SlideShare a Scribd company logo
1 of 56
Molecular Dynamics
University of Tehran
College of Engineering
School of Chemical Engineering
Student :
Hamed Hoorijani
Spring 2019
1hoorijani@ut.ac.ir
Outlines
• Introduction
• Principles
• Potential Functions
• Periodic Boundary Conditions
• Cutoff methods
• Integration Algorithms
• Challenges
• Softwares
• Example
• Books
2hoorijani@ut.ac.ir
Introduction
• Why we do Simulation?
in some cases, Experiment is :
1. impossible inside of star ,weather
forecast
2. too dangerous Flight Simulation, Explosion
Simulation
3. Expensive High Pressure Simulation,
Wind channel Simulation
4.blind some properties can’t be observe
on very short time- scales and very
small space-scales
Examples
3hoorijani@ut.ac.ir
Introduction
• Simulation is a useful complement, because it can:
• Replace Experiment
• Provoke Experiment
• Explain Experiment
• Aid in establishing intellectual property
4hoorijani@ut.ac.ir
What is Molecular Dynamics ?
• Connection between microscopic and macroscopic behavior of
the physical system with description of the atomic and
molecular interactions
5hoorijani@ut.ac.ir
Computational Tools
• Quantum Mechanics(QM)
Electronic Structure (Schrӧdinger)
• Accurate
• Expensive small system
• Classical Molecular Mechanics(MM)
Empirical Forces(Newton)
• Less Accurate
• Fast
• Mixed QM/MM
6hoorijani@ut.ac.ir
Procedure
• Calculate how a system of particles evolves in time
• Consider a set of atoms with positions /velocities and the
potential energy function of the system
• Predict the next positions of particles over some short time
interval by solving Newtonian mechanics
7hoorijani@ut.ac.ir
Basic MD Algorithm
Set initial conditions and
Get new forces
Solve the equations of motion
numerically over a short step
Is ?
Calculate results and finish
)( 0tir )( 0tiv
)( ii rF
)()( ttt ii  rr
)()( ttt ii  vv
t
ttt 
maxtt 
8hoorijani@ut.ac.ir
Principles
• In molecular Dynamic we need
• Position (r)
• Momentum (m)
• Charge (q)
• Bond Information (Which Atoms, bond angles, etc.)
For each atom in every molecule
i
jj’
rcut
L
9hoorijani@ut.ac.ir
Principles
• The base of Molecular Dynamic is the second law of newton’s
• Using the gradient of the potential energy function the main
algorithm of the simulation is presented
i i iF m a
i iF V 
2
2
i
i
i
d rdV
m
dr dt
 
10hoorijani@ut.ac.ir
Potential Functions
• A single atom will be affected by the potential energy functions
of every atom in the system:
• Bonded Neighbors
• Non-Bonded Atoms (either other atoms in the same molecule, or atoms from
different molecules)
non bonded van der Waals electrostaticE E E   
bonded bond stretch angle bend rotate along bondE E E E     
( ) bonded non bondedV R E E  
11hoorijani@ut.ac.ir
Non-Bonded Potential
• Van-der walls Potential
one of the most widely used functions for the van der waals
potential in the Lennard-Jones
12 6
ik ik
Lennard Jones
nonbonded ik ik
pairs
A C
E
r r

 
  
 

A,C depends on the atom
types, derived from
experimental data
12hoorijani@ut.ac.ir
Non-Bonded Potential
• Electrostatic Potential
opposite charges attract
• The force of the attraction is inversely proportional to the
square of the distance
i k
electrostatic
nonbonded ik
pairs
q q
E
Dr
 
