SlideShare a Scribd company logo
1 of 43
Buenos Aires, junio de 2016
Eduardo Poggi
Agenda
 EBL
 Inductive vs Analytical learning
 Perfect Domain Theories
 Examples
 Problems
 Summary
¿EBL?
 Learning general problem-solving techniques by observing and analyzing
human solutions to specific problems.
 EBL attempts to formulate a generalization after observing only a single (few)
example.
 Introduced by Gerald De Jong in 1981.
 Aplicado originalmente en robótica y resolución de problemas.
The EBL Hypothesis
 EBL is based on the hypothesis that an intelligent system can learn a
general concept after observing only a single example.
 By understanding why an example is a member of a concept, can
learn the essential properties of the concept.
 EBL uses prior knowledge to analyze or explain each training
example in order to infer what properties are relevant to the target
function and which are irrelevant.
Learning by Generalizing Explanations
 Given
 Goal concept (e.g., some predicate calculus statement)
 Training example (facts)
 Domain Theory (inference rules)
 Operationality Criterion
 Given this four inputs, the task is to determine a generalization of the
training example that is sufficient concept definition for the goal concept and
that satisfies the operationality criteria.
 The operationality criterion requires that the final concept definition be
described in terms of the predicates used to describe the training example.
Learning algorithms like neural networks,
decision trees, inductive logic programming,
etc. require a good number of examples to
be able to do good predictions.
dataset
Learning
Algorithm hypothesis
Dataset must be sufficiently large
Inductive learning
We don’t need a large dataset if besides taking
examples as input, the learning algorithm can take
prior knowledge.
dataset
Learning
Algorithm hypothesis
Dataset does not need to be large
Prior knowledge
Analytical learning
Prior knowledge is used to reduce the size of the
hypothesis space.
It analyzes each example to infer which features are
relevant and which ones are irrelevant.
Hypothesis
Space HS
Prior
knowledge Reduced HS
Explanation-based learning
Example, learning to play chess
 Suppose we want to learn a concept
like “what is a board position in which
black will lose the queen in x moves?”.
 Chess is a complex game. Each piece
can occupy many positions.
 We would need many examples to
learn this concept.
 But humans can learn these type of
concepts with very few examples.
Why?
Example, learning to play chess
 Humans can analyze an example and use prior knowledge
related to legal moves.
 From there it can generalize with only few examples.
 Reasoning like: “Because the white king is attacking both
king and queen; black must avoid check, letting white
capture the queen”
Example, learning to play chess
 What is the prior knowledge involved in playing chess?
 It is knowledge about the rules of chess:
 Legal moves for the pieces.
 Players alternate moves in games.
 To win you must capture the opponent’s king.
 Inductive Learning
 Input: HS, D
 Output: hypothesis h / h is consistent with D
 Analytical Learning
 Input: HS, D, BK
 Output: hypothesis h / h is consistent with D and BK
 (-h no se infiere de BK)
 With:
 HS: Hypothesis Space
 D: Training Set
 BK: Background knowledge (domain theory)
Inductive and Analytical Learning
Standard Approach to EBL
goal
facts
After Learning (go directly from facts to solution):
goal
facts
An Explanation (detailed proof of goal)
The EBL Process
Example Analytical Learning
 Examples: Dataset where each
instance is a pair of objects
represented by the following
predicates: Color, Volume, Owner,
Material, Density, On. Example:
 On(Obj1,Obj2)
 Type(Obj1,Box)
 Owner(Obj2,Louise)
 Density(Obj1,0.3)
 Color(Obj1,Red)
 Material(Obj1,Cardboard)
 Type(Obj2,Endtable)
 Color(Obj2,Blue)
 Material(Obj2,Wood)
 Volume(Obj1,2)
 Owner(Obj1,Fred)
Example, Analytical Learning
 Domain theory
 SafeToStack(x,y)  ¬Fragile(y)
 SafeToStack(x,y)  Lighter(x,y)
 Lighter(x,y)  Weight(x,wx), Weight(y,wy), LessThan(wx,wy)
 Weight(p,w)  Density(p,d), Volume(p,v), Equal(w, times(d,v))
 …
 Fragile(x)  Material(x,Glass)
Example, Analytical Learning
 Hypothesis space: set of Horn clause rules.
 The head of each rule has the predicate SafeToStack.
 The body of each rule is based on the instances and the predicates
LessThan, Equal, Greater and plus, minus and times.
 Example: SafeToStack(x,y)  Volume(x,vx) ^ Volume(y,vy) ^
LessThan(vx,vy)
Example, Analytical Learning
 Determine
 Hypothesis consistent with both the training examples and the
domain theory
 Notes
 The domain theory refers to predicates not contained in the
examples.
 The domain theory is sufficient to prove the example is true.
Perfect Domain Theories
 A domain theory is correct if each statement is true.
 A domain theory is complete if it covers every positive
example of the instance space (ie: a target concept and
instance space).
 A perfect domain theory is correct and complete.
Perfect Domain Theories
 Examples of where to find perfect domain theories:
 Rules of chess
 Examples of where not to find perfect domain theories:
 SafetoStack problem
 In general, only learning problems with perfect domain
theories is considered.
EBL Algorithm
 We consider an algorithm that has the following
properties:
 It is a sequential covering algorithm considering the data
incrementally
 For each positive example not covered by the current rules it
forms a new rule by:
 Explain how training example satisfies target concept, in terms of
domain theory.
 Analyze the explanation to find a the most general conditions under
which this explanation holds.
 Refine the current hypothesis by adding a new Horn Clause rule to
cover the example.
Explanation
Explanation
 There might be more than one explanation to the
example. In that case one or all explanations may be
used.
 An explanation is obtained using a backward chaining
search as is done by Prolog. Prolog-EBG stops when it
finds the first proof.
Analyze
 Many features appear in an example. Of them, how many
are truly relevant?
 We consider as relevant those features that show in the
explanation.
 Example:
 Relevant feature: Density
 Irrelevant feature: Owner
Analyze
 Taking the leaf nodes of the explanation and substituting
variables x and y for Obj1, and Obj2:
 SafeToStack(x,y)  Volume(x,2), Density(x,0.3),
Type(y,Endtable)
 Remove features that are independent of x and y such as
Equal(0.6,times(2,0.3)) and LessThan(0.6,5).
