SlideShare a Scribd company logo
1 of 17
Download to read offline
Observability metric for the relative
     localization of AUVs based on range and
         depth measurements: theory and
                     experiments

                     Filippo Arrichiello1 , Gianluca Antonelli1
                    Antonio Pedro Aguiar2 , Antonio Pascoal2

                          1.University of Cassino, Italy
                          Robotics Research Group of the DAEIMI
                          http://webuser.unicas.it/lai/robotica



                          2.Technical University of Lisbon, Portugal
                          Lab. of Robotics and Systems in Engineering and Science
                          http://welcome.isr.ist.utl.pt


F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Underwater localization



   Localization of an Autonomous Underwater Vehicle (AUV)
     ◮   GPS not working under the water
     ◮   Dead-reckoning (IMU, DVL)
             ◮    drift
     ◮   External array of acoustic baseline (LBL, SBL, USBL)
             ◮    expensive
             ◮    limited coverage area




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Single beacon localization

   Analysis of the relative localization using a single beacon
   (transducer/transponder couple) and on board sensors

                                                      GPS



                                                            d    η2,z




      ◮   Acoustic communication: range measurement and sensor data
          exchange
      ◮   On-board sensors information: depth and velocity
      ◮   We study the observability of the system and define a metrics


    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal       IEEE/RSJ IROS, San Francisco, 28 September 2011
Modeling and objective

                                  ΣI

                                       xv,1
                                                       xv,2
                                               Σv,1        x

                                                                         Σv,2
     ◮   Model:                                   
                                                  ˙
                                                  x =         v
                                                                   1 T
                                                  y =             2x x
                                                                    x3
                                                  

     ◮   Objective: We want to estimate the relative positioning x of vehicle
         2 with respect to vehicle 1 from the output y ∈ IR2 , i.e., from
         distance and depth difference


   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal       IEEE/RSJ IROS, San Francisco, 28 September 2011
Observability analysis



   Starting from the generic non-linear model

                                                   ˙
                                                   x=       f(x, u)
                                                   y=       h(x)

   we discuss the local weak observability of system

   Reference:
   R. Hermann and A. Krener. Nonlinear controllability and observability.
   IEEE Transactions on Automatic Control, 22(5):728–740, 1977




    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal    IEEE/RSJ IROS, San Francisco, 28 September 2011
Local weak observability
   By defining the Lie derivatives of the scalar output hj as
                 
                 L0 hj = hj
                  f
                 L hj = ▽hj · f = ∂hj · f = 3 ∂hj · fi
                 
                  1
                                        ∂x          i =1 ∂xi
                  f
                 
                   L2 hj = ∂∂ L1 hj · f
                               x f
                  f
                 · · ·
                 
                 
                 
                 L h = ∂ Ln−1 h · f
                  n
                     f j      ∂x    f    j



           ▽L0 h1
                 
             f
                                                     
         ▽L0 h2      x1                   x2     x3
             f     0                      0      1
         ▽L1 h1  
         
                                                      
             f     v1                     v2     v3 
             1 
         
     O = ▽Lf h2  =  0                                   rank(O) < 3 ⇔ x1 v2 − x2 v1 = 0
                                                    
          .                              0      0
          .  0
                                                      
          .                              0      0
                                             .
                                                      
         ▽Ln h1                            .
             f                               .
          ▽Ln h2
             f


   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Observability and metric for 2D model

   Neglecting the vertical components that is given by the depth
   measurements, the 2D model is:

                                                  ˙
                                                  x=v
                                                  y = 1 xT x
                                                      2

   We want to study how the 2D relative motions effects the observability

                                                              θ
                                                                       v

                                                       x




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Observability and metric for 2D model

   It can be easily observed that the terms ▽Lk h1 of O different from zero
                                              f
                                        xT
   are only for k = {1, 2}. Thus O = T . Defining x = x , v = v ,
                                        v
         x
   γ = v , and θ = φ − α, we can reformulate as:

                                x cos α x sin α    γ cos α γ sin α
                      O=                        =v
                                v cos φ v sin φ     cos φ   sin φ