13hoorijani@ut.ac.ir
Bonded Potential
• 3 types of interaction between bonded atoms:
• Stretching along the bond
• Bending between bonds
• Rotating around bonds
bonded bond stretch angle bend rotate along bondE E E E     
14hoorijani@ut.ac.ir
Boned Potential
Bond length Potentials
2
0
1,2
( )bond stretch b
pairs
E K b b  
• Both the spring constant and the ideal bond length are dependent
on the atoms involved
15hoorijani@ut.ac.ir
Bonded Potentials
Bond Angle Potentials
• The spring constant and the ideal angle are also dependent on
the chemical type of the atoms.
2
0( )bond bend
angles
E K    
16hoorijani@ut.ac.ir
Boned Potential
Torsional Potentials
• Described by a dihedral angle and coefficient of symmetry
(n=1,2,3), around the middle bond.
1,4
(1 cos( ))rotate along bond
pairs
E K n    
17hoorijani@ut.ac.ir
Some Simplified Potential Functions for
Specific cases
• Morse Potential
• For pair atomic molecules
• For modeling some metals such as copper
• For modeling structures with covalent bonds
18hoorijani@ut.ac.ir
Some Simplified Potential Functions for
Specific cases
• Sterlinger-weber
• For modeling semi-conductive material
19hoorijani@ut.ac.ir
Some Simplified Potential Functions for
Specific cases
• Tersoff Potential
• Modeling carbonic and silicone structure
20hoorijani@ut.ac.ir
Some Simplified Potential Functions for
Specific cases
• AIREBO Potential
• Modeling carbon-hydrogen systems
21hoorijani@ut.ac.ir
Some Simplified Potential Functions for
Specific cases
• EAM Potential
• Modeling metallic and different types of alloys
22hoorijani@ut.ac.ir
Periodic Boundary Condition
• Simulate a segment of molecules in a larger solution by having
repeatable regions
• When an atom moves off the edge, it reappears on the other
side (like in asteroids)
• In molecular dynamics simulation, PBC are usually applied to
calculate bulk gasses, liquids, crystals or mixtures.
23hoorijani@ut.ac.ir
Cutoff Methods
• Ideally, every atom in the system should interact with every
other atom which leads to a force calculation algorithm of
quadratic order
• The cutoff methods explains different approaches to ignore
atoms at large distances from each other without loosing too
much accuracy
24hoorijani@ut.ac.ir
Integration Algorithms
• Using conventional algorithms to solve the motion equation in MD is
not efficient cause:
• the forces are very rapidly changing non-linear functions
• The RK in some cases is justifiable it allows you to take larger time steps but
requires multiple force calculations per each timestep
So an algorithm was needed to provide the stability benefits of RK without the
cost of extra force calculations!
In short :
Numerical approximation of the integral over time
25hoorijani@ut.ac.ir
Integration Algorithms
• Different Algorithms have been suggested :
• Verlet Algorithm
• Leap-frog Algorithm
• Velocity Verlet Algorithm
• Boeman’s Algorithm
• In choosing the right algorithm we should consider:
• it should be computational efficient
• it should conserve energy and momentum
• it should permit a long time step for integration
26hoorijani@ut.ac.ir
Integration Algorithms
• They are all assume that position, velocities and acceleration
can be approximate based on a Taylor series expansion
27hoorijani@ut.ac.ir
Verlet Algorithm
• It uses the position and acceleration at time step (t) and position at 𝑡 − 𝑑𝑡
))((
1
)( t
m
rFra 
2
)(
2
1
)()()( tttttt  ravrr
ttttt  )(
2
1
)()2/( ravv
))((
1
)( tt
m
tt  raa
ttttttt  )(
2
1
)2/()( avv
From the initial ,)(tir )(tiv
tt 
28
Obtain the positions and velocities at
hoorijani@ut.ac.ir
Leap-Frog Algorithm
• In this algorithm using the velocity at time (𝑡 +
𝑑𝑡
2
) and position
at time (t), calculates the position at t+dt
29hoorijani@ut.ac.ir
Velocity Verlet Algorithm
• More accuracy than the Verlet
• Using the position, velocity, acceleration at time (t) the velocity
and position at time (𝑡 + 𝑑𝑡)
30hoorijani@ut.ac.ir
Boeman’s Algorithm
• More accuracy than Verlet but computational expensive
31hoorijani@ut.ac.ir
MD time Step
1/20 of the nearest atom distance tr/
In practice fs (femto-second).4t
MD is limited to <~100 ns
If Too long : energy is not conservedt
32hoorijani@ut.ac.ir
Calculating physical Properties
• Thermodynamic Properties
• Kinetic Energy:
• Temperature:
K E m vi i
i
N
. .  
1
2
2
T
Nk
K E
B

2
3
. .
33hoorijani@ut.ac.ir
Calculating physical Properties
• Configuration Energy:
• Pressure:
• Specific Heat
U V rc ij
j i
N
i


 ( )


 