 The rule is now more general and can serve to explain
other instances matching the rule.
 A more general form of generalization (called
“regression”) finds the most general rule explaining the
example.
Refine
 The current hypothesis is the set of Horn clauses that we
have constructed up to this point.
 Using sequential covering we keep adding more rules,
thus refining our hypothesis.
 A new instance is negative if it is not covered by any rule.
Computing the weakest preimage of explanation
Discovering new features
 The PROLOG-EBG system described can formulate new
features that are not in the training examples:
 Example: Volume * Density > 5, derived from the
domain theory.
Inductive Bias in Explanation-Based Learning
 What is the inductive bias of explanation based learning?
 The hypothesis h follows deductively from D (database) and B
(Background knowledge)
 Bias: prefer small sets of maximally general Horn Clauses
Problems with EBL
 The number of control rules that must be learned is very
large.
 If the control rules are many, much time will be spent
looking for the best rule.
 Utility analysis is used to determine what rules to keep
and what rules to forget.
 Another problem with EBL is that it is sometimes difficult
to create an explanation for the target concept.
 For example, in chess, learning a concept like: “states for
which operator A leads to a solution”
 The search here grows exponentially.
Summary
 Different from inductive learning, analytical learning looks
for a hypothesis that fit the background knowledge and
covers the training examples.
 Explanation based learning is one kind of analytical
learning that divides into three steps:
 Explain the target value for the current example
 Analyze the explanation (generalize)
 Refine the hypothesis
 PROLOG-EBG constructs intermediate features after
analyzing examples.
 Explanation based learning can be used to find search
control rules.
 Depend on a perfect domain theory.
Componentes del EBL
Componentes del EBL
 Resolución del problema:
 Utilizar el dominio y el ejemplo para llegar al objetivo.
 Análisis de la traza:
 Analizamos la solución para obtener una explicación.
 Usamos criterios:
 Criterio de relevancia: aquella información que forme parte en el camino de llegar a la solución.
 Criterio de operatividad: aquellas reglas que se activan directamente.
 Filtrado:
 Filtra la información de la traza para llegar a la explicación.
 Generalización:
 Sustituye las constantes por variables de forma que la expresión siga siendo válida.
 El método más usado es el algoritmo de regresión de objetivos.
 Regresionar una fórmula f a través de una regla r consiste en determinar las condiciones
necesarias y suficientes bajo las cuales puede usarse la regla r para obtener f.
 Construir nueva información:
 La información que construimos puede ser:
 Reglas de dominio que expresaran nuevas definiciones de conceptos en las que la parte derecha de la
regla serán las combinaciones necesarias y suficientes del árbol de explicación generalizado mientras
que la raíz del mismo será la parte izquierda de la regla.
 Reglas de control que se construyen de forma similar.
 Incorporar:
 Las nuevas reglas hay que incorporarlas a la base de conocimiento, pero a veces se obtienen
demasiadas reglas para introducir en nuestro sistema.
 Hay que llegar a una solución de compromiso (velocidad de inferencia o base de afirmaciones
mayor).
Ejemplo 1
Ejemplo 1
Ejemplo 2
 Concepto objetivo: TAZA
 Definición funcional:
 TAZA(x) <- RECIPIENTE_ABIERTO(x) ^ ESTABLE(x) ^ ALZABLE(x)
 Ejemplo de entrenamiento:
 TIENE_PARTE(OBJ1, CONCAVIDAD1)
 COLOR(OBJ1, ROJO)
 CONCAVIDAD(CONCAVIDAD1)
 ORIENTADA_HACIA_ARRIBA(CONCAVIDAD1)
 TIENE_DUEÑO(OBJ1, SAM)
 TIENE_PARTE(OBJ1, FONDO1)
 FONDO(FONDO1)
 PLANO(FONDO1)
 LIGERO(OBJ1)
 TIENE_PARTE(OBJ1, ASA1)
 ASA(ASA1)
 LONGITUD(ASA1, 5)
Ejemplo 2
 Teoría del dominio:
 ESTABLE(OBJ) <- TIENE_PARTE(OBJ, F) ^ FONDO(F) ^
PLANO(F)
 RECIPIENTE_ABIERTO(OBJ) <- TIENE_PARTE(OBJ, C) ^
CONCAVIDAD(C) ^ ORIENTADA_HACIA_ARRIBA(C)
 ALZABLE(OBJ) <- TIENE_PARTE(OBJ, A) ^ ASA(A) ^
LIGERO(OBJ)
 Criterio operacional:
 El concepto tiene que definirse en términos de los predicados
usados en el ejemplo.
Ejemplo 2
 El proceso de aprendizaje tiene 2 pasos:
 Se usa la teoría del dominio para construir una explicación
(demostración) de que el ejemplo de entrenamiento es un
ejemplo positivo del concepto objetivo. Los nodos terminales del
árbol de explicación tienen que ser operativos
 Transformar los nodos terminales en un conjunto de condiciones
suficientes para que la demostración siga siendo válida
(generalizar la explicación de acuerdo con la teoría del dominio)
Ejemplo 2
 Resultado del proceso de aprendizaje:
 TIENE_PARTE(X, Y) ^ CONCAVIDAD(Y) ^
ORIENTADA_HACIA_ARRIBA(Y) ^ TIENE_PARTE(X, Z) ^
FONDO(Z) ^ PLANO(Z) ^ TIENE_PARTE(X, W) ^ ASA(W) ^
LIGERO(X)
Problemas de EBL
 Cuando el EBL se aplica a dominios reales surgen un
conjunto de problemas que se deben resolver, estos se
pueden agrupar en dos clases:
 Problemas derivados del nuevo conocimiento incorporado a la
teoría (reformulación de la teoría)
 Problemas derivados de la calidad de la teoría (revisión de la
teoría)
Problemas de EBL – Reformulación de la teoría
 La incorporación sistemática de nuevo conocimiento lleva
a la degradación de la teoría debido a dos causas:
 Baja frecuencia de aplicación: es posible que el nuevo
conocimiento se use pocas veces.
 Alto costo de cotejar las reglas: el comprobar si el nuevo
conocimiento es útil es muy costoso.
 Esto produce una reducción de la eficiencia del sistema.
 Como solución se puede reescribir la teoría para reducir
el costo de cotejo de las reglas, evaluar la frecuencia de
uso de las reglas y eliminar las que se usen pocas veces.
Problemas de EBL – Revisión de la teoría
 La teoría que se utiliza no permite solucionar
correctamente los problemas y se debe corregir:
 Teorías incompletas: la teoría no es capaz de solucionar todos los
problemas por falta de reglas adecuadas. Se puede completar la
teoría por métodos inductivos
 Teorías incorrectas: la teoría da soluciones incorrectas a algunos
problemas. Se puede intentar determinar que reglas están mal y
eliminarlas o corregirlas inductivamente.
 Teorías inconsistentes: llegan a soluciones contradictorias.
 Teorías intratables: para poder solucionar un problema necesitan
mas recursos que los que se dispone.
eduardopoggi@yahoo.com.ar
eduardo-poggi
http://ar.linkedin.com/in/eduardoapoggi
https://www.facebook.com/eduardo.poggi
@eduardoapoggi