   We define as metric the condition number C ≥ 1 of O :

                         max{σ1,2 }   γ2 + 1 +                γ 4 + 2γ 2 cos(2θ) + 1
                 C=                 =                                                .
                         min{σ1,2 }                           2γ sin(θ)

   Note: C is function of γ and θ



   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Observability metrics for 2D model

   The condition number C −1 of O as function of γ and θ is plotted:

                                                                   3

                           1                                       2

                                                                   1
                    C −1
                       0.5




                                                               θ
                                                                   0

                                                                 −1
                           0
                           5                                     −2
                                                           6
                               0                       4
                                               2                 −3
                               θ     −5   0    γ                       0         1         2
                                                                                               γ      3          4




                                                                                               90 5
                                                                                     120                   60
                           1
                                                                            150                      2.5         30
                    C −1




                       0.5
                                                                           180                                        0


                           0                                                210                                  330
                           5
                                                           5
                               0                                                     240                   300
                                                   0                                           270
                                     −5   −5




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal       IEEE/RSJ IROS, San Francisco, 28 September 2011
Observability metrics for 2D model
   C −1 has a maximum for
                                γ     = 1             (i.e., x = v )
                                θ     = ±π2              (tangential motion)

   C −1 is null for θ = 0 (radial motion), γ = 0, and γ → ∞

   Assuming a constant relative speed, the observability conditions and
   therefore the expected performance of any position observer degrades
   when the distance between two AUVs increases.

                                       V
       If γ = 1 then C −1 = 1                                     C −1 = 0            V



                                            X


                                                                             X




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Simulation results


   AUV localization with respect to a fixed buoy using EKF and range-only
   measurement

                                          Set of orthogonal segments
                                                    10
           80                                        5
                                                     0                 100                  150      200
           60                                         0       50
                                                                             Estimation error
                                                   200
           40                                      100
                                                     0                 100                  150      200
                                                      0       50
     [m]




           20                                                          Distances from transponders
                                                     4
             0                                       2
                                                     0                 100                  150      200
                                                      0       50
           -20                                                         Eigenvalue ekf covarinace
                                                   0.2
           -40                                     0.1
                 -80   -60   -40    -20   0          0
                              [m]                     0       50       100                  150      200
                                                                          1/Observability index




    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Simulation results


   AUV localization with respect to a fixed buoy using EKF and range-only
   measurement

        Same circular paths (θ = π/2) at different velocities (changing γ)
                                                    20
                                                    10
                                                     00     50    100            150              200   250
                                                                             Estimation error

            100                                    200
                                                   100
                80                                   00     50    100            150              200   250
                                                                     Distances from transponders
                60                                   2
          [m]




                40                                   1
                20                                   00     50    100            150              200   250
                                                                        Eigenvalue ekf covarinace

                0                                  0.05
            -20                                      0
                     -50     0       50               0     50    100            150              200   250
                            [m]                                           1/Observability index




    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Simulation results


   AUV localization with respect to a fixed buoy using EKF and range-only
   measurement

                             Different circular paths with constant γ
                                                     20
                                                     10
                                                      00    50     100            150              200   250
                                                                             Estimation error
                                                    200
            300                                     100
            250                                       00    50     100Distances from transponders
                                                                                 150           200       250
            200                                       2
          [m]




            150                                       1
            100                                       00    50                  150
                                                                   100 Eigenvalue ekf covarinace200      250
             50
                                                   0.01
              0                                   0.005
              -200 -100      0    100    200          00    50     100            150              200   250
                            [m]                                            1/Observability index




    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Relative localization experiments

   Inverse localization problem: a surface vehicle has to estimate the
   position of an underwater transponder (whose depth is known) using
   range measurement from acoustic model.
      ◮   surface vehicle with GPS
      ◮   a transponder at 3m depth (as a second vehicle)
      ◮   acoustic modem exchanging few bytes every 2-3 seconds