1
13
1 N
i
N
ij
ijijB frTNkPV

( ) ( )U Nk T
Nk
C
c NVE B
B
v
2 2 23
2
1
3
2
 
34hoorijani@ut.ac.ir
Calculating physical Properties
• Structural Properties
• Pair correlation (Radial Distribution Function):
• Structure factor:
Note: S(k) available from x-ray diffraction
g r
n r
r r
V
N
r rij
j i
N
i
( )
( )
( )  

4 2 2



  drrrg
kr
kr
kS 2
0
1)(
)sin(
41)(  


35hoorijani@ut.ac.ir
Calculating physical Properties
Radial Distribution Function
36hoorijani@ut.ac.ir
Calculating physical Properties
Radial Distribution Function obtained of
Lennard-Jones System
37hoorijani@ut.ac.ir
Limitations of classical MD
Problems
1.Fixed set of atom types
2.No electronic Polarization
-fixed partial charges allow
for conformational polarization
but not electronic polarization
3.Parameters are imperfect
38hoorijani@ut.ac.ir
Softwares
Package Name Supported Force Fields Website Developer Team
CHARMM CHARMM(E / I; AA / UA) www.charm.org Harvard
Amber Amber(E / I;AA) Amber.scripps.edu San Francisco
GROMOS Gromos (E / vacuum ; UA) Igc.ethz.ch/GROMOS Zurich
Gromacs Amber,Gromos,OPLS – (all
E)
Gromacs.org Groningen
NAMD CHARMM, Amber
,Gromos
Ks.uiuc.edu/Research/na
md
Orban, USA
Lammps CHARMM, AMBER,
COMPASS, and DREIDING
Lammps.sandia.gov USA
39hoorijani@ut.ac.ir
LAMMPS Example Case
• Uniaxial compressive loading of an cupper single crystal
40hoorijani@ut.ac.ir
LAMMPS Example Case
• Uniaxial compressive loading of an cupper single crystal
41hoorijani@ut.ac.ir
LAMMPS Example Case
• Uniaxial compressive loading of an cupper single crystal
42hoorijani@ut.ac.ir
LAMMPS Example Case
• Uniaxial compressive loading of an cupper single crystal
You can see a clip of the results available on the link below:
43hoorijani@ut.ac.ir
https://youtu.be/FYhw5FVotKI
LAMMPS Example Case
44hoorijani@ut.ac.ir
LAMMPS Example Case
45hoorijani@ut.ac.ir
LAMMPS Example Case
46hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
47hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
48hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
49hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
50hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
51hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
52hoorijani@ut.ac.ir
LAMMPS Example Case
• a reactive deformation of a single polyethylene chain
You can see a clip of the results available on the link below:
: https://youtu.be/q340EYNh5XE
53hoorijani@ut.ac.ir
Recommended Textbooks
54
Thank you for your attention 
55hoorijani@ut.ac.ir
SUMMARY
• Review Molecular Dynamics
• MD simulation for ax uniaxial compressive loading of an cupper
single crystal
• MD simulation for a reactive deformation of a single
polyethylene chain
56hoorijani@ut.ac.ir

More Related Content

What's hot

molecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsmolecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsRAKESH JAGTAP
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMysha Malar M
 
Molecular dynamics and Simulations
Molecular dynamics and SimulationsMolecular dynamics and Simulations
Molecular dynamics and SimulationsAbhilash Kannan
 
Molecular Dynamics for Beginners : Detailed Overview
Molecular Dynamics for Beginners : Detailed OverviewMolecular Dynamics for Beginners : Detailed Overview
Molecular Dynamics for Beginners : Detailed OverviewGirinath Pillai
 
Molecular dynamics Simulation.pptx
Molecular dynamics Simulation.pptxMolecular dynamics Simulation.pptx
Molecular dynamics Simulation.pptxHassanShah396906
 
Quantum Chemistry II
Quantum Chemistry IIQuantum Chemistry II
Quantum Chemistry IIbaoilleach
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional Theorykrishslide
 
BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsbios203
 
Computational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeComputational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeDavid Thompson
 
Potential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular GraphicsPotential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular GraphicsPrasanthperceptron
 
energy minimization
energy minimizationenergy minimization
energy minimizationpradeep kore
 

What's hot (20)