More Related Content

What's hot

Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learningbutest
 
NLP - Sentiment Analysis
NLP - Sentiment AnalysisNLP - Sentiment Analysis
NLP - Sentiment AnalysisRupak Roy
 
https://www.slideshare.net/amaresimachew/hot-topics-132093738
https://www.slideshare.net/amaresimachew/hot-topics-132093738https://www.slideshare.net/amaresimachew/hot-topics-132093738
https://www.slideshare.net/amaresimachew/hot-topics-132093738Assosa University
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401butest
 
Ai sem1 2012-13-w2-representation
Ai sem1 2012-13-w2-representationAi sem1 2012-13-w2-representation
Ai sem1 2012-13-w2-representationAzimah Hashim
 
Introduction to Text Mining
Introduction to Text Mining Introduction to Text Mining
Introduction to Text Mining Rupak Roy
 
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...ijaia
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.pptbutest
 
Survey of Analogy Reasoning
Survey of Analogy ReasoningSurvey of Analogy Reasoning
Survey of Analogy ReasoningSang-Kyun Kim
 
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEA FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEijnlc
 
Word vectorization(embedding) with nnlm
Word vectorization(embedding) with nnlmWord vectorization(embedding) with nnlm
Word vectorization(embedding) with nnlmhyunsung lee
 
Reasoning Over Knowledge Base
Reasoning Over Knowledge BaseReasoning Over Knowledge Base
Reasoning Over Knowledge BaseShubham Agarwal
 
Artificial intelligence 2 Part 1
Artificial intelligence 2 Part 1Artificial intelligence 2 Part 1
Artificial intelligence 2 Part 1SURBHI SAROHA
 
Neural Network in Knowledge Bases
Neural Network in Knowledge BasesNeural Network in Knowledge Bases
Neural Network in Knowledge BasesKushal Arora
 
Topic Modeling - NLP
Topic Modeling - NLPTopic Modeling - NLP
Topic Modeling - NLPRupak Roy
 
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEA FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEkevig
 
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...IJCSEA Journal
 

What's hot (20)

Introduction to Machine Learning
Introduction to Machine LearningIntroduction to Machine Learning
Introduction to Machine Learning
 
NLP - Sentiment Analysis
NLP - Sentiment AnalysisNLP - Sentiment Analysis
NLP - Sentiment Analysis
 
https://www.slideshare.net/amaresimachew/hot-topics-132093738
https://www.slideshare.net/amaresimachew/hot-topics-132093738https://www.slideshare.net/amaresimachew/hot-topics-132093738
https://www.slideshare.net/amaresimachew/hot-topics-132093738
 
Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401Machine Learning: Foundations Course Number 0368403401
Machine Learning: Foundations Course Number 0368403401
 
Ai sem1 2012-13-w2-representation
Ai sem1 2012-13-w2-representationAi sem1 2012-13-w2-representation
Ai sem1 2012-13-w2-representation
 
Introduction to Text Mining
Introduction to Text Mining Introduction to Text Mining
Introduction to Text Mining
 
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...
AN IMPLEMENTATION, EMPIRICAL EVALUATION AND PROPOSED IMPROVEMENT FOR BIDIRECT...
 
