SlideShare a Scribd company logo
1 of 49
H2P Energy
Large Scale Hydrogen
Production in Alberta
ENCH 531 WINTER 2014
LAWSON MACKENZIE, T’IEN MONTALVO, STEVEN RIETZE
1
Project Summary
•Goal: SMR plant capable of delivering 50,000 Nm3 of hydrogen per hour
•Inlet Feed Requirements:
• Natural Gas:
• 18,600 Nm3 per hour for reaction
• 10,400 Nm3 per hour for heating
• Water:
• 41,000 L per hour for reaction (consumed)
• 61,000 L per hour for cooling (recycled)
•Feed Costs:
• Water: $0.5/1000 gallons (minimal)
• Natural Gas: $4.51/GJ ($4.76/MMBtu, $4.76/MSCF)
• Annual Natural Gas Costs: $45.4 Million
• 64% for reformer feed
• 36% for combustion fuel
•Total Annual Operating Cost: $62.3 Million
• Natural Gas accounts for 73% of total
•Price of Hydrogen based on a DCFRR of 15%: $5.27/MSCF ($2.09/kg)
2
Alberta Water Use
3
Alberta Environment Information Centre. Water for life: current and future water use in Alberta. Alberta Environment: Edmonton, Alberta, 2007.1
Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132
4
Conventional Crude Oil Supply and Demand
Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132
5
Unconventional Crude Oil Supply and Demand
Crude Oil Export: Keystone Pipeline System
• Made up of several sections, most note worthy is
Keystone XL (currently unapproved for construction)
• Once complete Keystone XL will have capacity to flow
830,000 bbl/day of crude oil from Alberta to USA
• Combined Keystone exports from Alberta will then be
approximately 1,290,000 bbl/day, accounting for
52.2% of total crude oil production for 2012 (2,470,000
bbl/day)
• By 2022 total Alberta oil production expected to reach
4,270,000 bbl/day
• Combined Keystone exports would then account for
30.2% of provincial oil production
Image Source: TransCanada Corporation. Keystone XL Pipeline: About the Project.
http://keystone-xl.com/about/the-project (accessed Jan 26, 2014)3
6
Crude Oil Export: Railways
7
• Offer a cost competitive
alternative to pipeline transport
(although slightly more
expensive)
• Require minimal retro-fitting at
stations to accommodate
loading/unloading of crude oil
• Can also be used to access crude
oil markets not yet directly
available by pipeline
Image Source: Trains.
http://christophermartinphotography.com/cat
egory/trains (accessed Mar 26, 2014)4
Alberta Refinery Locations and Capacities
Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132
8
Alberta Crude Oil Production, Upgrading, and Export
• If crude bitumen oversupply (approx. 210,000 bbl/day) upgraded/refined
in Alberta, the minimum amount of hydrogen required is 428,400 kg/day
(2.04 kg of hydrogen/bbl)6
• Given target hydrogen production for proposed plant is 100,000 kg/day,
amount of hydrogen required is more than 4 times greater
• Therefore, significant opportunity exists for creation of hydrogen
production facilities in Alberta
• Best location for hydrogen production plant is next to 1 of 3 refineries
immediately north of Edmonton
• Given current combined hydrogen requirement for Alberta (4 refineries
total) is approximately 929,220 kg/day
9
Project Economics
10
Plant Life [years] 30
Fixed Capital Investment 67,524,469$
Working Capital @ 7% of FCI 4,726,713$
Start-up Expenses @ 2% of FCI 1,350,489$
Total Capital Investment 73,601,671$
Salvage Value @ 10% of FCI 6,752,447$
Depreciation (straight line) [$/year] 2,025,734$
Tax Rate 25%
Operational Days per year 350
Total Expenses per year 62,264,149$
Hydrogen Production [kg/year] 3.65E+07
Hydrogen Production [Sm3/year] 4.10E+08
Hydrogen Production [1000SCF/year] 1.45E+07
Price of Hydrogen [$/kg] 2.09
Price of Hydrogen [$/1000SCF] 5.27
MARR 15.00%
Average ROI 14.91%
Total NPW 0$
DCFRR 15.00%
Payout Period [years] 6.15
Project Economics: Sensitivity Analysis
11
Feed Preconditioning
12
M-I SWACO. H2S Removal through Fixed Bed Technologies. 9th Biogas Conference, Montreal, QC, May 25, 2011.5
Furnace w/Reformer Tubes & Heat Exchange Coils
Hot Flue Gases
Reformer
Inlet
Preheat
Steam
Coil
BFW
Preheat
Combustion
Air Preheat
CH4 + H2O ↔ 3H2 + CO ΔH°rxn = 206 kJ/mol
13
Thysen Krupp Uhde GmbH. The proprietary Uhde top-fired steam reformer. https://procurement.uhde-
web.de/competence/technologies/ammonia/techprofile.en.epl?profile=1&pagetype=1&pagenum=1 (accessed March 6th , 2014)6
Water-Gas Shift Reactor
14
CO + H2O
H2 + CO2
ΔH°rxn = -40 kJ/mol
Pressure Swing Adsorption
15
Caloric Anlagenbau GmbH. Pressure Swing Adsorption. http://www.caloric.com/upload/Products/H2Generation/HC_1000.jpg (accessed April 28th, 2014).7
Pressure Swing Adsorption (cont’d)
16
Linde AG. Hydrogen Recovery by Pressure Swing Adsorption. http://www.linde-engineering.com/internet.global.lindeengineering.global/en/images/HA_H_1_1_e_12_150dpi19_6130.pdf
(accessed September 30, 2013).8
.