04 molecular dynamics
04 molecular dynamics04 molecular dynamics
04 molecular dynamics
 
molecular mechanics and quantum mechnics
molecular mechanics and quantum mechnicsmolecular mechanics and quantum mechnics
molecular mechanics and quantum mechnics
 
MOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUESMOLECULAR SIMULATION TECHNIQUES
MOLECULAR SIMULATION TECHNIQUES
 
Molecular dynamics and Simulations
Molecular dynamics and SimulationsMolecular dynamics and Simulations
Molecular dynamics and Simulations
 
Molecular Dynamics for Beginners : Detailed Overview
Molecular Dynamics for Beginners : Detailed OverviewMolecular Dynamics for Beginners : Detailed Overview
Molecular Dynamics for Beginners : Detailed Overview
 
Computational chemistry
Computational chemistryComputational chemistry
Computational chemistry
 
Molecular dynamics Simulation.pptx
Molecular dynamics Simulation.pptxMolecular dynamics Simulation.pptx
Molecular dynamics Simulation.pptx
 
Quantum Chemistry II
Quantum Chemistry IIQuantum Chemistry II
Quantum Chemistry II
 
Density Functional Theory
Density Functional TheoryDensity Functional Theory
Density Functional Theory
 
Molecular mechanics
Molecular mechanicsMolecular mechanics
Molecular mechanics
 
BIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamicsBIOS 203 Lecture 3: Classical molecular dynamics
BIOS 203 Lecture 3: Classical molecular dynamics
 
Computational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to PracticeComputational Chemistry: From Theory to Practice
Computational Chemistry: From Theory to Practice
 
Energy minimization
Energy minimizationEnergy minimization
Energy minimization
 
Potential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular GraphicsPotential Energy Surface & Molecular Graphics
Potential Energy Surface & Molecular Graphics
 
Lecture2
Lecture2Lecture2
Lecture2
 
Molecular modelling
Molecular modelling Molecular modelling
Molecular modelling
 
Ab initio md
Ab initio mdAb initio md
Ab initio md
 
energy minimization
energy minimizationenergy minimization
energy minimization
 
Applications of Computational Quantum Chemistry
Applications of Computational Quantum ChemistryApplications of Computational Quantum Chemistry
Applications of Computational Quantum Chemistry
 
Integration schemes in Molecular Dynamics
Integration schemes in Molecular DynamicsIntegration schemes in Molecular Dynamics
Integration schemes in Molecular Dynamics
 

Similar to Molecular Dynamics - review

18EC33_Network_Theory_PPTs.pdf
18EC33_Network_Theory_PPTs.pdf18EC33_Network_Theory_PPTs.pdf
18EC33_Network_Theory_PPTs.pdfssuser136534
 
Anand's presentation
Anand's presentationAnand's presentation
Anand's presentationANAND PARKASH
 
Introduction to Computational chemistry-
Introduction to Computational chemistry-Introduction to Computational chemistry-
Introduction to Computational chemistry-Javed Iqbal
 
1 2 syllabus 2010-2011
1 2 syllabus 2010-20111 2 syllabus 2010-2011
1 2 syllabus 2010-2011sandeepb8
 
Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.pptsami97008
 
Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdfanbh30
 
1_Unit-1 Electronic Devices.pptx
1_Unit-1 Electronic Devices.pptx1_Unit-1 Electronic Devices.pptx
1_Unit-1 Electronic Devices.pptxPankajGoel73
 
COMPUTATIONAL CHEMISTRY
COMPUTATIONAL CHEMISTRY COMPUTATIONAL CHEMISTRY
COMPUTATIONAL CHEMISTRY Komal Rajgire
 
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.ppt
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.pptChapter 1_Basic concepts_Alexander_V32_Nov 2020.ppt
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.pptMubashirKhan230965
 
5.structural engineering
5.structural engineering5.structural engineering
5.structural engineeringhlksd
 
2-Mathematical Modeling of Systems.ppt
2-Mathematical Modeling of Systems.ppt2-Mathematical Modeling of Systems.ppt
2-Mathematical Modeling of Systems.pptRizaMuhida1
 
Lecture 1 & 2.pdf
Lecture 1 & 2.pdfLecture 1 & 2.pdf
Lecture 1 & 2.pdfAthar Baig
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistryRawat DA Greatt
 
