 50
Distance from quenched end (mm)
210100 3
4140
8640
5140
1040
50
80
100
%M4340
T(°C)
10
-1
10 10
3
10
50
200
400
600
800
Time (s)
M(start)
M(90%)
shift from
A to B due
to alloying
BA
TE
Chapter 10 -29
• Effect of quenching medium:
Medium
air
oil
water
Severity of Quench
low
moderate
high
Hardness
low
moderate
high
• Effect of geometry:
When surface-to-volume ratio increases:
--cooling rate increases
--hardness increases
Position
center
surface
Cooling rate
low
high
Hardness
low
high
Quenching Medium & Geometry
Chapter 10 -30
0 10 20 30 40 50
wt% Cu
L
α+Lα
α+θ
θ
θ+L
300
400
500
600
700
(Al)
T(°C)
composition range
needed for precipitation hardening
CuAl2
A
Adapted from Fig. 11.24, Callister 7e. (Fig. 11.24 adapted from
J.L. Murray, International Metals Review 30, p.5, 1985.)
Precipitation Hardening
• Particles impede dislocations.
• Ex: Al-Cu system
• Procedure:
Adapted from Fig.
11.22, Callister 7e.
--Pt B: quench to room temp.
--Pt C: reheat to nucleate
small θ crystals within
α crystals.
• Other precipitation
systems:
• Cu-Be
• Cu-Sn
• Mg-Al
Temp.
Time
--Pt A: solution heat treat
(get α solid solution)
Pt A (sol’n heat treat)
B
Pt B
C
Pt C (precipitate θ)
Chapter 10 -31
• 2014 Al Alloy:
• TS peaks with
precipitation time.
• Increasing T accelerates
process.
Adapted from Fig. 11.27 (a) and (b), Callister 7e. (Fig. 11.27 adapted from Metals Handbook:
Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker (Managing
Ed.), American Society for Metals, 1979. p. 41.)
Precipitate Effect on TS, %EL
precipitation heat treat time
tensilestrength(MPa)
200
300
400
100
1min 1h 1day 1mo 1yr
204°C
non-equil.
solidsolution
manysmall
precipitates“aged”
fewerlarge
precipitates
“overaged”
149°C
• %EL reaches minimum
with precipitation time.
%EL(2insample)
10
20
30
0
1min 1h 1day 1mo 1yr
204°C 149°C
precipitation heat treat time
Chapter 10 -32
Metal Alloy Crystal Stucture
Alloys
• substitutional alloys
– can be ordered or disordered
– disordered solid solution
– ordered - periodic substitution
example: CuAu FCC
Cu
Au
Chapter 10 -33
• Interstitial alloys (compounds)
– one metal much larger than the other
– smaller metal goes in ordered way into
interstitial “holes” in the structure of larger
metal
– Ex: Cementite – Fe3C
Metal Alloy Crystal Stucture
Chapter 10 -34
Metal Alloy Crystal Stucture
• Consider FCC structure --- what types of
holes are there?
Octahedron - octahedral site = OH Tetrahedron - tetrahedral site = TD
Chapter 10 -35
Metal Alloy Crystal Stucture
• Interstitials such as H, N, B, C
• FCC has 4 atoms per unit cell
metal atoms
2
1
2
1
2
1
2
1
TD sites
4
3
4
1
,4
3
4
1
,
4
3
4
1
,4
3
4
1
,
8 TD sites
OH sites
2
1
2
1
2
1
2
1
2
1
4 OH sites
Chapter 10 -36
• Steels: increase TS, Hardness (and cost) by adding
--C (low alloy steels)
--Cr, V, Ni, Mo, W (high alloy steels)
--ductility usually decreases w/additions.
• Non-ferrous:
--Cu, Al, Ti, Mg, Refractory, and noble metals.
• Fabrication techniques:
--forming, casting, joining.
• Hardenability
--increases with alloy content.
• Precipitation hardening
--effective means to increase strength in
Al, Cu, and Mg alloys.
Summary

More Related Content

What's hot

Dynamic mechanical analysis (DMA)
Dynamic mechanical analysis (DMA)Dynamic mechanical analysis (DMA)
Dynamic mechanical analysis (DMA)Bijay Kumar
 