17
H2P Energy
Title
Project # Drawing #
Date
Scale
Drawer
Checker
Sheet
TM
LM, SR
24/3/2014
NONE ENCH 531 511-A 1 of 1
Natural Gas Pretreatment Units,
Syngas Phase Separators and
Heat Exchange Network
E-101
Heat Exchanger
2.7 MW
E-102 V-103R-101
Sulfur Scavenging
Reactor
84" I.D. x 30'-0" S/S
R-102
Sulfur Scavenging
Reactor
84" I.D. x 30'-0" S/S
C-101 E-103 E-104 V-102
R-101 R-102
FC
AC
SC
TC
LC
LC
TC
FC
PC
PC
AC AC
Treated
Water
Natural
Gas
To Process
Sewer
To Process
Sewer
Cooling
Water
511-C
511-B
511-B
511-B
Hot Syngas
from WGS
Reactor
Warm Treated
Water to BFW
Tank
Treated Natural
Gas to Reformer
Furnace Boiler Feed
Water
Boiler Feed
Water
To PSA
Units
Cooling
Water
Return
C-101
E-101
V-102
V-103
E-102 E-103
E-104
Heat Exchanger
7.9 MW
Heat Exchanger
6.5 MW
Heat Exchanger
1.9 MW
Water KO (2)
72" I.D. x 9'-11" T/T
Water KO (3)
72" I.D. x 7'-8" T/T
NG Compressor
12,000 CFM @ 2000
kPaa ΔP
1
23
4
5
18
19 20
21
22
23
24
PC
LC
To Process
Sewer
V-101
V-101
NG – Water KO
60" I.D. x 6'-11" T/T
18
H2P Energy
Title
Project # Drawing #
Date
Scale
Drawer
Checker
Sheet
TM
LM, SR
24/3/2014
NONE ENCH 531 511-B 1 of 1
Steam-Methane
Reforming Furnace and
Water-Gas Shift Reactor
E-105
Heat Exchanger
17.1 MW
V-104
BFW Tank
1.6 m I.D. x 6.5 m T/T
R-103
Furnace & Steam-
Methane Reformer
11.3 MW
R-104
Water-Gas Shift
Reactor
1.5 m I.D. x 3.0 m T/T
F-101
Air Fan
73,000 CFM
@ 1.3 kPaa ΔP
F-102
Flue Gas Fan
91,000 CFM
@ 0.3 kPaa ΔP
ST-101
Flue Gas Stack
184" I.D. x 26'-0" T/T
TC
LC
FC
FC
SC
FC
TT
PT
AT
FCRC
PC
FT
PC FC
RC
FT
ATTT
511-A
511-A
511-A
Warm BFW
Fuel Gas
Hot Syngas
to Heat
Exchangers
Treated
Natural Gas
Export
Steam
Process
Steam
Reformer
Feed
Flue Gases
Air
P-101
BFW Pump
33.6 CMH @ 150
kPaa ΔP
P-102
BFW Pump
17.3 CMH @ 110
kPaa ΔP
E-105
F-101
F-102
P-101
P-102
R-103
R-104
ST-101
V-104
Reformer
Syngas
Effluent
4
5
6
7
8
9
10
11
12
13
14
TTTT
15
16
18
511-C
PSA Tail Gas
19
511-A
H2P Energy
Title
Project # Drawing #
Date
Scale
Drawer
Checker
Sheet
TM
LM, SR
24/3/2014
NONE ENCH 531 511-C 1 of 1
Pressure Swing
Adsorption Unit
Cooled
Syngas
from Heat
Exchangers
PSA Tail Gas
V-105 V-106 V-107 V-108
V-105
PSA
Vessel (1)
3.5 m I.D. x 10.6 m T/T
V-106
PSA
Vessel (2)
3.5 m I.D. x 10.6 m T/T
V-107
PSA
Vessel (3)
3.5 m I.D. x 10.6 m T/T
V-108
PSA
Vessel (4)
3.5 m I.D. x 10.6 m T/T
Hydrogen
V-109
PSA Tail Gas Buffer Tank
72" I.D. x 7'-8" T/T
V-109
LC
PC
PC FT
To Process
Sewer
TT
PT
AT
TT
PT
AT
TT
PT
AT
TT
PT
AT
24
25
26
27
511-B
20
Steam Reforming of Methane Reaction Kinetics
• CH4 + H2O ↔ 3H2 + CO ΔH°rxn = 206 kJ/mol (Reaction 1)
• Global Rate Expression:
• 𝑟1 = 127 𝑃 exp −