    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
Relative localization experiments
   The ASV was commanded to perform different paths: a set of
   parallel/orthogonal segments or circular paths

   The data were post-processed to test an extended Luenberger observer
   estimating the relative positioning between the ASV and the transponder

                   0                                                                                                                                                                                 0




                                                                                                               −70


                −50                                                                                            −80                                                                                −50
                                                                             T:0
                                                                 T:248
     utmy [m]




                                                                                                                                                                                       utmy [m]
                                                                                                               −90
                                             T:330

                                                                                                                                                                                                                                          T:147
                                                                                                               −100                                T:248
                                                                                                                                                                                                                                                   T:98
                                                                                                    utmy [m]




                                                                                                                                     T:414
                                                                                                               −110                                             T:83
                                                                                                                                   T:0                                                                                                T:196
                −100                                                         T:83                                                                                                                 −100
                                                             T:165                                                                                              T:497
                                                                                                               −120
                                              T:413                                                                                                                                                                   T:294                        T:49
                               T:496                                                                                                                                                                                          T:245
                                                                                                                                         T:166
                                                                                                               −130                                    T:331
                                                                                                                                                                                                                                                      T:0

                                                                                                               −140


                −150                                                                                           −150                                                                               −150
                       −100   −80      −60     −40       −20             0          20    40   60                −80   −60   −40          −20               0           20   40   60                     −100   −80   −60         −40      −20       0      20   40   60
                                                      utmx [m]                                                                                   utmx [m]                                                                               utmx [m]




                                                                                         Experiments in Lisbon, Nov. 2010.


    F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal                                                                                                   IEEE/RSJ IROS, San Francisco, 28 September 2011
Conclusions and future works



     ◮   Observability conditions for cooperative underwater localization
     ◮   Find the relative motions that do not ensure observability
     ◮   We defined a metric for the observability
     ◮   We tested different observers for relative positioning estimation

     ◮   Find elementary behaviors/maneuvers to move the robots ensuring
         observability
     ◮   Extend the observability issues to more than two vehicles




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011
CO3 AUVs Project


   framework              :    COoperative COgnitive COntrol for Autonomous
                               Underwater Vehicles (CO3 AUVs) Project
   fundings               :    FP7 - Cooperation - ICT - Challenge 2
                               Cognitive Systems, Interaction, Robotics
   kind                   :    Collaborative Project (STREP)
   acronym                :    CO3 AUVs
   duration               :    3 years
   start                  :    Feb 2009
   effort                  :    323 pm
   budget                 :    ≈ 2.5 Me
              http://robotics.jacobs-university.de/projects/Co3-AUVs/




   F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal   IEEE/RSJ IROS, San Francisco, 28 September 2011

More Related Content

What's hot

2 d 3d aoi尺寸量測原理
2 d 3d aoi尺寸量測原理2 d 3d aoi尺寸量測原理
2 d 3d aoi尺寸量測原理evaread
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMatthew Leingang
 
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...Jan Wedekind
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lecture13 xing fei-fei
Lecture13 xing fei-feiLecture13 xing fei-fei
Lecture13 xing fei-feiTianlu Wang
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMatthew Leingang
 
Regression Theory
Regression TheoryRegression Theory
Regression TheorySSA KPI
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Lesson 12: Linear Approximation and Differentials (Section 41 slides)
Lesson 12: Linear Approximation and Differentials (Section 41 slides)Lesson 12: Linear Approximation and Differentials (Section 41 slides)
Lesson 12: Linear Approximation and Differentials (Section 41 slides)Matthew Leingang
 
Derivative Free Optimization
Derivative Free OptimizationDerivative Free Optimization
Derivative Free OptimizationOlivier Teytaud
 
Numerical solution of poisson’s equation
Numerical solution of poisson’s equationNumerical solution of poisson’s equation
Numerical solution of poisson’s equationmmhajnamk4
 
Nonlinear Manifolds in Computer Vision
Nonlinear Manifolds in Computer VisionNonlinear Manifolds in Computer Vision
Nonlinear Manifolds in Computer Visionzukun
 