Principles of Multiscale Modelling of Materials
Principles of Multiscale Modelling of Materials  Principles of Multiscale Modelling of Materials
Principles of Multiscale Modelling of Materials Altair
 
CASTEP Software.pptx
CASTEP Software.pptxCASTEP Software.pptx
CASTEP Software.pptxMohsan10
 

Similar to Molecular Dynamics - review (20)

18EC33_Network_Theory_PPTs.pdf
18EC33_Network_Theory_PPTs.pdf18EC33_Network_Theory_PPTs.pdf
18EC33_Network_Theory_PPTs.pdf
 
Introduction to Network Analysis
Introduction to Network AnalysisIntroduction to Network Analysis
Introduction to Network Analysis
 
Anand's presentation
Anand's presentationAnand's presentation
Anand's presentation
 
Introduction to Computational chemistry-
Introduction to Computational chemistry-Introduction to Computational chemistry-
Introduction to Computational chemistry-
 
1 2 syllabus 2010-2011
1 2 syllabus 2010-20111 2 syllabus 2010-2011
1 2 syllabus 2010-2011
 
Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Statics of Particles.pdf
Statics of Particles.pdfStatics of Particles.pdf
Statics of Particles.pdf
 
1_Unit-1 Electronic Devices.pptx
1_Unit-1 Electronic Devices.pptx1_Unit-1 Electronic Devices.pptx
1_Unit-1 Electronic Devices.pptx
 
COMPUTATIONAL CHEMISTRY
COMPUTATIONAL CHEMISTRY COMPUTATIONAL CHEMISTRY
COMPUTATIONAL CHEMISTRY
 
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.ppt
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.pptChapter 1_Basic concepts_Alexander_V32_Nov 2020.ppt
Chapter 1_Basic concepts_Alexander_V32_Nov 2020.ppt
 
5.structural engineering
5.structural engineering5.structural engineering
5.structural engineering
 
2-Mathematical Modeling of Systems.ppt
2-Mathematical Modeling of Systems.ppt2-Mathematical Modeling of Systems.ppt
2-Mathematical Modeling of Systems.ppt
 
197 hema
197 hema197 hema
197 hema
 
EMRGCapstone
EMRGCapstoneEMRGCapstone
EMRGCapstone
 
Lecture 1 & 2.pdf
Lecture 1 & 2.pdfLecture 1 & 2.pdf
Lecture 1 & 2.pdf
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistry
 
Principles of Multiscale Modelling of Materials
Principles of Multiscale Modelling of Materials  Principles of Multiscale Modelling of Materials
Principles of Multiscale Modelling of Materials
 
dynamic.pdf
dynamic.pdfdynamic.pdf
dynamic.pdf
 
CASTEP Software.pptx
CASTEP Software.pptxCASTEP Software.pptx
CASTEP Software.pptx
 

More from Hamed Hoorijani

Aspen plus in small steps - presentation
Aspen plus in small steps - presentation Aspen plus in small steps - presentation
Aspen plus in small steps - presentation Hamed Hoorijani
 
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Hamed Hoorijani
 
Basic Tutorial on Aspen HYSYS Dynamics - Process Control
Basic Tutorial on Aspen HYSYS Dynamics - Process ControlBasic Tutorial on Aspen HYSYS Dynamics - Process Control
Basic Tutorial on Aspen HYSYS Dynamics - Process ControlHamed Hoorijani
 
Tutorial on Aspen Hysys Dynamics - Separator level controller
Tutorial on Aspen Hysys Dynamics - Separator level controllerTutorial on Aspen Hysys Dynamics - Separator level controller
Tutorial on Aspen Hysys Dynamics - Separator level controllerHamed Hoorijani
 
Aspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycleAspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycleHamed Hoorijani
 
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...Hamed Hoorijani
 
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles Hamed Hoorijani
 

More from Hamed Hoorijani (8)

Aspen plus in small steps - presentation
Aspen plus in small steps - presentation Aspen plus in small steps - presentation
Aspen plus in small steps - presentation
 
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
Basic Tutorial on Aspen HYSYS Dynamics - Process control (Tutorial 3)
 
Basic Tutorial on Aspen HYSYS Dynamics - Process Control
Basic Tutorial on Aspen HYSYS Dynamics - Process ControlBasic Tutorial on Aspen HYSYS Dynamics - Process Control
Basic Tutorial on Aspen HYSYS Dynamics - Process Control
 
