SlideShare a Scribd company logo
1 of 29
(i)           , for all x ∈ [−1, 1]

(ii)          , for all x ∈ R

(iii)                     for all x ∈ (−∞, −1] ∪ [1, ∞)




                                                       1

        S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
          www.gtimchd.in ; gtimchd@yahoo.co.in
PROOF:
(i)   Let sin−1 x = θ
      where θ ∈ [−π/2, π/2]                              =θ



      ⇒−

      ⇒0

      ⇒          ∈ [0, π]

          Now,              =θ
      ⇒ x = sin θ

      ⇒x=

      ⇒ cos−1 x =


                                                                      2

                       S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                         www.gtimchd.in ; gtimchd@yahoo.co.in
Now (π / 2 − θ) ∈ [0, π]

⇒         =   –θ              …(ii)

⇒                 =




                                                                     3

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
1. If sin−1 x = π/5, for some x ∈ (−1, 1), then find the value
of cos−1 x


Solution :   Since sin−1 x + cos−1 x =

             ⇒ cos−1 x =
                 π π 3π
             =    − =
                 2 5 10




                                                                    4

                     S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                       www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
2. If sin                              , then find the value of x



Solution : sin(sin−1 1/5 + cos−1 x) = 1

            ⇒ sin−1

            ⇒

            ⇒

            ⇒x=




                                                                     5

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
4. If sin−1 x + sin−1 y =          , then find the value of

cos−1 x + cos−1 y

Solution :
    sin−1 x + sin−1 y =

⇒

⇒




                                                                     6

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
5. Solve sin−1 x ≤ cos−1 x

Solution :
  cos−1 x ≥ sin−1 x

 ⇒

 ⇒

 ⇒ sin−1 x ≤

 ⇒ −1 ≤ x ≤ sin

 ⇒x ∈




                                                                     7

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
  6. Find the range of f(x) = sin−1 x + tan−1 x + cos−1 x

Solution :
  Domain of tan−1 x is R
  But domain of sin−1 x and cos−1 x is [−1, 1]
  Hence domain of the function is [−1, 1].
  For x ∈ [−1, 1], tan−1 x ∈

  Also                          for x ∈ [−1, 1].

  Thus f(x) =                , where x ∈ [−1, 1].

  Hence range is                                  Or               .



                                                                       8

                    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                      www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Find the least and greatest value of f(x) = (sin–1 x)2 + (cos–
1
  x)2


Solution :
Here we first make the expression quadratic in either sin–1x or
cos– 1x
f(x)      = (sin–1 x)2 + (cos–1 x)2
                                   2
                π           
 = (sin−1 x)2 +  − sin−1 x ÷
                2           
                               2
                             π
 = 2(sin−1 x)2 − π sin−1 x +
                             4
=2


 =2                   +2
                                                                       9

                        S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                          www.gtimchd.in ; gtimchd@yahoo.co.in
Now least value of f(x) occurs when                                = 0,
                                                ,


hence least value of f(x) is

The greatest value of f(x) occurs when                             ,

as for that             becomes more negative which has
maximum square value




                                                                       10

                    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                      www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
8. Solve : tan−1 x + 2 cot−1 x =


Solution :

tan−1 x + 2 cot−1 x =
 ⇒ tan−1 x + cot−1 x + cot−1 x =
 ⇒

 ⇒

 ⇒

 ⇒ x = cot

 ⇒x=


                                                                  11

                   S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                     www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
9. If                                                               , then find the
value of q


Solution :
                                                     3π
 cos −1 p + cos −1 1 − p + cos −1 1 − q =
                                                     4
 ⇒

 ⇒

 ⇒

 ⇒

 ⇒


                                                                             12

                     S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                       www.gtimchd.in ; gtimchd@yahoo.co.in
⇒

⇒




                                                   13

    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
      www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
10.   sin−1                          + cos−1 (1 + b + b2 + …) =

      then prove that b =




Solution :
We know that                                 , for all x ∈ [−1, 1]

 Hence a −                          = 1 + b + b2 + ………
 L.H.S. and R.H.S. are sum of infinite G.P.
        a       1
  ⇒          =
         a 1− b
    1− − ÷
         3