Phase transformation physical metallurgy
Phase transformation physical metallurgyPhase transformation physical metallurgy
Phase transformation physical metallurgyDeepak Patel
 
Hot and cold working
Hot and cold workingHot and cold working
Hot and cold workingRonak Parmar
 
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...AmarYasser13
 
TIME TEMPERATURE TRANSFORMATION DIAGRAM
TIME TEMPERATURE TRANSFORMATION DIAGRAMTIME TEMPERATURE TRANSFORMATION DIAGRAM
TIME TEMPERATURE TRANSFORMATION DIAGRAMChandra Kumar S
 
types of stress and strain
types of stress and straintypes of stress and strain
types of stress and strainHome
 
Iron Carbon diagram
Iron Carbon diagramIron Carbon diagram
Iron Carbon diagramNaman Dave
 
introduction to bioactive glass
introduction to bioactive glassintroduction to bioactive glass
introduction to bioactive glassLeon Panjaitan
 

What's hot (20)

TTT Diagram
TTT  DiagramTTT  Diagram
TTT Diagram
 
Dynamic mechanical analysis (DMA)
Dynamic mechanical analysis (DMA)Dynamic mechanical analysis (DMA)
Dynamic mechanical analysis (DMA)
 
Phase transformation physical metallurgy
Phase transformation physical metallurgyPhase transformation physical metallurgy
Phase transformation physical metallurgy
 
TTT DIAGRAM
TTT DIAGRAMTTT DIAGRAM
TTT DIAGRAM
 
Hot and cold working
Hot and cold workingHot and cold working
Hot and cold working
 
Heat treatment of Steels
Heat treatment of  SteelsHeat treatment of  Steels
Heat treatment of Steels
 
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...
A Textbook of Machine Design by R.S.KHURMI AND J.K.GUPTA [tortuka]_1490186411...
 
TIME TEMPERATURE TRANSFORMATION DIAGRAM
TIME TEMPERATURE TRANSFORMATION DIAGRAMTIME TEMPERATURE TRANSFORMATION DIAGRAM
TIME TEMPERATURE TRANSFORMATION DIAGRAM
 
Cast Iron
Cast IronCast Iron
Cast Iron
 
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENTIRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
IRON CARBON EQUILIBRIUM DIAGRAM, TTT DIAGRAM AND HEAT TREATMENT
 
Time temperature-transformation diagram
Time temperature-transformation diagramTime temperature-transformation diagram
Time temperature-transformation diagram
 
types of stress and strain
types of stress and straintypes of stress and strain
types of stress and strain
 
extraction of magnesium
extraction of magnesiumextraction of magnesium
extraction of magnesium
 
Iron Carbon diagram
Iron Carbon diagramIron Carbon diagram
Iron Carbon diagram
 
material science
material sciencematerial science
material science
 
Creep Testing
Creep TestingCreep Testing
Creep Testing
 
introduction to bioactive glass
introduction to bioactive glassintroduction to bioactive glass
introduction to bioactive glass
 
TTT diagram
TTT diagramTTT diagram
TTT diagram
 
Carburizing
CarburizingCarburizing
Carburizing
 
Solid Solutions
Solid SolutionsSolid Solutions
Solid Solutions
 

Viewers also liked (12)

Ch06 8-m-more
Ch06 8-m-moreCh06 8-m-more
Ch06 8-m-more
 
Ch10
Ch10Ch10
Ch10
 
Ch05
Ch05Ch05
Ch05
 
An Elementary Introduction to Intermetallics in Ball Bonds
An Elementary Introduction to Intermetallics in Ball BondsAn Elementary Introduction to Intermetallics in Ball Bonds
An Elementary Introduction to Intermetallics in Ball Bonds
 
Engines
EnginesEngines
Engines
 
Hja_Material Science
Hja_Material Science Hja_Material Science
Hja_Material Science
 
Ch09 m
Ch09 mCh09 m
Ch09 m
 
Metals Tensile Testing Standards: ISO 6892-1 ASTM E8/8M for Strain Control
Metals Tensile Testing Standards: ISO 6892-1 ASTM E8/8M for Strain ControlMetals Tensile Testing Standards: ISO 6892-1 ASTM E8/8M for Strain Control
Metals Tensile Testing Standards: ISO 6892-1 ASTM E8/8M for Strain Control
 
iron-iron carbide Phase diagrams
iron-iron carbide Phase diagramsiron-iron carbide Phase diagrams
iron-iron carbide Phase diagrams
 