Tutorial on Aspen Hysys Dynamics - Separator level controller
Tutorial on Aspen Hysys Dynamics - Separator level controllerTutorial on Aspen Hysys Dynamics - Separator level controller
Tutorial on Aspen Hysys Dynamics - Separator level controller
 
Aspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycleAspen Plus Tutorial - LHHW - reverse propane cycle
Aspen Plus Tutorial - LHHW - reverse propane cycle
 
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...
a brief review of the chapter 6 of "Mechanically stirred vessels" of the Hand...
 
Multiphase models
Multiphase models Multiphase models
Multiphase models
 
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles
Learning ANSYS Fluent R19 using modeling a Fluidized Bed with nano particles
 

Recently uploaded

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxMuhammadAsimMuhammad6
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueBhangaleSonal
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersMairaAshraf6
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 

Recently uploaded (20)

Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptxOrlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
Orlando’s Arnold Palmer Hospital Layout Strategy-1.pptx
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
Computer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to ComputersComputer Lecture 01.pptxIntroduction to Computers
Computer Lecture 01.pptxIntroduction to Computers
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 

Molecular Dynamics - review

  • 1. Molecular Dynamics University of Tehran College of Engineering School of Chemical Engineering Student : Hamed Hoorijani Spring 2019 1hoorijani@ut.ac.ir
  • 2. Outlines • Introduction • Principles • Potential Functions • Periodic Boundary Conditions • Cutoff methods • Integration Algorithms • Challenges • Softwares • Example • Books 2hoorijani@ut.ac.ir
  • 3. Introduction • Why we do Simulation? in some cases, Experiment is : 1. impossible inside of star ,weather forecast 2. too dangerous Flight Simulation, Explosion Simulation 3. Expensive High Pressure Simulation, Wind channel Simulation 4.blind some properties can’t be observe on very short time- scales and very small space-scales Examples 3hoorijani@ut.ac.ir
  • 4. Introduction • Simulation is a useful complement, because it can: • Replace Experiment • Provoke Experiment • Explain Experiment • Aid in establishing intellectual property 4hoorijani@ut.ac.ir
  • 5. What is Molecular Dynamics ? • Connection between microscopic and macroscopic behavior of the physical system with description of the atomic and molecular interactions 5hoorijani@ut.ac.ir
  • 6. Computational Tools • Quantum Mechanics(QM) Electronic Structure (Schrӧdinger) • Accurate • Expensive small system • Classical Molecular Mechanics(MM) Empirical Forces(Newton) • Less Accurate • Fast • Mixed QM/MM 6hoorijani@ut.ac.ir
  • 7. Procedure • Calculate how a system of particles evolves in time • Consider a set of atoms with positions /velocities and the potential energy function of the system • Predict the next positions of particles over some short time interval by solving Newtonian mechanics 7hoorijani@ut.ac.ir
  • 8. Basic MD Algorithm Set initial conditions and Get new forces Solve the equations of motion numerically over a short step Is ? Calculate results and finish )( 0tir )( 0tiv )( ii rF )()( ttt ii  rr )()( ttt ii  vv t ttt  maxtt  8hoorijani@ut.ac.ir
  • 9. Principles • In molecular Dynamic we need • Position (r) • Momentum (m) • Charge (q) • Bond Information (Which Atoms, bond angles, etc.) For each atom in every molecule i jj’ rcut L 9hoorijani@ut.ac.ir
  • 10. Principles • The base of Molecular Dynamic is the second law of newton’s • Using the gradient of the potential energy function the main algorithm of the simulation is presented i i iF m a i iF V  2 2 i i i d rdV m dr dt   10hoorijani@ut.ac.ir