                                                                     14

                    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                      www.gtimchd.in ; gtimchd@yahoo.co.in
3a   1
⇒       =
    a+3 1−b
⇒ 3a – 3ab = a + 3
⇒ 2a – 3ab = 3

⇒b=




                                                                15

                 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                   www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
 11.The value of x for                                                                   is

     (A) zero           (B) one                        (C) two                 (D) infinite
                                                                             [IITJEE 1999]

Solution :
 tan−1 x(x + 1) + sin−1 x2 + x + 1 = π / 2
       –1
 sin        x + cos– 1 x = π/2
 Write                       in terms of

 ⇒                       =
                    1
 ⇒ cos −1                    + sin−1 x2 + x + 1 = π / 2
                x2 + x + 1
            1
 ⇒                  =   x2 + x + 1
       x2 + x + 1
                                                                                   16

                              S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                                www.gtimchd.in ; gtimchd@yahoo.co.in
⇒ x2 + x + 1 = 1
⇒ x2 + x = 0
⇒ x = 0, −1




                                                                  17

                   S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                     www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Solve : cot−1 x + tan−1 3 =

Solution :
We have cot−1 x + tan−1 3 =

⇒ cot−1 x =
⇒ cot−1 x =
⇒x=3




                                                                   18

                    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                      www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
2. Solve : sec– 1x > cosec– 1x


Solution :
 sec– 1x > π/2 – sec– 1x
  ⇒ sec– 1 x > π/4
  But sec– 1 x ∈ [0, π] – {π/2}

  ⇒ π/4 < sec– 1x < π/2 or π/2 < sec– 1x < π
  ⇒     < x < ∞ or – ∞ < x < – 1




                                                                    19

                     S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                       www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
 Solve : tan– 1x > cot– 1x

Solution :
 tan– 1x > cot– 1x

⇒ tan– 1x > π/2 – tan– 1x
⇒ tan– 1x > π/4
⇒ x>1




                                                                    20

                     S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                       www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Solve : 2 cos–1 x + sin−1 x =


Solution :
Given equation is 2 cos−1 x + sin−1 x =

⇒ cos−1 x + (cos−1 x + sin−1 x) =

⇒ cos−1 x +    =

⇒ cos−1 x = 4π/3
   But cos−1 x ∈ [0, π]
   Hence equation has no real roots.



                                                                   21

                    S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                      www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Solve : (tan−1 x)2 + (cot−1 x)2 =

Solution :
 Lets first make the quadratic in tan– 1x

(tan−1 x)2 + (cot−1 x)2 =

 ⇒ (tan−1 x)2 +

         −1   2  π   −1   π 2 5 π2
 ⇒ 2(tan x) − 2 × tan x +    =
                 2        4    8
 ⇒ 2(tan−1 x)2 − π tan−1 x −

⇒ tan−1 x =       ,

   But tan−1 x ∈( – π/2, π/2

                                                                     22

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
⇒ tan−1 x = −
⇒ x = −1




                                                               23

                S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                  www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Find the value of : cos (2 cos−1 x + sin−1 x) at x =                 ,
where 0 ≤ cos−1 x ≤ π and −π/2 ≤ sin−1 x ≤ π/2 [IITJEE 1981]

Solution :
 cos (2 cos−1 x + sin−1 x)
 = cos

 = − sin (cos−1 x)
 = − sin (sin– 1          )
 =−

     At x =   , value is −                                  =−



                                                                         24

                      S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                        www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
Find the minimum value of (sec−1 x)2 + (cosec−1 x)2

Solution :
Let I = (sec−1 x)2 + (cosec−1 x)2
= (sec−1 x + cosec−1 x)2 − 2 sec−1 x⋅ cosec−1 x
  π2               π            
=    − 2 sec x  − sec −1 x ÷
             −1

  4                2            
  π2
     + 2 ( sec −1 x ) − π sec −1 x
                     2
=
  4

=                                                            −
                   2
        −1  π   π2     π2
= 2  sec x − ÷ +    ⇒1≥
            4   8      8


                                                                        25

                         S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                           www.gtimchd.in ; gtimchd@yahoo.co.in
Example:
    Solve                                        .