What's hot (19)

Rouviere
RouviereRouviere
Rouviere
 
2 d 3d aoi尺寸量測原理
2 d 3d aoi尺寸量測原理2 d 3d aoi尺寸量測原理
2 d 3d aoi尺寸量測原理
 
Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
rinko2010
rinko2010rinko2010
rinko2010
 
rinko2011-agh
rinko2011-aghrinko2011-agh
rinko2011-agh
 
Tprimal agh
Tprimal aghTprimal agh
Tprimal agh
 
Cap4 lec5
Cap4 lec5Cap4 lec5
Cap4 lec5
 
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...
Reconstruction (of micro-objects) based on focus-sets using blind deconvoluti...
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lecture13 xing fei-fei
Lecture13 xing fei-feiLecture13 xing fei-fei
Lecture13 xing fei-fei
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Regression Theory
Regression TheoryRegression Theory
Regression Theory
 
Bayesian Core: Chapter 7
Bayesian Core: Chapter 7Bayesian Core: Chapter 7
Bayesian Core: Chapter 7
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Lesson 12: Linear Approximation and Differentials (Section 41 slides)
Lesson 12: Linear Approximation and Differentials (Section 41 slides)Lesson 12: Linear Approximation and Differentials (Section 41 slides)
Lesson 12: Linear Approximation and Differentials (Section 41 slides)
 
Derivative Free Optimization
Derivative Free OptimizationDerivative Free Optimization
Derivative Free Optimization
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Numerical solution of poisson’s equation
Numerical solution of poisson’s equationNumerical solution of poisson’s equation
Numerical solution of poisson’s equation
 
Nonlinear Manifolds in Computer Vision
Nonlinear Manifolds in Computer VisionNonlinear Manifolds in Computer Vision
Nonlinear Manifolds in Computer Vision
 

Viewers also liked

Drone Academy Thailand Profile (May 2017)
Drone Academy Thailand Profile (May 2017)Drone Academy Thailand Profile (May 2017)
Drone Academy Thailand Profile (May 2017)Drone Academy Thailand
 
Global Positioning System
Global Positioning System Global Positioning System
Global Positioning System Varun B P
 
Using mapping drones for disaster prevention & response
Using mapping drones for disaster prevention & responseUsing mapping drones for disaster prevention & response
Using mapping drones for disaster prevention & responseDrone Adventures
 
From Maps to Apps the Future of Drone Technology
From Maps to Apps the Future of Drone TechnologyFrom Maps to Apps the Future of Drone Technology
From Maps to Apps the Future of Drone TechnologyGodfrey Nolan
 
Energy Oil Gas Presentation
Energy  Oil  Gas  PresentationEnergy  Oil  Gas  Presentation
Energy Oil Gas Presentationjlai
 
Drone-Unmanned Aerial Vehicle
Drone-Unmanned Aerial VehicleDrone-Unmanned Aerial Vehicle
Drone-Unmanned Aerial Vehicleshivu1234
 
TUGI PETR CV_2015
TUGI PETR CV_2015TUGI PETR CV_2015
TUGI PETR CV_2015Peter Tugi
 
Advantages of a combined sonar data acquisition system for AUVs and ASVs
Advantages of a combined sonar data acquisition system for AUVs and ASVsAdvantages of a combined sonar data acquisition system for AUVs and ASVs
Advantages of a combined sonar data acquisition system for AUVs and ASVsHydrographic Society Benelux
 
Under water communication ppt
Under water communication ppt Under water communication ppt
Under water communication ppt asharanick
 
under water wireless communication
under water wireless communicationunder water wireless communication
under water wireless communicationDheeresh Kumar
 
un drone-campus à Nantes ?
un drone-campus à Nantes ?un drone-campus à Nantes ?
un drone-campus à Nantes ?drone-campus
 
Autonomous Unmanned Vehicles
Autonomous Unmanned VehiclesAutonomous Unmanned Vehicles
Autonomous Unmanned VehiclesAnirudh Kannan
 