Iron carbon diagram presentation
Iron carbon diagram presentationIron carbon diagram presentation
Iron carbon diagram presentation
 
Fe-C diagram
Fe-C diagramFe-C diagram
Fe-C diagram
 
My powerpoint
My powerpointMy powerpoint
My powerpoint
 

Similar to Chapter 10: Phase Transformations and Structures

Power piont ch2 phase-transformation-in-metals (1)
Power piont   ch2 phase-transformation-in-metals (1)Power piont   ch2 phase-transformation-in-metals (1)
Power piont ch2 phase-transformation-in-metals (1)temkin abdlkader
 
ME 3101 Material Science and Engineering Fall 2016
ME 3101 Material Science and Engineering Fall 2016ME 3101 Material Science and Engineering Fall 2016
ME 3101 Material Science and Engineering Fall 2016Savanna Holt
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagrammukeshkumar2062
 
Phase transformation (Material Science)
Phase transformation (Material Science)Phase transformation (Material Science)
Phase transformation (Material Science)Myo Zin Aung
 
Heat treatment lecture note
Heat treatment lecture note Heat treatment lecture note
Heat treatment lecture note Salem Karrab
 
tttdiagram-131118222243-phpapp01.pptx
tttdiagram-131118222243-phpapp01.pptxtttdiagram-131118222243-phpapp01.pptx
tttdiagram-131118222243-phpapp01.pptxupender3
 
time temperature transformation
time temperature transformationtime temperature transformation
time temperature transformationHamza Suharwardi
 
Heat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHeat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHoughton International Inc.
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
L7_Fe-C_ Diagram MICRO STRUCTURE.pdf
L7_Fe-C_ Diagram MICRO STRUCTURE.pdfL7_Fe-C_ Diagram MICRO STRUCTURE.pdf
L7_Fe-C_ Diagram MICRO STRUCTURE.pdfglorialidwinbdacemec
 
Heat treatment of steels- I
Heat treatment of steels- IHeat treatment of steels- I
Heat treatment of steels- INishant Khatod
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1Naman Dave
 
Aluminium alloy a201
Aluminium alloy   a201Aluminium alloy   a201
Aluminium alloy a201Ilyas Hussain
 

Similar to Chapter 10: Phase Transformations and Structures (20)

Power piont ch2 phase-transformation-in-metals (1)
Power piont   ch2 phase-transformation-in-metals (1)Power piont   ch2 phase-transformation-in-metals (1)
Power piont ch2 phase-transformation-in-metals (1)
 
ME 3101 Material Science and Engineering Fall 2016
ME 3101 Material Science and Engineering Fall 2016ME 3101 Material Science and Engineering Fall 2016
ME 3101 Material Science and Engineering Fall 2016
 
Phase transformation
Phase transformationPhase transformation
Phase transformation
 
heat tratment & iron carbon diagram
heat tratment & iron carbon diagramheat tratment & iron carbon diagram
heat tratment & iron carbon diagram
 
Phase transformation (Material Science)
Phase transformation (Material Science)Phase transformation (Material Science)
Phase transformation (Material Science)
 
Heat treatment lecture note
Heat treatment lecture note Heat treatment lecture note
Heat treatment lecture note
 
tttdiagram-131118222243-phpapp01.pptx
tttdiagram-131118222243-phpapp01.pptxtttdiagram-131118222243-phpapp01.pptx
tttdiagram-131118222243-phpapp01.pptx
 
time temperature transformation
time temperature transformationtime temperature transformation
time temperature transformation
 
Unit 3.pdf
Unit 3.pdfUnit 3.pdf
Unit 3.pdf
 
Heat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal PartsHeat Treating: The How and Why of Quenching Metal Parts
Heat Treating: The How and Why of Quenching Metal Parts
 
fe-c diagram
fe-c diagramfe-c diagram
fe-c diagram
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
L7_Fe-C_ Diagram MICRO STRUCTURE.pdf
L7_Fe-C_ Diagram MICRO STRUCTURE.pdfL7_Fe-C_ Diagram MICRO STRUCTURE.pdf
L7_Fe-C_ Diagram MICRO STRUCTURE.pdf
 