Solution :
         14          2 15 π
 sin−1       + sin−1      =
         |x|          |x|   2

⇒                 =

=

                        2
        −1
                2 15 
= sin        1−      ÷
                 |x| 

    for 0 ≤           ≤ 1 or |x| ≥               .

                                                                           26

                            S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                              www.gtimchd.in ; gtimchd@yahoo.co.in
2             2
  14         2 15 
⇒        =1−       ÷
  | x |÷
               |x| 

⇒ |x| = 16
⇒ x = ±16 which satisfy |x| ≥                    .




                                                                    27

                     S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                       www.gtimchd.in ; gtimchd@yahoo.co.in
⇒ x2 −
 Example:
If                               +                                          for 0 <

|x| <      , then x equals

(A) 1/2              (B) 1                (C) −1/2                 (D) −1
                                                                      [IITJEE 2001]

Solution :
     
     −1    x2 x 3               −1  2      x4 x6           π
sin  x −    +     + .... ÷ + cos  x −        +     + .... ÷ =
          2    3                          2    4          2
      −1  2  x 4 x6  π                −1    x2 x 3          
⇒ cos  x −      +      ... ÷ = − sin  x −        +      .... ÷
             2     4        2                2     4        
      −1  2  x4 x6               −1       x2 x 3       
⇒ cos  x −      +     ... ÷ = cos  x −       +     .... ÷
             2     4                      2    4       



                                                                              28

                          S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                            www.gtimchd.in ; gtimchd@yahoo.co.in
⇒ x2 −

 Both sides we have G.P. of infinite terms.
     x          x2
∴         =
      x        − x2 
  1− − ÷ 1−          ÷
      2        2 
    2x      2x2
 ⇒      =
   2 + x 2 + x2
 ⇒ 2x + x3 = 2x2 + x3
 ⇒ x(x − 1) = 0
 ⇒ x = 0, 1 but 0 < |x| <

 ⇒ x=1


                                                                      29

                       S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095
                         www.gtimchd.in ; gtimchd@yahoo.co.in

More Related Content

What's hot

Konsep Bilangan Berpangkat
Konsep Bilangan BerpangkatKonsep Bilangan Berpangkat
Konsep Bilangan Berpangkat
Vita Fitriani
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
akabaka12
 
March 17, 2015
March 17, 2015March 17, 2015
March 17, 2015
khyps13
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
akabaka12
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012
masyati
 

What's hot (18)

Number theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-newNumber theoretic-rsa-chailos-new
Number theoretic-rsa-chailos-new
 
A study on number theory and its applications
A study on number theory and its applicationsA study on number theory and its applications
A study on number theory and its applications
 
Binomial theorem for any index
Binomial theorem for any indexBinomial theorem for any index
Binomial theorem for any index
 
Number Theory for Security
Number Theory for SecurityNumber Theory for Security
Number Theory for Security
 
some unusual questions for class xi year
some unusual questions for class xi year some unusual questions for class xi year
some unusual questions for class xi year
 
Konsep Bilangan Berpangkat
Konsep Bilangan BerpangkatKonsep Bilangan Berpangkat
Konsep Bilangan Berpangkat
 
Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009Engr 213 midterm 1a sol 2009
Engr 213 midterm 1a sol 2009
 
S.Y.B.Sc. 2013 Pattern Old question Paper
S.Y.B.Sc. 2013 Pattern Old question PaperS.Y.B.Sc. 2013 Pattern Old question Paper
S.Y.B.Sc. 2013 Pattern Old question Paper
 
15.2 factoring x2+bx+c
15.2 factoring x2+bx+c15.2 factoring x2+bx+c
15.2 factoring x2+bx+c
 
March 17, 2015
March 17, 2015March 17, 2015
March 17, 2015
 
Modular arithmetic
Modular arithmeticModular arithmetic
Modular arithmetic
 
Factoring
FactoringFactoring
Factoring
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
Up1 math t 2012
Up1 math t 2012Up1 math t 2012
Up1 math t 2012
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
VECTOR CALCULUS
VECTOR CALCULUS VECTOR CALCULUS
VECTOR CALCULUS
 
cyclic_code.pdf
cyclic_code.pdfcyclic_code.pdf
cyclic_code.pdf
 
Mathematics
MathematicsMathematics
Mathematics
 

Viewers also liked (13)