“Securing underwater wireless communication networks” 2
“Securing underwater wireless communication networks” 2“Securing underwater wireless communication networks” 2
“Securing underwater wireless communication networks” 2Naveena N
 
Underwater Wireless Communication
Underwater Wireless CommunicationUnderwater Wireless Communication
Underwater Wireless CommunicationShubham Srivastava
 
Iver2 AUV Control Design Thesis Defense
Iver2 AUV Control Design Thesis DefenseIver2 AUV Control Design Thesis Defense
Iver2 AUV Control Design Thesis Defenseelev0083
 

Viewers also liked (20)

Underwater Robotics
Underwater RoboticsUnderwater Robotics
Underwater Robotics
 
thesis-2
thesis-2thesis-2
thesis-2
 
Drone Academy Thailand Profile (May 2017)
Drone Academy Thailand Profile (May 2017)Drone Academy Thailand Profile (May 2017)
Drone Academy Thailand Profile (May 2017)
 
Global Positioning System
Global Positioning System Global Positioning System
Global Positioning System
 
Missile Technology
Missile TechnologyMissile Technology
Missile Technology
 
Using mapping drones for disaster prevention & response
Using mapping drones for disaster prevention & responseUsing mapping drones for disaster prevention & response
Using mapping drones for disaster prevention & response
 
From Maps to Apps the Future of Drone Technology
From Maps to Apps the Future of Drone TechnologyFrom Maps to Apps the Future of Drone Technology
From Maps to Apps the Future of Drone Technology
 
Drone Technology
Drone TechnologyDrone Technology
Drone Technology
 
Kongsberg Maritime AUVs
Kongsberg Maritime AUVs Kongsberg Maritime AUVs
Kongsberg Maritime AUVs
 
Energy Oil Gas Presentation
Energy  Oil  Gas  PresentationEnergy  Oil  Gas  Presentation
Energy Oil Gas Presentation
 
Drone-Unmanned Aerial Vehicle
Drone-Unmanned Aerial VehicleDrone-Unmanned Aerial Vehicle
Drone-Unmanned Aerial Vehicle
 
TUGI PETR CV_2015
TUGI PETR CV_2015TUGI PETR CV_2015
TUGI PETR CV_2015
 
Advantages of a combined sonar data acquisition system for AUVs and ASVs
Advantages of a combined sonar data acquisition system for AUVs and ASVsAdvantages of a combined sonar data acquisition system for AUVs and ASVs
Advantages of a combined sonar data acquisition system for AUVs and ASVs
 
Under water communication ppt
Under water communication ppt Under water communication ppt
Under water communication ppt
 
under water wireless communication
under water wireless communicationunder water wireless communication
under water wireless communication
 
un drone-campus à Nantes ?
un drone-campus à Nantes ?un drone-campus à Nantes ?
un drone-campus à Nantes ?
 
Autonomous Unmanned Vehicles
Autonomous Unmanned VehiclesAutonomous Unmanned Vehicles
Autonomous Unmanned Vehicles
 
“Securing underwater wireless communication networks” 2
“Securing underwater wireless communication networks” 2“Securing underwater wireless communication networks” 2
“Securing underwater wireless communication networks” 2
 
Underwater Wireless Communication
Underwater Wireless CommunicationUnderwater Wireless Communication
Underwater Wireless Communication
 
Iver2 AUV Control Design Thesis Defense
Iver2 AUV Control Design Thesis DefenseIver2 AUV Control Design Thesis Defense
Iver2 AUV Control Design Thesis Defense
 

Similar to IROS 2011 talk 1 (Filippo's file)

Several nonlinear models and methods for FDA
Several nonlinear models and methods for FDASeveral nonlinear models and methods for FDA
Several nonlinear models and methods for FDAtuxette
 
signal space analysis.ppt
signal space analysis.pptsignal space analysis.ppt
signal space analysis.pptPatrickMumba7
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...ijcsitcejournal
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.pptRajuRaju183149
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelPiyushDhuri1
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsAlexander Decker
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility usingkkislas
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論岳華 杜
 
Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Juan Luis Nieves
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite elementStefan Duprey
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1Alberto de Mesquita
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Arthur Charpentier
 
11.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58Alexander Decker
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Claudio Attaccalite
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsRakeshPatil2528
 
Pres110811
Pres110811Pres110811
Pres110811shotlub
 

Similar to IROS 2011 talk 1 (Filippo's file) (20)

CS-ChapterI.pdf
CS-ChapterI.pdfCS-ChapterI.pdf
CS-ChapterI.pdf
 
Several nonlinear models and methods for FDA
Several nonlinear models and methods for FDASeveral nonlinear models and methods for FDA
Several nonlinear models and methods for FDA
 
signal space analysis.ppt
signal space analysis.pptsignal space analysis.ppt
signal space analysis.ppt
 
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
OPTIMIZATION OF MANUFACTURING OF LOGICAL ELEMENTS "AND" MANUFACTURED BY USING...
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.ppt
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodel
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
0.c basic notations
0.c basic notations0.c basic notations
0.c basic notations
 
從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論從 VAE 走向深度學習新理論
從 VAE 走向深度學習新理論
 
Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009Color Img at Prisma Network meeting 2009
Color Img at Prisma Network meeting 2009
 
A new axisymmetric finite element
A new axisymmetric finite elementA new axisymmetric finite element
A new axisymmetric finite element
 
Problems and solutions statistical physics 1
Problems and solutions   statistical physics 1Problems and solutions   statistical physics 1
Problems and solutions statistical physics 1
 
Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4Slides econometrics-2018-graduate-4
Slides econometrics-2018-graduate-4
 
State estimate
State estimateState estimate
State estimate
 
11.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-5811.final paper -0047www.iiste.org call-for_paper-58
11.final paper -0047www.iiste.org call-for_paper-58
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1
 
Schrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanicsSchrodinger equation in quantum mechanics
Schrodinger equation in quantum mechanics
 
Pres110811
Pres110811Pres110811
Pres110811
 

More from Gianluca Antonelli

More from Gianluca Antonelli (16)

Current research activities in marine robotics at the Italian interuniversity...
Current research activities in marine robotics at the Italian interuniversity...Current research activities in marine robotics at the Italian interuniversity...
Current research activities in marine robotics at the Italian interuniversity...
 
Workshop on Marine Robotics: vehicle-manipulator systems
Workshop on Marine Robotics: vehicle-manipulator systemsWorkshop on Marine Robotics: vehicle-manipulator systems
Workshop on Marine Robotics: vehicle-manipulator systems
 
Underwater manipulation
Underwater manipulationUnderwater manipulation
Underwater manipulation
 
2015 SIDRA School on Underwater Robotics. Introduction
2015 SIDRA School on Underwater Robotics. Introduction2015 SIDRA School on Underwater Robotics. Introduction
2015 SIDRA School on Underwater Robotics. Introduction
 
Workshop Italy-Japan
Workshop Italy-JapanWorkshop Italy-Japan
Workshop Italy-Japan
 
IROS 2014 talk
IROS 2014 talkIROS 2014 talk
IROS 2014 talk
 
Control problems for floating-base manipulators
Control problems for floating-base manipulatorsControl problems for floating-base manipulators
Control problems for floating-base manipulators
 
Control problems for floating-base manipulators
Control problems for floating-base manipulatorsControl problems for floating-base manipulators
Control problems for floating-base manipulators
 
IROS 2013 talk
IROS 2013 talkIROS 2013 talk
IROS 2013 talk
 
AIM 2013 talk
AIM 2013 talkAIM 2013 talk
AIM 2013 talk
 
ICRA 2013 talk 2
ICRA 2013 talk 2ICRA 2013 talk 2
ICRA 2013 talk 2
 
ICRA 2013 talk 1
ICRA 2013 talk 1ICRA 2013 talk 1
ICRA 2013 talk 1
 
SIDRA 2012 talk
SIDRA 2012 talkSIDRA 2012 talk
SIDRA 2012 talk
 
TRIDENT school 2012
TRIDENT school 2012TRIDENT school 2012
TRIDENT school 2012
 
ICRA 2012 talk
ICRA 2012 talkICRA 2012 talk
ICRA 2012 talk
 
IROS 2012 talk
IROS 2012 talkIROS 2012 talk
IROS 2012 talk
 

IROS 2011 talk 1 (Filippo's file)