Heat treatment of steels- I
Heat treatment of steels- IHeat treatment of steels- I
Heat treatment of steels- I
 
HEAT TREATMENT.pptx
HEAT TREATMENT.pptxHEAT TREATMENT.pptx
HEAT TREATMENT.pptx
 
Phase transitions
Phase transitionsPhase transitions
Phase transitions
 
Heat treatment part 1
Heat treatment part 1Heat treatment part 1
Heat treatment part 1
 
Heat treatment 1
Heat treatment 1Heat treatment 1
Heat treatment 1
 
Aluminium alloy a201
Aluminium alloy   a201Aluminium alloy   a201
Aluminium alloy a201
 
ResearchSummary
ResearchSummaryResearchSummary
ResearchSummary
 

Chapter 10: Phase Transformations and Structures

  • 1. Chapter 10 - 1 ISSUES TO ADDRESS... • Transforming one phase into another takes time. • How does the rate of transformation depend on time and T ? • How can we slow down the transformation so that we can engineer non-equilibrium structures? • Are the mechanical properties of non-equilibrium structures better? Fe γ (Austenite) Eutectoid transformation C FCC Fe3C (cementite) α (ferrite) + (BCC) Chapter 10: Phase Transformations
  • 2. Chapter 10 - 2 Phase Transformation and Structure Processing Structure Properties Phase Transformation  Altering Structure Changing Temperature (on phase diagram)
  • 3. Chapter 10 - 3 Phase Transformations Nucleation – nuclei (seeds) act as template to grow crystals – for nucleus to form: rate of addition of atoms to nucleus must be faster than rate of loss – once nucleated, grow until reach equilibrium Driving force to nucleate increases as we increase ∆T – supercooling (eutectic, eutectoid) Small supercooling  few nuclei - large crystals Large supercooling  rapid nucleation - many nuclei, small crystals
  • 4. Chapter 10 - 4 Solidification: Nucleation Processes • Homogeneous nucleation – nuclei form in the bulk of liquid metal – requires supercooling (typically 80-300°C max) • Heterogeneous nucleation – much easier since stable “nucleus” is already present Could be wall of mold or impurities in the liquid phase – allows solidification with only 0.1-10ºC supercooling
  • 5. Chapter 10 - 5 Rate of Phase Transformations Kinetics - measure approach to equilibrium vs. time • Hold temperature constant & measure conversion vs. time sound waves – one sample electrical conductivity – follow one sample X-ray diffraction – have to do many samples How is conversion measured?
  • 6. Chapter 10 - 6 Rate of Phase Transformation Avrami rate equation => y = 1- exp (-ktn ) – k & n fit for specific sample (from experiments) All out of material - done log t Fractiontransformed,y Fixed T fraction transformed time 0.5 By convention r = 1 / t0.5 maximum rate reached – now amount unconverted decreases so rate slows t0.5 rate increases as surface area increases & nuclei grow
  • 7. Chapter 10 - 7 Rate of Phase Transformations • In general, rate increases as T ↑ r = 1/t0.5 = A e -Q/RT – R = gas constant – T = temperature (K) – A = preexponential factor – Q = activation energy Arrhenius expression • r often small: equilibrium not possible! 135°C 119°C 113°C 102°C 88°C 43°C 1 10 102 104 ∆T supercooling
  • 8. Chapter 10 - 8 Eutectoid Transformation Rate Course pearlite  formed at higher T - softer Fine pearlite  formed at low T - harder Diffusive flow of C needed α α γ γ α • Growth of pearlite from austenite: γα α α α α α pearlite growth direction Austenite (γ) grain boundary cementite (Fe3C) Ferrite (α) γ • Recrystallization rate increases with ∆T. 675°C (∆T smaller) 0 50 y(%pearlite) 600°C (∆T larger) 650°C 100