Artificial Intelligence - Reasoning in Uncertain Situations
Artificial Intelligence - Reasoning in Uncertain SituationsArtificial Intelligence - Reasoning in Uncertain Situations
Artificial Intelligence - Reasoning in Uncertain Situations
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
 
Survey of Analogy Reasoning
Survey of Analogy ReasoningSurvey of Analogy Reasoning
Survey of Analogy Reasoning
 
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEA FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
 
Lesson 19
Lesson 19Lesson 19
Lesson 19
 
Word vectorization(embedding) with nnlm
Word vectorization(embedding) with nnlmWord vectorization(embedding) with nnlm
Word vectorization(embedding) with nnlm
 
Reasoning Over Knowledge Base
Reasoning Over Knowledge BaseReasoning Over Knowledge Base
Reasoning Over Knowledge Base
 
Artificial intelligence 2 Part 1
Artificial intelligence 2 Part 1Artificial intelligence 2 Part 1
Artificial intelligence 2 Part 1
 
Nn kb
Nn kbNn kb
Nn kb
 
Neural Network in Knowledge Bases
Neural Network in Knowledge BasesNeural Network in Knowledge Bases
Neural Network in Knowledge Bases
 
Topic Modeling - NLP
Topic Modeling - NLPTopic Modeling - NLP
Topic Modeling - NLP
 
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTEA FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
A FILM SYNOPSIS GENRE CLASSIFIER BASED ON MAJORITY VOTE
 
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...
AN ALGORITHM FOR OPTIMIZED SEARCHING USING NON-OVERLAPPING ITERATIVE NEIGHBOR...
 

Viewers also liked (17)

C kef-1-istoria st
C kef-1-istoria stC kef-1-istoria st
C kef-1-istoria st
 
Hola
HolaHola
Hola
 
Ejemplo prestigio social
Ejemplo prestigio socialEjemplo prestigio social
Ejemplo prestigio social
 
Maintenance practices Rotating Components of Piston Engines
Maintenance practices Rotating Components of Piston EnginesMaintenance practices Rotating Components of Piston Engines
Maintenance practices Rotating Components of Piston Engines
 
компенсация
компенсациякомпенсация
компенсация
 
Mas allá de la pantalla
Mas allá de la pantallaMas allá de la pantalla
Mas allá de la pantalla
 
Curriculum vitae
Curriculum vitaeCurriculum vitae
Curriculum vitae
 
Ejercicos matematicas tercero 1
Ejercicos matematicas tercero 1Ejercicos matematicas tercero 1
Ejercicos matematicas tercero 1
 
Seminole Gas and Electric
Seminole Gas and ElectricSeminole Gas and Electric
Seminole Gas and Electric
 
[YMC] Nội san Sức trẻ số 35
[YMC] Nội san Sức trẻ số 35[YMC] Nội san Sức trẻ số 35
[YMC] Nội san Sức trẻ số 35
 
Segundo mapa conceptual
Segundo mapa conceptualSegundo mapa conceptual
Segundo mapa conceptual
 
Civil engineering2
Civil engineering2Civil engineering2
Civil engineering2
 
Storyboard
StoryboardStoryboard
Storyboard
 
Accessing ebl
Accessing eblAccessing ebl
Accessing ebl
 
Top 10 Things I learned in PR Practicum
Top 10 Things I learned in PR PracticumTop 10 Things I learned in PR Practicum
Top 10 Things I learned in PR Practicum
 
Angu doce encrenqueiro
Angu doce encrenqueiroAngu doce encrenqueiro
Angu doce encrenqueiro
 
Pintura de cuerpos
Pintura de cuerposPintura de cuerpos
Pintura de cuerpos
 

Similar to Poggi analytics - ebl - 1

Learning sets of rules, Sequential Learning Algorithm,FOIL
Learning sets of rules, Sequential Learning Algorithm,FOILLearning sets of rules, Sequential Learning Algorithm,FOIL
Learning sets of rules, Sequential Learning Algorithm,FOILPavithra Thippanaik
 
ML_Lecture_11 (1).ppt
ML_Lecture_11 (1).pptML_Lecture_11 (1).ppt
ML_Lecture_11 (1).pptJashuPrabha
 
Analytical learning
Analytical learningAnalytical learning
Analytical learningswapnac12
 
Learning Agents by Prof G. Tecuci
Learning Agents by Prof G. TecuciLearning Agents by Prof G. Tecuci
Learning Agents by Prof G. Tecucibutest
 
Learning Agents by Prof G. Tecuci
Learning Agents by Prof G. TecuciLearning Agents by Prof G. Tecuci
Learning Agents by Prof G. Tecucibutest
 
MACHINE LEARNING-LEARNING RULE
MACHINE LEARNING-LEARNING RULEMACHINE LEARNING-LEARNING RULE
MACHINE LEARNING-LEARNING RULEDrBindhuM
 
artificial intelligence.pptx
artificial intelligence.pptxartificial intelligence.pptx
artificial intelligence.pptxSabthamiS1
 
Basics of Machine Learning
Basics of Machine LearningBasics of Machine Learning
Basics of Machine Learningbutest
 
Learning set of rules
Learning set of rulesLearning set of rules
Learning set of rulesswapnac12
 
New_ML_Lecture_9.ppt
New_ML_Lecture_9.pptNew_ML_Lecture_9.ppt
New_ML_Lecture_9.pptEmmaMaria6
 

Similar to Poggi analytics - ebl - 1 (20)

Learning sets of rules, Sequential Learning Algorithm,FOIL
Learning sets of rules, Sequential Learning Algorithm,FOILLearning sets of rules, Sequential Learning Algorithm,FOIL
Learning sets of rules, Sequential Learning Algorithm,FOIL
 
ML_Lecture_11 (1).ppt
ML_Lecture_11 (1).pptML_Lecture_11 (1).ppt
ML_Lecture_11 (1).ppt
 