  • 1. Observability metric for the relative localization of AUVs based on range and depth measurements: theory and experiments Filippo Arrichiello1 , Gianluca Antonelli1 Antonio Pedro Aguiar2 , Antonio Pascoal2 1.University of Cassino, Italy Robotics Research Group of the DAEIMI http://webuser.unicas.it/lai/robotica 2.Technical University of Lisbon, Portugal Lab. of Robotics and Systems in Engineering and Science http://welcome.isr.ist.utl.pt F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 2. Underwater localization Localization of an Autonomous Underwater Vehicle (AUV) ◮ GPS not working under the water ◮ Dead-reckoning (IMU, DVL) ◮ drift ◮ External array of acoustic baseline (LBL, SBL, USBL) ◮ expensive ◮ limited coverage area F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 3. Single beacon localization Analysis of the relative localization using a single beacon (transducer/transponder couple) and on board sensors GPS d η2,z ◮ Acoustic communication: range measurement and sensor data exchange ◮ On-board sensors information: depth and velocity ◮ We study the observability of the system and define a metrics F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 4. Modeling and objective ΣI xv,1 xv,2 Σv,1 x Σv,2 ◮ Model:  ˙ x = v 1 T y = 2x x x3  ◮ Objective: We want to estimate the relative positioning x of vehicle 2 with respect to vehicle 1 from the output y ∈ IR2 , i.e., from distance and depth difference F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 5. Observability analysis Starting from the generic non-linear model ˙ x= f(x, u) y= h(x) we discuss the local weak observability of system Reference: R. Hermann and A. Krener. Nonlinear controllability and observability. IEEE Transactions on Automatic Control, 22(5):728–740, 1977 F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 6. Local weak observability By defining the Lie derivatives of the scalar output hj as  L0 hj = hj  f L hj = ▽hj · f = ∂hj · f = 3 ∂hj · fi   1 ∂x i =1 ∂xi  f  L2 hj = ∂∂ L1 hj · f x f  f · · ·    L h = ∂ Ln−1 h · f  n f j ∂x f j ▽L0 h1   f   ▽L0 h2  x1 x2 x3 f  0 0 1 ▽L1 h1     f  v1 v2 v3  1   O = ▽Lf h2  =  0 rank(O) < 3 ⇔ x1 v2 − x2 v1 = 0     .   0 0  .  0   .   0 0 .  ▽Ln h1  . f . ▽Ln h2 f F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 7. Observability and metric for 2D model Neglecting the vertical components that is given by the depth measurements, the 2D model is: ˙ x=v y = 1 xT x 2 We want to study how the 2D relative motions effects the observability θ v x F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 8. Observability and metric for 2D model It can be easily observed that the terms ▽Lk h1 of O different from zero f xT are only for k = {1, 2}. Thus O = T . Defining x = x , v = v , v x γ = v , and θ = φ − α, we can reformulate as: x cos α x sin α γ cos α γ sin α O= =v v cos φ v sin φ cos φ sin φ We define as metric the condition number C ≥ 1 of O : max{σ1,2 } γ2 + 1 + γ 4 + 2γ 2 cos(2θ) + 1 C= = . min{σ1,2 } 2γ sin(θ) Note: C is function of γ and θ F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 9. Observability metrics for 2D model The condition number C −1 of O as function of γ and θ is plotted: 3 1 2 1 C −1 0.5 θ 0 −1 0 5 −2 6 0 4 2 −3 θ −5 0 γ 0 1 2 γ 3 4 90 5 120 60 1 150 2.5 30 C −1 0.5 180 0 0 210 330 5 5 0 240 300 0 270 −5 −5 F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 10. Observability metrics for 2D model C −1 has a maximum for γ = 1 (i.e., x = v ) θ = ±π2 (tangential motion) C −1 is null for θ = 0 (radial motion), γ = 0, and γ → ∞ Assuming a constant relative speed, the observability conditions and therefore the