  • 11. Potential Functions • A single atom will be affected by the potential energy functions of every atom in the system: • Bonded Neighbors • Non-Bonded Atoms (either other atoms in the same molecule, or atoms from different molecules) non bonded van der Waals electrostaticE E E    bonded bond stretch angle bend rotate along bondE E E E      ( ) bonded non bondedV R E E   11hoorijani@ut.ac.ir
  • 12. Non-Bonded Potential • Van-der walls Potential one of the most widely used functions for the van der waals potential in the Lennard-Jones 12 6 ik ik Lennard Jones nonbonded ik ik pairs A C E r r          A,C depends on the atom types, derived from experimental data 12hoorijani@ut.ac.ir
  • 13. Non-Bonded Potential • Electrostatic Potential opposite charges attract • The force of the attraction is inversely proportional to the square of the distance i k electrostatic nonbonded ik pairs q q E Dr   13hoorijani@ut.ac.ir
  • 14. Bonded Potential • 3 types of interaction between bonded atoms: • Stretching along the bond • Bending between bonds • Rotating around bonds bonded bond stretch angle bend rotate along bondE E E E      14hoorijani@ut.ac.ir
  • 15. Boned Potential Bond length Potentials 2 0 1,2 ( )bond stretch b pairs E K b b   • Both the spring constant and the ideal bond length are dependent on the atoms involved 15hoorijani@ut.ac.ir
  • 16. Bonded Potentials Bond Angle Potentials • The spring constant and the ideal angle are also dependent on the chemical type of the atoms. 2 0( )bond bend angles E K     16hoorijani@ut.ac.ir
  • 17. Boned Potential Torsional Potentials • Described by a dihedral angle and coefficient of symmetry (n=1,2,3), around the middle bond. 1,4 (1 cos( ))rotate along bond pairs E K n     17hoorijani@ut.ac.ir
  • 18. Some Simplified Potential Functions for Specific cases • Morse Potential • For pair atomic molecules • For modeling some metals such as copper • For modeling structures with covalent bonds 18hoorijani@ut.ac.ir
  • 19. Some Simplified Potential Functions for Specific cases • Sterlinger-weber • For modeling semi-conductive material 19hoorijani@ut.ac.ir
  • 20. Some Simplified Potential Functions for Specific cases • Tersoff Potential • Modeling carbonic and silicone structure 20hoorijani@ut.ac.ir
  • 21. Some Simplified Potential Functions for Specific cases • AIREBO Potential • Modeling carbon-hydrogen systems 21hoorijani@ut.ac.ir
  • 22. Some Simplified Potential Functions for Specific cases • EAM Potential • Modeling metallic and different types of alloys 22hoorijani@ut.ac.ir
  • 23. Periodic Boundary Condition • Simulate a segment of molecules in a larger solution by having repeatable regions • When an atom moves off the edge, it reappears on the other side (like in asteroids) • In molecular dynamics simulation, PBC are usually applied to calculate bulk gasses, liquids, crystals or mixtures. 23hoorijani@ut.ac.ir
  • 24. Cutoff Methods • Ideally, every atom in the system should interact with every other atom which leads to a force calculation algorithm of quadratic order • The cutoff methods explains different approaches to ignore atoms at large distances from each other without loosing too much accuracy 24hoorijani@ut.ac.ir
  • 25. Integration Algorithms • Using conventional algorithms to solve the motion equation in MD is not efficient cause: • the forces are very rapidly changing non-linear functions • The RK in some cases is justifiable it allows you to take larger time steps but requires multiple force calculations per each timestep So an algorithm was needed to provide the stability benefits of RK without the cost of extra force calculations! In short : Numerical approximation of the integral over time 25hoorijani@ut.ac.ir
  • 26. Integration Algorithms • Different Algorithms have been suggested : • Verlet Algorithm • Leap-frog Algorithm • Velocity Verlet Algorithm • Boeman’s Algorithm • In choosing the right algorithm we should consider: • it should be computational efficient • it should conserve energy and momentum • it should permit a long time step for integration 26hoorijani@ut.ac.ir
  • 27. Integration Algorithms • They are all assume that position, velocities and acceleration can be approximate based on a Taylor series expansion 27hoorijani@ut.ac.ir