Analytical learning
Analytical learningAnalytical learning
Analytical learning
 
ppt
pptppt
ppt
 
ppt
pptppt
ppt
 
syllabus-CBR.pdf
syllabus-CBR.pdfsyllabus-CBR.pdf
syllabus-CBR.pdf
 
Learning Agents by Prof G. Tecuci
Learning Agents by Prof G. TecuciLearning Agents by Prof G. Tecuci
Learning Agents by Prof G. Tecuci
 
Learning Agents by Prof G. Tecuci
Learning Agents by Prof G. TecuciLearning Agents by Prof G. Tecuci
Learning Agents by Prof G. Tecuci
 
MACHINE LEARNING-LEARNING RULE
MACHINE LEARNING-LEARNING RULEMACHINE LEARNING-LEARNING RULE
MACHINE LEARNING-LEARNING RULE
 
artificial intelligence.pptx
artificial intelligence.pptxartificial intelligence.pptx
artificial intelligence.pptx
 
Basics of Machine Learning
Basics of Machine LearningBasics of Machine Learning
Basics of Machine Learning
 
Learning set of rules
Learning set of rulesLearning set of rules
Learning set of rules
 
S10
S10S10
S10
 
S10
S10S10
S10
 
New_ML_Lecture_9.ppt
New_ML_Lecture_9.pptNew_ML_Lecture_9.ppt
New_ML_Lecture_9.ppt
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
G
GG
G
 
Cwkaa 2010
Cwkaa 2010Cwkaa 2010
Cwkaa 2010
 
Bloom's Taxonomy
Bloom's Taxonomy Bloom's Taxonomy
Bloom's Taxonomy
 

More from Gaston Liberman

Poggi analytics - tm - 1b
Poggi   analytics - tm - 1bPoggi   analytics - tm - 1b
Poggi analytics - tm - 1bGaston Liberman
 
Poggi analytics - distance - 1a
Poggi   analytics - distance - 1aPoggi   analytics - distance - 1a
Poggi analytics - distance - 1aGaston Liberman
 
Poggi analytics - sentiment - 1
Poggi   analytics - sentiment - 1Poggi   analytics - sentiment - 1
Poggi analytics - sentiment - 1Gaston Liberman
 
Poggi analytics - geneticos - 1
Poggi   analytics - geneticos - 1Poggi   analytics - geneticos - 1
Poggi analytics - geneticos - 1Gaston Liberman
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1aGaston Liberman
 
Poggi analytics - inference - 1a
Poggi   analytics - inference - 1aPoggi   analytics - inference - 1a
Poggi analytics - inference - 1aGaston Liberman
 
Poggi analytics - ensamble - 1b
Poggi   analytics - ensamble - 1bPoggi   analytics - ensamble - 1b
Poggi analytics - ensamble - 1bGaston Liberman
 
Poggi analytics - trees - 1e
Poggi   analytics - trees - 1ePoggi   analytics - trees - 1e
Poggi analytics - trees - 1eGaston Liberman
 
Poggi analytics - concepts - 1a
Poggi   analytics - concepts - 1aPoggi   analytics - concepts - 1a
Poggi analytics - concepts - 1aGaston Liberman
 
Poggi analytics - ml - 1d
Poggi   analytics - ml - 1dPoggi   analytics - ml - 1d
Poggi analytics - ml - 1dGaston Liberman
 
Poggi analytics - intro - 1c
Poggi   analytics - intro - 1cPoggi   analytics - intro - 1c
Poggi analytics - intro - 1cGaston Liberman
 
Poggi analytics - bayes - 1a
Poggi   analytics - bayes - 1aPoggi   analytics - bayes - 1a
Poggi analytics - bayes - 1aGaston Liberman
 
Poggi analytics - clustering - 1
Poggi   analytics - clustering - 1Poggi   analytics - clustering - 1
Poggi analytics - clustering - 1Gaston Liberman
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1Gaston Liberman
 

More from Gaston Liberman (15)

Taller bd8
Taller bd8Taller bd8
Taller bd8
 
Poggi analytics - tm - 1b
Poggi   analytics - tm - 1bPoggi   analytics - tm - 1b
Poggi analytics - tm - 1b
 
Poggi analytics - distance - 1a
Poggi   analytics - distance - 1aPoggi   analytics - distance - 1a
Poggi analytics - distance - 1a
 
Poggi analytics - sentiment - 1
Poggi   analytics - sentiment - 1Poggi   analytics - sentiment - 1
Poggi analytics - sentiment - 1
 
Poggi analytics - geneticos - 1
Poggi   analytics - geneticos - 1Poggi   analytics - geneticos - 1
Poggi analytics - geneticos - 1
 
Poggi analytics - star - 1a
Poggi   analytics - star - 1aPoggi   analytics - star - 1a
Poggi analytics - star - 1a
 
Poggi analytics - inference - 1a
Poggi   analytics - inference - 1aPoggi   analytics - inference - 1a
Poggi analytics - inference - 1a
 
Poggi analytics - ensamble - 1b
Poggi   analytics - ensamble - 1bPoggi   analytics - ensamble - 1b
Poggi analytics - ensamble - 1b
 
Poggi analytics - trees - 1e
Poggi   analytics - trees - 1ePoggi   analytics - trees - 1e
Poggi analytics - trees - 1e
 
Poggi analytics - concepts - 1a
Poggi   analytics - concepts - 1aPoggi   analytics - concepts - 1a
Poggi analytics - concepts - 1a
 
Poggi analytics - ml - 1d
Poggi   analytics - ml - 1dPoggi   analytics - ml - 1d
Poggi analytics - ml - 1d
 