Collage Portraits 2014
Collage Portraits 2014Collage Portraits 2014
Collage Portraits 2014
 
Sattvik studio
Sattvik studioSattvik studio
Sattvik studio
 
Sattvik studio
Sattvik studioSattvik studio
Sattvik studio
 
Satellite manufacturers and subcontractors
Satellite manufacturers and subcontractorsSatellite manufacturers and subcontractors
Satellite manufacturers and subcontractors
 
satellite design requirements
satellite design requirementssatellite design requirements
satellite design requirements
 
2013 blooming books
2013 blooming books2013 blooming books
2013 blooming books
 
Monster Calls Activity
Monster Calls ActivityMonster Calls Activity
Monster Calls Activity
 
Doctor Who Tardis Library Display
Doctor Who Tardis Library DisplayDoctor Who Tardis Library Display
Doctor Who Tardis Library Display
 
#bookfaces at the BW Library
#bookfaces at the BW Library#bookfaces at the BW Library
#bookfaces at the BW Library
 
Esclerose lateral amiotrófica pronto [2525]
Esclerose lateral amiotrófica pronto [2525]Esclerose lateral amiotrófica pronto [2525]
Esclerose lateral amiotrófica pronto [2525]
 
Satellite orbit and constellation design
Satellite orbit and constellation designSatellite orbit and constellation design
Satellite orbit and constellation design
 
Rassegna stampa 30.03.13
Rassegna stampa 30.03.13Rassegna stampa 30.03.13
Rassegna stampa 30.03.13
 
MargueriteRepolaResume2016PDF
MargueriteRepolaResume2016PDFMargueriteRepolaResume2016PDF
MargueriteRepolaResume2016PDF
 

Similar to Matrix part 3.2 (1)

Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
indu psthakur
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
Krishna Gali
 
Pembahasan ujian nasional matematika ipa sma 2013
Pembahasan ujian nasional matematika ipa sma 2013Pembahasan ujian nasional matematika ipa sma 2013
Pembahasan ujian nasional matematika ipa sma 2013
mardiyanto83
 
Bt0063 mathematics fot it
Bt0063 mathematics fot itBt0063 mathematics fot it
Bt0063 mathematics fot it
nimbalkarks
 
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
Demetrio Ccesa Rayme
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
olziich
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
dynx24
 

Similar to Matrix part 3.2 (1) (20)

Maths04
Maths04Maths04
Maths04
 
Sect5 6
Sect5 6Sect5 6
Sect5 6
 
Assessments for class xi
Assessments  for class  xi Assessments  for class  xi
Assessments for class xi
 
Sample question paper 2 with solution
Sample question paper 2 with solutionSample question paper 2 with solution
Sample question paper 2 with solution
 
Improper integral
Improper integralImproper integral
Improper integral
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
2014 st josephs geelong spec maths
2014 st josephs geelong spec maths2014 st josephs geelong spec maths
2014 st josephs geelong spec maths
 
Integer_Functions .pdf
Integer_Functions .pdfInteger_Functions .pdf
Integer_Functions .pdf
 
Calculo Diferencial
Calculo DiferencialCalculo Diferencial
Calculo Diferencial
 
Pembahasan ujian nasional matematika ipa sma 2013
Pembahasan ujian nasional matematika ipa sma 2013Pembahasan ujian nasional matematika ipa sma 2013
Pembahasan ujian nasional matematika ipa sma 2013
 
Bt0063 mathematics fot it
Bt0063 mathematics fot itBt0063 mathematics fot it
Bt0063 mathematics fot it
 
11365.integral 2
11365.integral 211365.integral 2
11365.integral 2
 
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007Sesión de aprendizaje  - Ecuación cuadrática algebra pre-u  ccesa007
Sesión de aprendizaje - Ecuación cuadrática algebra pre-u ccesa007
 
1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio1.1_The_Definite_Integral.pdf odjoqwddoio
1.1_The_Definite_Integral.pdf odjoqwddoio
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
deveratives integrals
deveratives integralsdeveratives integrals
deveratives integrals
 
Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715Fundamentals of Transport Phenomena ChE 715
Fundamentals of Transport Phenomena ChE 715
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
1.trigonometry Further Mathematics Zimbabwe Zimsec Cambridge
 

Matrix part 3.2 (1)