  • 28. Verlet Algorithm • It uses the position and acceleration at time step (t) and position at 𝑡 − 𝑑𝑡 ))(( 1 )( t m rFra  2 )( 2 1 )()()( tttttt  ravrr ttttt  )( 2 1 )()2/( ravv ))(( 1 )( tt m tt  raa ttttttt  )( 2 1 )2/()( avv From the initial ,)(tir )(tiv tt  28 Obtain the positions and velocities at hoorijani@ut.ac.ir
  • 29. Leap-Frog Algorithm • In this algorithm using the velocity at time (𝑡 + 𝑑𝑡 2 ) and position at time (t), calculates the position at t+dt 29hoorijani@ut.ac.ir
  • 30. Velocity Verlet Algorithm • More accuracy than the Verlet • Using the position, velocity, acceleration at time (t) the velocity and position at time (𝑡 + 𝑑𝑡) 30hoorijani@ut.ac.ir
  • 31. Boeman’s Algorithm • More accuracy than Verlet but computational expensive 31hoorijani@ut.ac.ir
  • 32. MD time Step 1/20 of the nearest atom distance tr/ In practice fs (femto-second).4t MD is limited to <~100 ns If Too long : energy is not conservedt 32hoorijani@ut.ac.ir
  • 33. Calculating physical Properties • Thermodynamic Properties • Kinetic Energy: • Temperature: K E m vi i i N . .   1 2 2 T Nk K E B  2 3 . . 33hoorijani@ut.ac.ir
  • 34. Calculating physical Properties • Configuration Energy: • Pressure: • Specific Heat U V rc ij j i N i    ( )      1 13 1 N i N ij ijijB frTNkPV  ( ) ( )U Nk T Nk C c NVE B B v 2 2 23 2 1 3 2   34hoorijani@ut.ac.ir
  • 35. Calculating physical Properties • Structural Properties • Pair correlation (Radial Distribution Function): • Structure factor: Note: S(k) available from x-ray diffraction g r n r r r V N r rij j i N i ( ) ( ) ( )    4 2 2      drrrg kr kr kS 2 0 1)( )sin( 41)(     35hoorijani@ut.ac.ir
  • 36. Calculating physical Properties Radial Distribution Function 36hoorijani@ut.ac.ir
  • 37. Calculating physical Properties Radial Distribution Function obtained of Lennard-Jones System 37hoorijani@ut.ac.ir
  • 38. Limitations of classical MD Problems 1.Fixed set of atom types 2.No electronic Polarization -fixed partial charges allow for conformational polarization but not electronic polarization 3.Parameters are imperfect 38hoorijani@ut.ac.ir
  • 39. Softwares Package Name Supported Force Fields Website Developer Team CHARMM CHARMM(E / I; AA / UA) www.charm.org Harvard Amber Amber(E / I;AA) Amber.scripps.edu San Francisco GROMOS Gromos (E / vacuum ; UA) Igc.ethz.ch/GROMOS Zurich Gromacs Amber,Gromos,OPLS – (all E) Gromacs.org Groningen NAMD CHARMM, Amber ,Gromos Ks.uiuc.edu/Research/na md Orban, USA Lammps CHARMM, AMBER, COMPASS, and DREIDING Lammps.sandia.gov USA 39hoorijani@ut.ac.ir
  • 40. LAMMPS Example Case • Uniaxial compressive loading of an cupper single crystal 40hoorijani@ut.ac.ir
  • 41. LAMMPS Example Case • Uniaxial compressive loading of an cupper single crystal 41hoorijani@ut.ac.ir
  • 42. LAMMPS Example Case • Uniaxial compressive loading of an cupper single crystal 42hoorijani@ut.ac.ir
  • 43. LAMMPS Example Case • Uniaxial compressive loading of an cupper single crystal You can see a clip of the results available on the link below: 43hoorijani@ut.ac.ir https://youtu.be/FYhw5FVotKI
  • 47. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 47hoorijani@ut.ac.ir
  • 48. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 48hoorijani@ut.ac.ir
  • 49. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 49hoorijani@ut.ac.ir
  • 50. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 50hoorijani@ut.ac.ir
  • 51. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 51hoorijani@ut.ac.ir
  • 52. LAMMPS Example Case • a reactive deformation of a single polyethylene chain 52hoorijani@ut.ac.ir
  • 53. LAMMPS Example Case • a reactive deformation of a single polyethylene chain You can see a clip of the results available on the link below: : https://youtu.be/q340EYNh5XE 53hoorijani@ut.ac.ir
  • 55. Thank you for your attention  55hoorijani@ut.ac.ir
  • 56. SUMMARY • Review Molecular Dynamics • MD simulation for ax uniaxial compressive loading of an cupper single crystal • MD simulation for a reactive deformation of a single polyethylene chain 56hoorijani@ut.ac.ir