Poggi analytics - intro - 1c
Poggi   analytics - intro - 1cPoggi   analytics - intro - 1c
Poggi analytics - intro - 1c
 
Poggi analytics - bayes - 1a
Poggi   analytics - bayes - 1aPoggi   analytics - bayes - 1a
Poggi analytics - bayes - 1a
 
Poggi analytics - clustering - 1
Poggi   analytics - clustering - 1Poggi   analytics - clustering - 1
Poggi analytics - clustering - 1
 
Henrion poggi analytics - ann - 1
Henrion poggi   analytics - ann - 1Henrion poggi   analytics - ann - 1
Henrion poggi analytics - ann - 1
 

Recently uploaded

Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsApsara Of India
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...lizamodels9
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesKeppelCorporation
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Servicecallgirls2057
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...ictsugar
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedKaiNexus
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCRashishs7044
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607dollysharma2066
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionMintel Group
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaoncallgirls2057
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportMintel Group
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation SlidesKeppelCorporation
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...lizamodels9
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024christinemoorman
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessSeta Wicaksana
 

Recently uploaded (20)

Cash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call GirlsCash Payment 9602870969 Escort Service in Udaipur Call Girls
Cash Payment 9602870969 Escort Service in Udaipur Call Girls
 
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
Lowrate Call Girls In Sector 18 Noida ❤️8860477959 Escorts 100% Genuine Servi...
 
Annual General Meeting Presentation Slides
Annual General Meeting Presentation SlidesAnnual General Meeting Presentation Slides
Annual General Meeting Presentation Slides
 
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort ServiceCall US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
Call US-88OO1O2216 Call Girls In Mahipalpur Female Escort Service
 
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...Global Scenario On Sustainable  and Resilient Coconut Industry by Dr. Jelfina...
Global Scenario On Sustainable and Resilient Coconut Industry by Dr. Jelfina...
 
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… AbridgedLean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
Lean: From Theory to Practice — One City’s (and Library’s) Lean Story… Abridged
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
8447779800, Low rate Call girls in New Ashok Nagar Delhi NCR
 
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607FULL ENJOY Call girls in Paharganj Delhi | 8377087607
FULL ENJOY Call girls in Paharganj Delhi | 8377087607
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
Future Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted VersionFuture Of Sample Report 2024 | Redacted Version
Future Of Sample Report 2024 | Redacted Version
 
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City GurgaonCall Us 📲8800102216📞 Call Girls In DLF City Gurgaon
Call Us 📲8800102216📞 Call Girls In DLF City Gurgaon
 
India Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample ReportIndia Consumer 2024 Redacted Sample Report
India Consumer 2024 Redacted Sample Report
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
Keppel Ltd. 1Q 2024 Business Update  Presentation SlidesKeppel Ltd. 1Q 2024 Business Update  Presentation Slides
Keppel Ltd. 1Q 2024 Business Update Presentation Slides
 
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
Call Girls In Connaught Place Delhi ❤️88604**77959_Russian 100% Genuine Escor...
 
The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024The CMO Survey - Highlights and Insights Report - Spring 2024
The CMO Survey - Highlights and Insights Report - Spring 2024
 
Organizational Structure Running A Successful Business
Organizational Structure Running A Successful BusinessOrganizational Structure Running A Successful Business
Organizational Structure Running A Successful Business
 