  • 1. (i) , for all x ∈ [−1, 1] (ii) , for all x ∈ R (iii) for all x ∈ (−∞, −1] ∪ [1, ∞) 1 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 2. PROOF: (i) Let sin−1 x = θ where θ ∈ [−π/2, π/2] =θ ⇒− ⇒0 ⇒ ∈ [0, π] Now, =θ ⇒ x = sin θ ⇒x= ⇒ cos−1 x = 2 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 3. Now (π / 2 − θ) ∈ [0, π] ⇒ = –θ …(ii) ⇒ = 3 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 4. Example: 1. If sin−1 x = π/5, for some x ∈ (−1, 1), then find the value of cos−1 x Solution : Since sin−1 x + cos−1 x = ⇒ cos−1 x = π π 3π = − = 2 5 10 4 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 5. Example: 2. If sin , then find the value of x Solution : sin(sin−1 1/5 + cos−1 x) = 1 ⇒ sin−1 ⇒ ⇒ ⇒x= 5 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 6. Example: 4. If sin−1 x + sin−1 y = , then find the value of cos−1 x + cos−1 y Solution : sin−1 x + sin−1 y = ⇒ ⇒ 6 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 7. Example: 5. Solve sin−1 x ≤ cos−1 x Solution : cos−1 x ≥ sin−1 x ⇒ ⇒ ⇒ sin−1 x ≤ ⇒ −1 ≤ x ≤ sin ⇒x ∈ 7 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 8. Example: 6. Find the range of f(x) = sin−1 x + tan−1 x + cos−1 x Solution : Domain of tan−1 x is R But domain of sin−1 x and cos−1 x is [−1, 1] Hence domain of the function is [−1, 1]. For x ∈ [−1, 1], tan−1 x ∈ Also for x ∈ [−1, 1]. Thus f(x) = , where x ∈ [−1, 1]. Hence range is Or . 8 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 9. Example: Find the least and greatest value of f(x) = (sin–1 x)2 + (cos– 1 x)2 Solution : Here we first make the expression quadratic in either sin–1x or cos– 1x f(x) = (sin–1 x)2 + (cos–1 x)2 2 π  = (sin−1 x)2 +  − sin−1 x ÷ 2  2 π = 2(sin−1 x)2 − π sin−1 x + 4 =2 =2 +2 9 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 10. Now least value of f(x) occurs when = 0, , hence least value of f(x) is The greatest value of f(x) occurs when , as for that becomes more negative which has maximum square value 10 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 11. Example: 8. Solve : tan−1 x + 2 cot−1 x = Solution : tan−1 x + 2 cot−1 x = ⇒ tan−1 x + cot−1 x + cot−1 x = ⇒ ⇒ ⇒ ⇒ x = cot ⇒x= 11 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 12. Example: 9. If , then find the value of q Solution : 3π cos −1 p + cos −1 1 − p + cos −1 1 − q = 4 ⇒ ⇒ ⇒ ⇒ ⇒ 12 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 13. ⇒ ⇒ 13 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 14. Example: 10. sin−1 + cos−1 (1 + b + b2 + …) = then prove that b = Solution : We know that , for all x ∈ [−1, 1] Hence a − = 1 + b + b2 + ……… L.H.S. and R.H.S. are sum of infinite G.P. a 1 ⇒ =  a 1− b 1− − ÷  3 14 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 15. 