  • 9. Chapter 10 - 9 • Reaction rate is a result of nucleation and growth of crystals. • Examples: Nucleation and Growth % Pearlite 0 50 100 Nucleation regime Growth regime log(time)t0.5 Nucleation rate increases with ∆T Growth rate increases with T T just below TE Nucleation rate low Growth rate high γ pearlite colony T moderately below TE γ Nucleation rate medium. Growth rate medium. Nucleation rate high T way below TE γ Growth rate low
  • 10. Chapter 10 -10 Transformations & Undercooling • Can make it occur at: ...727ºC (cool it slowly) ...below 727ºC (“undercool” it!) • Eutectoid transf. (Fe-C System): γ ⇒ α + Fe3C 0.76 wt% C 0.022 wt% C 6.7 wt% C Fe3C(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ +Fe3C α +Fe3C L+Fe3C δ (Fe) Co, wt%C 1148°C T(°C) α ferrite 727°C Eutectoid: Equil. Cooling: Ttransf. = 727ºC ∆T Undercooling by ∆Ttransf. < 727°C 0.76 0.022
  • 11. Chapter 10 -11 Isothermal Transformation Diagrams • Fe-C system, Co = 0.76 wt% C • Transformation at T = 675°C. 100 50 0 1 102 104 T = 675°C y, %transformed time (s) 400 500 600 700 1 10 102 103 104 105 0%pearlite 100% 50% Austenite (stable) TE (727°C)Austenite (unstable) Pearlite T(°C) time (s) isothermal transformation at 675°C
  • 12. Chapter 10 -12 • Eutectoid composition, Co = 0.76 wt% C • Begin at T > 727°C • Rapidly cool to 625°C and hold isothermally. Effect of Cooling History in Fe-C System 400 500 600 700 0%pearlite 100% 50% Austenite (stable) TE (727°C) Austenite (unstable) Pearlite T(°C) 1 10 102 103 104 105 time (s) γ γ γ γ γ γ
  • 13. Chapter 10 -13 Transformations with Proeutectoid Materials Hypereutectoid composition – proeutectoid cementite α CO = 1.13 wt% C TE (727°C) T(°C) time (s) A A A + C P 1 10 102 103 104 500 700 900 600 800 A + P Adapted from Fig. 10.16, Callister 7e. Adapted from Fig. 9.24, Callister 7e. Fe3C(cementite) 1600 1400 1200 1000 800 600 400 0 1 2 3 4 5 6 6.7 L γ (austenite) γ+L γ +Fe3C α+Fe3C L+Fe3C δ (Fe) Co, wt%C T(°C) 727°C ∆T 0.76 0.022 1.13
  • 14. Chapter 10 -14 Non-Equilibrium Structure of Fe-C • Bainite: − α lathes (strips) with long rods of Fe3C - Needles of Fe3C in α - Very fine structure --diffusion controlled. Obtained from moderate cooling i.e. no enough time for diffusion Fe3C (cementite) 5 µm α (ferrite)
  • 15. Chapter 10 -15 • Spheroidite: --α grains with spherical Fe3C --diffusion dependent. --heat bainite or pearlite for long times --reduces interfacial area (driving force) Spheroidite: Fe-C System 60 µm α (ferrite) (cementite) Fe3C
  • 16. Chapter 10 -16 • Martensite: --γ (FCC) to Martensite (BCT) NON-Equilibrium single phase Hard and Brittle • γ to M transformation.. -- is rapid! -- % transf. depends on T only. Martensite: Fe-C System Martensite needles Austenite 60µm x x x x x x potential C atom sites Fe atom sites (involves single atom jumps)
  • 17. Chapter 10 -17 γ (FCC) α (BCC) + Fe3C Martensite Formation slow cooling tempering quench M (BCT) M = martensite is body centered tetragonal (BCT) Diffusionless transformation BCT if C > 0.15 wt% BCT  few slip planes  hard, brittle
  • 18. Chapter 10 -18 Mechanical Prop: Effect Of Carbon Content Increasing wt% C: TS and YS increase %EL decreases . • Effect of wt% C Co < 0.76 wt% C Hypoeutectoid Pearlite (med) ferrite (soft) Co > 0.76 wt% C Hypereutectoid Pearlite (med) Cementite (hard) 300 500 700 900 1100 YS(MPa) TS(MPa) wt% C 0 0.5 1 hardness 0.76 Hypo Hyper wt% C 0 0.5 1 0 50 100 %EL Impactenergy(Izod,ft-lb) 0 40 80 0.76 Hypo Hyper