Poggi analytics - ebl - 1

  • 1. Buenos Aires, junio de 2016 Eduardo Poggi
  • 2. Agenda  EBL  Inductive vs Analytical learning  Perfect Domain Theories  Examples  Problems  Summary
  • 3. ¿EBL?  Learning general problem-solving techniques by observing and analyzing human solutions to specific problems.  EBL attempts to formulate a generalization after observing only a single (few) example.  Introduced by Gerald De Jong in 1981.  Aplicado originalmente en robótica y resolución de problemas.
  • 4. The EBL Hypothesis  EBL is based on the hypothesis that an intelligent system can learn a general concept after observing only a single example.  By understanding why an example is a member of a concept, can learn the essential properties of the concept.  EBL uses prior knowledge to analyze or explain each training example in order to infer what properties are relevant to the target function and which are irrelevant.
  • 5. Learning by Generalizing Explanations  Given  Goal concept (e.g., some predicate calculus statement)  Training example (facts)  Domain Theory (inference rules)  Operationality Criterion  Given this four inputs, the task is to determine a generalization of the training example that is sufficient concept definition for the goal concept and that satisfies the operationality criteria.  The operationality criterion requires that the final concept definition be described in terms of the predicates used to describe the training example.
  • 6. Learning algorithms like neural networks, decision trees, inductive logic programming, etc. require a good number of examples to be able to do good predictions. dataset Learning Algorithm hypothesis Dataset must be sufficiently large Inductive learning
  • 7. We don’t need a large dataset if besides taking examples as input, the learning algorithm can take prior knowledge. dataset Learning Algorithm hypothesis Dataset does not need to be large Prior knowledge Analytical learning
  • 8. Prior knowledge is used to reduce the size of the hypothesis space. It analyzes each example to infer which features are relevant and which ones are irrelevant. Hypothesis Space HS Prior knowledge Reduced HS Explanation-based learning
  • 9. Example, learning to play chess  Suppose we want to learn a concept like “what is a board position in which black will lose the queen in x moves?”.  Chess is a complex game. Each piece can occupy many positions.  We would need many examples to learn this concept.  But humans can learn these type of concepts with very few examples. Why?
  • 10. Example, learning to play chess  Humans can analyze an example and use prior knowledge related to legal moves.  From there it can generalize with only few examples.  Reasoning like: “Because the white king is attacking both king and queen; black must avoid check, letting white capture the queen”
  • 11. Example, learning to play chess  What is the prior knowledge involved in playing chess?  It is knowledge about the rules of chess:  Legal moves for the pieces.  Players alternate moves in games.  To win you must capture the opponent’s king.
  • 12.  Inductive Learning  Input: HS, D  Output: hypothesis h / h is consistent with D  Analytical Learning  Input: HS, D, BK  Output: hypothesis h / h is consistent with D and BK  (-h no se infiere de BK)  With:  HS: Hypothesis Space  D: Training Set  BK: Background knowledge (domain theory) Inductive and Analytical Learning
  • 13. Standard Approach to EBL goal facts After Learning (go directly from facts to solution): goal facts An Explanation (detailed proof of goal)
  • 15. Example Analytical Learning  Examples: Dataset where each instance is a pair of objects represented by the following predicates: Color, Volume, Owner, Material, Density, On. Example:  On(Obj1,Obj2)  Type(Obj1,Box)  Owner(Obj2,Louise)  Density(Obj1,0.3)  Color(Obj1,Red)  Material(Obj1,Cardboard)  Type(Obj2,Endtable)  Color(Obj2,Blue)  Material(Obj2,Wood)  Volume(Obj1,2)  Owner(Obj1,Fred)
  • 16. Example, Analytical Learning  Domain theory  SafeToStack(x,y)  ¬Fragile(y)  SafeToStack(x,y)  Lighter(x,y)  Lighter(x,y)  Weight(x,wx), Weight(y,wy), LessThan(wx,wy)  Weight(p,w)  Density(p,d), Volume(p,v), Equal(w, times(d,v))  …  Fragile(x)  Material(x,Glass)
  • 17. Example, Analytical Learning  Hypothesis space: set of Horn clause rules.  The head of each rule has the predicate SafeToStack.  The body of each rule is based on the instances and the predicates LessThan, Equal, Greater and plus, minus and times.  Example: SafeToStack(x,y)  Volume(x,vx) ^ Volume(y,vy) ^ LessThan(vx,vy)
  • 18. Example, Analytical Learning  Determine  Hypothesis consistent with both the training examples and the domain theory  Notes  The domain theory refers to predicates not contained in the examples.  The domain theory is sufficient to prove the example is true.
  • 19. Perfect Domain Theories  A domain theory is correct if each statement is true.  A domain theory is complete if it covers every positive example of the instance space (ie: a target concept and instance space).  A perfect domain theory is correct and complete.
  • 20. Perfect Domain Theories  Examples of where to find perfect domain theories:  Rules of chess  Examples of where not to find perfect domain theories:  SafetoStack problem  In general, only learning problems with perfect domain theories is considered.
  • 21. EBL Algorithm  We consider an algorithm that has the following properties:  It is a sequential covering algorithm considering the data incrementally  For each positive example not covered by the current rules it forms a new rule by:  Explain how training example satisfies target concept, in terms of domain theory.  Analyze the explanation to find a the most general conditions under which this explanation holds.  Refine the current hypothesis by adding a new Horn Clause rule to cover the example.
  • 23. Explanation  There might be more than one explanation to the example. In that case one or all explanations may be used.  An explanation is obtained using a backward chaining search as is done by Prolog. Prolog-EBG stops when it finds the first proof.
  • 24. Analyze  Many features appear in an example. Of them, how many are truly relevant?  We consider as relevant those features that show in the explanation.  Example:  Relevant feature: Density  Irrelevant feature: Owner
  • 25. Analyze  Taking the leaf nodes of the explanation and substituting variables x and y for Obj1, and Obj2:  SafeToStack(x,y)  Volume(x,2), Density(x,0.3), Type(y,Endtable)  Remove features that are independent of x and y such as Equal(0.6,times(2,0.3)) and LessThan(0.6,5).  The rule is now more general and can serve to explain other instances matching the rule.  A more general form of generalization (called “regression”) finds the most general rule explaining the example.
  • 26. Refine  The current hypothesis is the set of Horn clauses that we have constructed up to this point.  Using sequential covering we keep adding more rules, thus refining our hypothesis.  A new instance is negative if it is not covered by any rule.