3a 1 ⇒ = a+3 1−b ⇒ 3a – 3ab = a + 3 ⇒ 2a – 3ab = 3 ⇒b= 15 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 16. Example: 11.The value of x for is (A) zero (B) one (C) two (D) infinite [IITJEE 1999] Solution : tan−1 x(x + 1) + sin−1 x2 + x + 1 = π / 2 –1 sin x + cos– 1 x = π/2 Write in terms of ⇒ = 1 ⇒ cos −1 + sin−1 x2 + x + 1 = π / 2 x2 + x + 1 1 ⇒ = x2 + x + 1 x2 + x + 1 16 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 17. ⇒ x2 + x + 1 = 1 ⇒ x2 + x = 0 ⇒ x = 0, −1 17 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 18. Example: Solve : cot−1 x + tan−1 3 = Solution : We have cot−1 x + tan−1 3 = ⇒ cot−1 x = ⇒ cot−1 x = ⇒x=3 18 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 19. Example: 2. Solve : sec– 1x > cosec– 1x Solution : sec– 1x > π/2 – sec– 1x ⇒ sec– 1 x > π/4 But sec– 1 x ∈ [0, π] – {π/2} ⇒ π/4 < sec– 1x < π/2 or π/2 < sec– 1x < π ⇒ < x < ∞ or – ∞ < x < – 1 19 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 20. Example: Solve : tan– 1x > cot– 1x Solution : tan– 1x > cot– 1x ⇒ tan– 1x > π/2 – tan– 1x ⇒ tan– 1x > π/4 ⇒ x>1 20 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 21. Example: Solve : 2 cos–1 x + sin−1 x = Solution : Given equation is 2 cos−1 x + sin−1 x = ⇒ cos−1 x + (cos−1 x + sin−1 x) = ⇒ cos−1 x + = ⇒ cos−1 x = 4π/3 But cos−1 x ∈ [0, π] Hence equation has no real roots. 21 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 22. Example: Solve : (tan−1 x)2 + (cot−1 x)2 = Solution : Lets first make the quadratic in tan– 1x (tan−1 x)2 + (cot−1 x)2 = ⇒ (tan−1 x)2 + −1 2 π −1 π 2 5 π2 ⇒ 2(tan x) − 2 × tan x + = 2 4 8 ⇒ 2(tan−1 x)2 − π tan−1 x − ⇒ tan−1 x = , But tan−1 x ∈( – π/2, π/2 22 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 23. ⇒ tan−1 x = − ⇒ x = −1 23 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 24. Example: Find the value of : cos (2 cos−1 x + sin−1 x) at x = , where 0 ≤ cos−1 x ≤ π and −π/2 ≤ sin−1 x ≤ π/2 [IITJEE 1981] Solution : cos (2 cos−1 x + sin−1 x) = cos = − sin (cos−1 x) = − sin (sin– 1 ) =− At x = , value is − =− 24 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 25. Example: Find the minimum value of (sec−1 x)2 + (cosec−1 x)2 Solution : Let I = (sec−1 x)2 + (cosec−1 x)2 = (sec−1 x + cosec−1 x)2 − 2 sec−1 x⋅ cosec−1 x π2 π  = − 2 sec x  − sec −1 x ÷ −1 4 2  π2 + 2 ( sec −1 x ) − π sec −1 x 2 = 4 = − 2  −1 π π2 π2 = 2  sec x − ÷ + ⇒1≥  4 8 8 25 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 26. Example: Solve . Solution : 14 2 15 π sin−1 + sin−1 = |x| |x| 2 ⇒ = = 2 −1  2 15  = sin 1− ÷  |x|  for 0 ≤ ≤ 1 or |x| ≥ . 26 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 27. 2 2  14   2 15  ⇒ =1−  ÷  | x |÷   |x|  ⇒ |x| = 16 ⇒ x = ±16 which satisfy |x| ≥ . 27 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 28. ⇒ x2 − Example: If + for 0 < |x| < , then x equals (A) 1/2 (B) 1 (C) −1/2 (D) −1 [IITJEE 2001] Solution :  −1 x2 x 3  −1  2 x4 x6  π sin  x − + + .... ÷ + cos  x − + + .... ÷ =  2 3   2 4  2 −1  2 x 4 x6  π −1  x2 x 3  ⇒ cos  x − + ... ÷ = − sin  x − + .... ÷  2 4  2  2 4  −1  2 x4 x6  −1  x2 x 3  ⇒ cos  x − + ... ÷ = cos  x − + .... ÷  2 4   2 4  28 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in
  • 29. ⇒ x2 − Both sides we have G.P. of infinite terms. x x2 ∴ =  x  − x2  1− − ÷ 1−  ÷  2  2  2x 2x2 ⇒ = 2 + x 2 + x2 ⇒ 2x + x3 = 2x2 + x3 ⇒ x(x − 1) = 0 ⇒ x = 0, 1 but 0 < |x| < ⇒ x=1 29 S.C.O. 42, Sec. 20 – C chd. 3258041, 4280095 www.gtimchd.in ; gtimchd@yahoo.co.in