  • 19. Chapter 10 -19 Mechanical Prop: Effect Of Size • Fine vs coarse pearlite vs spheroidite • Hardness: • %RA: fine > coarse > spheroidite fine < coarse < spheroidite 80 160 240 320 wt%C 0 0.5 1 Brinellhardness fine pearlite coarse pearlite spheroidite Hypo Hyper 0 30 60 90 wt%C Ductility(%RA) fine pearlite coarse pearlite spheroidite Hypo Hyper 0 0.5 1
  • 20. Chapter 10 -20 Mechanical Prop: Effect Of Structure Type • Fine Pearlite vs Martensite: • Hardness: fine pearlite << martensite. 0 200 wt% C 0 0.5 1 400 600 Brinellhardness martensite fine pearlite Hypo Hyper
  • 21. Chapter 10 -21 Tempering Martensite • reduces brittleness of martensite, • reduces internal stress caused by quenching. • decreases TS, YS but increases %RA • produces extremely small Fe3C particles surrounded by α. 9µm YS(MPa) TS(MPa) 800 1000 1200 1400 1600 1800 30 40 50 60 200 400 600 Tempering T (°C) %RA TS YS %RA
  • 22. Chapter 10 -22 Summary: Processing Options Austenite (γ) Bainite (α + Fe3C plates/needles) Pearlite (α + Fe3C layers + a proeutectoid phase) Martensite (BCT phase diffusionless transformation) Tempered Martensite (α + very fine Fe3C particles) slow cool moderate cool rapid quench reheat reheat Spheroidite The most ductile
  • 23. Chapter 10 -23 Summary: Structures versus Mechanical Properties Strength Ductility Martensite T Martensite bainite fine pearlite coarse pearlite spheroidite General Trends
  • 24. Chapter 10 -24 Annealing: Heat to Tanneal, then cool slowly. Based on discussion in Section 11.7, Callister 7e. Thermal Processing of Metals Types of Annealing • Process Anneal: Negate effect of cold working by (recovery/ recrystallization) • Stress Relief: Reduce stress caused by: -plastic deformation -nonuniform cooling -phase transform. • Normalize (steels): Deform steel with large grains, then normalize to make grains small. • Full Anneal (steels): Make soft steels for good forming by heating to get γ, then cool in furnace to get coarse P. • Spheroidize (steels): Make very soft steels for good machining. Heat just below TE & hold for 15-25 h.
  • 25. Chapter 10 -25 a) Annealing b) Quenching Heat Treatments c) c) Tempered Martensite Adapted from Fig. 10.22, Callister 7e. time (s) 10 10 3 10 5 10 -1 400 600 800 T(°C) Austenite (stable) 200 P B TE 0% 100% 50% A A M + A M + A 0% 50% 90% a)b)
  • 26. Chapter 10 -26 Hardenability--Steels • Ability to form martensite • Jominy end quench test to measure hardenability. • Hardness versus distance from the quenched end. Adapted from Fig. 11.11, Callister 7e. (Fig. 11.11 adapted from A.G. Guy, Essentials of Materials Science, McGraw-Hill Book Company, New York, 1978.) Adapted from Fig. 11.12, Callister 7e. 24°C water specimen (heated to γ phase field) flat ground Rockwell C hardness tests Hardness,HRC Distance from quenched end
  • 27. Chapter 10 -27 • The cooling rate varies with position. Adapted from Fig. 11.13, Callister 7e. (Fig. 11.13 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1977, p. 376.) Why Hardness Changes W/Position distance from quenched end (in) Hardness,HRC 20 40 60 0 1 2 3 600 400 200 A → M A → P 0.1 1 10 100 1000 T(°C) M(start) Time (s) 0 0% 100% M(finish) M artensite M artensite + Pearlite Fine Pearlite Pearlite
  • 28. Chapter 10 -28 Hardenability vs Alloy Composition • Jominy end quench results, C = 0.4 wt% C • "Alloy Steels" (4140, 4340, 5140, 8640) --contain Ni, Cr, Mo (0.2 to 2wt%) --these elements shift the "nose". --martensite is easier to form. Adapted from Fig. 11.14, Callister 7e. (Fig. 11.14 adapted from figure furnished courtesy Republic Steel Corporation.) Cooling rate (°C/s) Hardness,HRC 20 40 60 100 20 30 40 50 Distance from quenched end (mm) 210100 3 4140 8640 5140 1040 50 80 100 %M4340 T(°C) 10 -1 10 10 3 10 50 200 400 600 800 Time (s) M(start) M(90%) shift from A to B due to alloying BA TE