  • 27. Computing the weakest preimage of explanation
  • 28. Discovering new features  The PROLOG-EBG system described can formulate new features that are not in the training examples:  Example: Volume * Density > 5, derived from the domain theory.
  • 29. Inductive Bias in Explanation-Based Learning  What is the inductive bias of explanation based learning?  The hypothesis h follows deductively from D (database) and B (Background knowledge)  Bias: prefer small sets of maximally general Horn Clauses
  • 30. Problems with EBL  The number of control rules that must be learned is very large.  If the control rules are many, much time will be spent looking for the best rule.  Utility analysis is used to determine what rules to keep and what rules to forget.  Another problem with EBL is that it is sometimes difficult to create an explanation for the target concept.  For example, in chess, learning a concept like: “states for which operator A leads to a solution”  The search here grows exponentially.
  • 31. Summary  Different from inductive learning, analytical learning looks for a hypothesis that fit the background knowledge and covers the training examples.  Explanation based learning is one kind of analytical learning that divides into three steps:  Explain the target value for the current example  Analyze the explanation (generalize)  Refine the hypothesis  PROLOG-EBG constructs intermediate features after analyzing examples.  Explanation based learning can be used to find search control rules.  Depend on a perfect domain theory.
  • 33. Componentes del EBL  Resolución del problema:  Utilizar el dominio y el ejemplo para llegar al objetivo.  Análisis de la traza:  Analizamos la solución para obtener una explicación.  Usamos criterios:  Criterio de relevancia: aquella información que forme parte en el camino de llegar a la solución.  Criterio de operatividad: aquellas reglas que se activan directamente.  Filtrado:  Filtra la información de la traza para llegar a la explicación.  Generalización:  Sustituye las constantes por variables de forma que la expresión siga siendo válida.  El método más usado es el algoritmo de regresión de objetivos.  Regresionar una fórmula f a través de una regla r consiste en determinar las condiciones necesarias y suficientes bajo las cuales puede usarse la regla r para obtener f.  Construir nueva información:  La información que construimos puede ser:  Reglas de dominio que expresaran nuevas definiciones de conceptos en las que la parte derecha de la regla serán las combinaciones necesarias y suficientes del árbol de explicación generalizado mientras que la raíz del mismo será la parte izquierda de la regla.  Reglas de control que se construyen de forma similar.  Incorporar:  Las nuevas reglas hay que incorporarlas a la base de conocimiento, pero a veces se obtienen demasiadas reglas para introducir en nuestro sistema.  Hay que llegar a una solución de compromiso (velocidad de inferencia o base de afirmaciones mayor).
  • 36. Ejemplo 2  Concepto objetivo: TAZA  Definición funcional:  TAZA(x) <- RECIPIENTE_ABIERTO(x) ^ ESTABLE(x) ^ ALZABLE(x)  Ejemplo de entrenamiento:  TIENE_PARTE(OBJ1, CONCAVIDAD1)  COLOR(OBJ1, ROJO)  CONCAVIDAD(CONCAVIDAD1)  ORIENTADA_HACIA_ARRIBA(CONCAVIDAD1)  TIENE_DUEÑO(OBJ1, SAM)  TIENE_PARTE(OBJ1, FONDO1)  FONDO(FONDO1)  PLANO(FONDO1)  LIGERO(OBJ1)  TIENE_PARTE(OBJ1, ASA1)  ASA(ASA1)  LONGITUD(ASA1, 5)
  • 37. Ejemplo 2  Teoría del dominio:  ESTABLE(OBJ) <- TIENE_PARTE(OBJ, F) ^ FONDO(F) ^ PLANO(F)  RECIPIENTE_ABIERTO(OBJ) <- TIENE_PARTE(OBJ, C) ^ CONCAVIDAD(C) ^ ORIENTADA_HACIA_ARRIBA(C)  ALZABLE(OBJ) <- TIENE_PARTE(OBJ, A) ^ ASA(A) ^ LIGERO(OBJ)  Criterio operacional:  El concepto tiene que definirse en términos de los predicados usados en el ejemplo.
  • 38. Ejemplo 2  El proceso de aprendizaje tiene 2 pasos:  Se usa la teoría del dominio para construir una explicación (demostración) de que el ejemplo de entrenamiento es un ejemplo positivo del concepto objetivo. Los nodos terminales del árbol de explicación tienen que ser operativos  Transformar los nodos terminales en un conjunto de condiciones suficientes para que la demostración siga siendo válida (generalizar la explicación de acuerdo con la teoría del dominio)
  • 39. Ejemplo 2  Resultado del proceso de aprendizaje:  TIENE_PARTE(X, Y) ^ CONCAVIDAD(Y) ^ ORIENTADA_HACIA_ARRIBA(Y) ^ TIENE_PARTE(X, Z) ^ FONDO(Z) ^ PLANO(Z) ^ TIENE_PARTE(X, W) ^ ASA(W) ^ LIGERO(X)
  • 40. Problemas de EBL  Cuando el EBL se aplica a dominios reales surgen un conjunto de problemas que se deben resolver, estos se pueden agrupar en dos clases:  Problemas derivados del nuevo conocimiento incorporado a la teoría (reformulación de la teoría)  Problemas derivados de la calidad de la teoría (revisión de la teoría)
  • 41. Problemas de EBL – Reformulación de la teoría  La incorporación sistemática de nuevo conocimiento lleva a la degradación de la teoría debido a dos causas:  Baja frecuencia de aplicación: es posible que el nuevo conocimiento se use pocas veces.  Alto costo de cotejar las reglas: el comprobar si el nuevo conocimiento es útil es muy costoso.  Esto produce una reducción de la eficiencia del sistema.  Como solución se puede reescribir la teoría para reducir el costo de cotejo de las reglas, evaluar la frecuencia de uso de las reglas y eliminar las que se usen pocas veces.
  • 42. Problemas de EBL – Revisión de la teoría  La teoría que se utiliza no permite solucionar correctamente los problemas y se debe corregir:  Teorías incompletas: la teoría no es capaz de solucionar todos los problemas por falta de reglas adecuadas. Se puede completar la teoría por métodos inductivos  Teorías incorrectas: la teoría da soluciones incorrectas a algunos problemas. Se puede intentar determinar que reglas están mal y eliminarlas o corregirlas inductivamente.  Teorías inconsistentes: llegan a soluciones contradictorias.  Teorías intratables: para poder solucionar un problema necesitan mas recursos que los que se dispone.

Editor's Notes

  1. What is machine learning?
  2. What is machine learning?
  3. What is machine learning?
  4. What is machine learning?
  5. What is machine learning?
  6. What is machine learning?
  7. What is machine learning?
  8. What is machine learning?
  9. What is machine learning?
  10. What is machine learning?
  11. What is machine learning?
  12. What is machine learning?
  13. What is machine learning?
  14. What is machine learning?
  15. What is machine learning?
  16. What is machine learning?
  17. What is machine learning?
  18. What is machine learning?
  19. What is machine learning?
  20. What is machine learning?
  21. What is machine learning?
  22. What is machine learning?
  23. What is machine learning?
  24. What is machine learning?
  25. What is machine learning?
  26. What is machine learning?
  27. What is machine learning?
  28. 43