expected performance of any position observer degrades when the distance between two AUVs increases. V If γ = 1 then C −1 = 1 C −1 = 0 V X X F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 11. Simulation results AUV localization with respect to a fixed buoy using EKF and range-only measurement Set of orthogonal segments 10 80 5 0 100 150 200 60 0 50 Estimation error 200 40 100 0 100 150 200 0 50 [m] 20 Distances from transponders 4 0 2 0 100 150 200 0 50 -20 Eigenvalue ekf covarinace 0.2 -40 0.1 -80 -60 -40 -20 0 0 [m] 0 50 100 150 200 1/Observability index F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 12. Simulation results AUV localization with respect to a fixed buoy using EKF and range-only measurement Same circular paths (θ = π/2) at different velocities (changing γ) 20 10 00 50 100 150 200 250 Estimation error 100 200 100 80 00 50 100 150 200 250 Distances from transponders 60 2 [m] 40 1 20 00 50 100 150 200 250 Eigenvalue ekf covarinace 0 0.05 -20 0 -50 0 50 0 50 100 150 200 250 [m] 1/Observability index F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 13. Simulation results AUV localization with respect to a fixed buoy using EKF and range-only measurement Different circular paths with constant γ 20 10 00 50 100 150 200 250 Estimation error 200 300 100 250 00 50 100Distances from transponders 150 200 250 200 2 [m] 150 1 100 00 50 150 100 Eigenvalue ekf covarinace200 250 50 0.01 0 0.005 -200 -100 0 100 200 00 50 100 150 200 250 [m] 1/Observability index F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 14. Relative localization experiments Inverse localization problem: a surface vehicle has to estimate the position of an underwater transponder (whose depth is known) using range measurement from acoustic model. ◮ surface vehicle with GPS ◮ a transponder at 3m depth (as a second vehicle) ◮ acoustic modem exchanging few bytes every 2-3 seconds F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 15. Relative localization experiments The ASV was commanded to perform different paths: a set of parallel/orthogonal segments or circular paths The data were post-processed to test an extended Luenberger observer estimating the relative positioning between the ASV and the transponder 0 0 −70 −50 −80 −50 T:0 T:248 utmy [m] utmy [m] −90 T:330 T:147 −100 T:248 T:98 utmy [m] T:414 −110 T:83 T:0 T:196 −100 T:83 −100 T:165 T:497 −120 T:413 T:294 T:49 T:496 T:245 T:166 −130 T:331 T:0 −140 −150 −150 −150 −100 −80 −60 −40 −20 0 20 40 60 −80 −60 −40 −20 0 20 40 60 −100 −80 −60 −40 −20 0 20 40 60 utmx [m] utmx [m] utmx [m] Experiments in Lisbon, Nov. 2010. F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 16. Conclusions and future works ◮ Observability conditions for cooperative underwater localization ◮ Find the relative motions that do not ensure observability ◮ We defined a metric for the observability ◮ We tested different observers for relative positioning estimation ◮ Find elementary behaviors/maneuvers to move the robots ensuring observability ◮ Extend the observability issues to more than two vehicles F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011
  • 17. CO3 AUVs Project framework : COoperative COgnitive COntrol for Autonomous Underwater Vehicles (CO3 AUVs) Project fundings : FP7 - Cooperation - ICT - Challenge 2 Cognitive Systems, Interaction, Robotics kind : Collaborative Project (STREP) acronym : CO3 AUVs duration : 3 years start : Feb 2009 effort : 323 pm budget : ≈ 2.5 Me http://robotics.jacobs-university.de/projects/Co3-AUVs/ F. Arrichiello, G. Antonelli, A.P. Aguiar, A. Pascoal IEEE/RSJ IROS, San Francisco, 28 September 2011