  • 29. Chapter 10 -29 • Effect of quenching medium: Medium air oil water Severity of Quench low moderate high Hardness low moderate high • Effect of geometry: When surface-to-volume ratio increases: --cooling rate increases --hardness increases Position center surface Cooling rate low high Hardness low high Quenching Medium & Geometry
  • 30. Chapter 10 -30 0 10 20 30 40 50 wt% Cu L α+Lα α+θ θ θ+L 300 400 500 600 700 (Al) T(°C) composition range needed for precipitation hardening CuAl2 A Adapted from Fig. 11.24, Callister 7e. (Fig. 11.24 adapted from J.L. Murray, International Metals Review 30, p.5, 1985.) Precipitation Hardening • Particles impede dislocations. • Ex: Al-Cu system • Procedure: Adapted from Fig. 11.22, Callister 7e. --Pt B: quench to room temp. --Pt C: reheat to nucleate small θ crystals within α crystals. • Other precipitation systems: • Cu-Be • Cu-Sn • Mg-Al Temp. Time --Pt A: solution heat treat (get α solid solution) Pt A (sol’n heat treat) B Pt B C Pt C (precipitate θ)
  • 31. Chapter 10 -31 • 2014 Al Alloy: • TS peaks with precipitation time. • Increasing T accelerates process. Adapted from Fig. 11.27 (a) and (b), Callister 7e. (Fig. 11.27 adapted from Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker (Managing Ed.), American Society for Metals, 1979. p. 41.) Precipitate Effect on TS, %EL precipitation heat treat time tensilestrength(MPa) 200 300 400 100 1min 1h 1day 1mo 1yr 204°C non-equil. solidsolution manysmall precipitates“aged” fewerlarge precipitates “overaged” 149°C • %EL reaches minimum with precipitation time. %EL(2insample) 10 20 30 0 1min 1h 1day 1mo 1yr 204°C 149°C precipitation heat treat time
  • 32. Chapter 10 -32 Metal Alloy Crystal Stucture Alloys • substitutional alloys – can be ordered or disordered – disordered solid solution – ordered - periodic substitution example: CuAu FCC Cu Au
  • 33. Chapter 10 -33 • Interstitial alloys (compounds) – one metal much larger than the other – smaller metal goes in ordered way into interstitial “holes” in the structure of larger metal – Ex: Cementite – Fe3C Metal Alloy Crystal Stucture
  • 34. Chapter 10 -34 Metal Alloy Crystal Stucture • Consider FCC structure --- what types of holes are there? Octahedron - octahedral site = OH Tetrahedron - tetrahedral site = TD
  • 35. Chapter 10 -35 Metal Alloy Crystal Stucture • Interstitials such as H, N, B, C • FCC has 4 atoms per unit cell metal atoms 2 1 2 1 2 1 2 1 TD sites 4 3 4 1 ,4 3 4 1 , 4 3 4 1 ,4 3 4 1 , 8 TD sites OH sites 2 1 2 1 2 1 2 1 2 1 4 OH sites
  • 36. Chapter 10 -36 • Steels: increase TS, Hardness (and cost) by adding --C (low alloy steels) --Cr, V, Ni, Mo, W (high alloy steels) --ductility usually decreases w/additions. • Non-ferrous: --Cu, Al, Ti, Mg, Refractory, and noble metals. • Fabrication techniques: --forming, casting, joining. • Hardenability --increases with alloy content. • Precipitation hardening --effective means to increase strength in Al, Cu, and Mg alloys. Summary

Editor's Notes

  1. In Chapter 9 we looked at the equilibrium phase diagram . This indicated phase structure if we wait long enough. But due to slow diffusion may not reach equilibrium We need to consider time- kinetics - energy of phase boundaries may be high. – also nucleation Transformation rate How fast do the phase transformations occur? First need nuclei (seeds) to form for the rest of the material to crystallize
  2. S.A. = surface area