15800
𝑅𝑇
𝑥 𝐶𝐻4
−
𝑥 𝐻2
3
𝑥 𝐶𝑂 𝑃2
𝐾1 𝑥 𝐻2 𝑂
units [kmol/kPa0.5 m3] (Equation 1)
• 𝐾1 = 10000 exp −
26830
𝑇
+ 30.114 units [kPa2] (Equation 2)
• Yielded approximately 80.6% conversion of methane
21
Water-Gas Shift Reaction Kinetics
• CO + H2O ↔ H2 + CO2 ΔH°rxn = -40 kJ/mol (Reaction 2)
• Global Rate Expression:
• 𝑟2 = exp −
25000
𝑅𝑇
+ 8.02 𝑃 𝑥 𝐶𝑂 −
𝑥 𝐻2 𝑥 𝐶𝑂2
𝐾2 𝑥 𝐻2 𝑂
units [kmol/kPa0.5 m3] (Equation 3)
• 𝐾2 = exp
4577.8
𝑇
− 4.33 (Equation 4)
• Yielded approximately 78.0% conversion of carbon monoxide
22
Dry Reforming of Methane: An Assessment
23
CO2 + CH4 ↔ 2H2 + 2CO ΔH°rxn = 247 kJ/mol
Feed
Pretreatment
Reforming
Water-Gas
Shift
Pressure Swing
Adsorption
Waste Heat
Recovery
Water
Natural
Gas
Steam
PSA Tail
Gas
Export Steam
Hydrogen
Carbon
Dioxide
Flue Gases
19,000
Sm3/h
Steam
50,000
Nm3/h
Hydrogen Purge
Gas
9,000
kg CO2/h
16,000
kg CO2/h
22,000
kg CO2/h
TOTALS
SMR: 22,000 + 9,000 = 31,000 kg CO2/h
DMR: 16,000 kg CO2/h
40,000
L/h
Reverse Water-Gas Shift Reaction (RWGS)
24
H2 + CO2 ↔ H2O+ CO ΔH°rxn = 40 kJ/mol
Oyama ST, Hacarlioglu P, Gu Y, Lee D. Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and
membrane reactors. International Journal of Hydrogen Energy, 2012; 37:10444-10450.9
Catalyst Deactivation Due to Coking
25
CH4 ↔ 2H2+ C ΔH°rxn = 75 kJ/mol
2CO ↔ CO2+ C ΔH°rxn = -172 kJ/mol
Kahle L.C.S., Roussiere T., Maier L., Herrera Delgado K., Wasserschaff G., Schunk S.A., and Deutschmann O. Methane Dry Reforming at Higt Temperatures and Elevated
Pressure: Impact of Gas-Phase Reactions. I&EC research: Industrial & Engineering Chemistry Research. 2013: 52(34), 11920-11930. 10
Products Derived from Syngas
26
Ricci M, Perego C. From syngas to fuels and chemicals: chemical and biotechnological routes.
http://www.eurobioref.org/Summer_School/Lectures_Slides/day6/L17_M.Ricci.pdf (accessed December 3, 2013).11
Conclusion
27
• Steam methane reforming is a reliable and time-tested technology to produce
hydrogen
• Given current economic conditions in the province, it is recommended that at
least one but not more than four SMR plants capable of producing 50,000
Nm3 of hydrogen per hour be constructed
• Based on a DCFRR of 15% and an average natural gas price of $4.51 per GJ,
the recommended sales price of hydrogen is $5.27 per MSCF ($2.09 per kg)
• Due to current technical limitations and a lack of reduction in net carbon
emissions, dry reforming of methane is not economically or environmentally
feasible at this time
References
1. Alberta Environment Information Centre. Water for life: current and future water use in Alberta. Alberta Environment:
Edmonton, Alberta, 2007.
2. Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022;
ST98-2013; EUB: Calgary, AB, 2013
3. TransCanada Corporation. Keystone XL Pipeline: About the Project. http://keystone-xl.com/about/the-project (accessed Jan
26, 2014)
4. Trains. http://christophermartinphotography.com/category/trains (accessed Mar 26, 2014)
5. M-I SWACO. H2S Removal through Fixed Bed Technologies. 9th Biogas Conference, Montreal, QC, May 25, 2011.
6. Thysen Krupp Uhde GmbH. The proprietary Uhde top-fired steam reformer. https://procurement.uhde-
web.de/competence/technologies/ammonia/techprofile.en.epl?profile=1&pagetype=1&pagenum=1 (accessed March 6th ,
2014)
7. Caloric Anlagenbau GmbH. Pressure Swing Adsorption.
http://www.caloric.com/upload/Products/H2Generation/HC_1000.jpg (accessed April 28th, 2014).
8. Linde AG. Hydrogen Recovery by Pressure Swing Adsorption. http://www.linde-
engineering.com/internet.global.lindeengineering.global/en/images/HA_H_1_1_e_12_150dpi19_6130.pdf (accessed
September 30, 2013).
9. Oyama ST, Hacarlioglu P, Gu Y, Lee D. Dry reforming of methane has no future for hydrogen production: Comparison with
steam reforming at high pressure in standard and membrane reactors. International Journal of Hydrogen Energy, 2012;
37:10444-10450.
10. Kahle L.C.S., Roussiere T., Maier L., Herrera Delgado K., Wasserschaff G., Schunk S.A., and Deutschmann O. Methane Dry
Reforming at Higt Temperatures and Elevated Pressure: Impact of Gas-Phase Reactions. I&EC research: Industrial &
Engineering Chemistry Research. 2013: 52(34), 11920-11930.
11. Ricci M, Perego C. From syngas to fuels and chemicals: chemical and biotechnological routes.
http://www.eurobioref.org/Summer_School/Lectures_Slides/day6/L17_M.Ricci.pdf (accessed December 3, 2013).
28
Block Flow Diagram - SMR
29
Feed
Pretreatment
Steam
Methane
Reforming
Water-Gas
Shift
Pressure Swing
Adsorption
Waste Heat
Recovery
Natural
Gas
Steam
PSA Tail
Gas
Export Steam
Hydrogen
Flue Gases
Hydrogen Purge
Gas
Block Flow Diagram - DMR
30
Feed
Pretreatment
Dry Methane
Reforming
Water-Gas
Shift
Pressure Swing
Adsorption
Waste Heat
Recovery
Natural
Gas
Steam
PSA Tail
Gas
Export Steam
Carbon
Dioxide
Flue Gases
Hydrogen Purge
Gas
31
H 2P En er g y DWG NO:
800-MAST-A01
A2
A2
PDT
803
PDI
803
PDT
812
PDI
812
L.O.
L.O.
AT
804
AT
808
A2
L.O.
L.O.
A2
PDT
807
PDI
807
LT
812D/P
LIC
812
LAH
812
LAL
812
LV
812
LY
812
P
I
LSLL
812
LALL
812
LSHH
812
LAHH
812
LG
812
A2
A02C2
PV
812
PT
812
PI
812
PAH
812
PAL
812
PI
812
L.O.
L.O.
A2
A02 C2
PIC
812
PY
812
P
I
PV
800
PT
800
PI
800
PAH
800
PAL
800
PI
800
PIC
800
P
I
PY
800
AT
801
AIC
801
FY
801
FIC
801
FY
801
P
I
FV
801
PLC
FY
810
FY
811
FY
809
FY
806
FY
802
805
FY
F.C.
F.C.
F.O.
F.O.
PSV
814
PSV
813
PSV
815
SKID #1
SKID #2
1/4"WT-004-N-A2
R-8800 R-8801
V-8800
LLLL 14"
LLL 15"
NLL 15.5"
HLL 15.7"
HHLL 18"
1'00"
PROCESS
WATER
NATURAL
GAS
TO PROCESS
SEWER
TO WARM
FLARE
TO C-8800A/B
TO WARM
FLARE
TO WARM
FLARE
FROM C-8800A/B
NG COMPRESSOR
R-8800
NG PRETREATER
84" I.D. x 30'-0" S/S
29 PSIA @ 77°F
60,000 LBS
SULFATREAT LOADING
R-8801
NG PRETREATER
84" I.D. x 30'-0" S/S
29 PSIA @ 77°F
60,000 LBS
SULFATREAT LOADING
V-8800
NG PHASE SEPARATOR
60" I.D. x 6'-11" T/T
29 PSIA @ 25°C
NG COMPRESSOR
20"
MW
20"
MW
20"
MW
20"
MW
12"HG-001-N-A2
12"HG-002-N-A2
1/4"WT-005-N-A2
12"HG-007-N-A2
12"HG-008-N-A2
12"HG-009-N-A2
12"HG-010-N-A2
12"HG-011-N-A2
12"HG-012-N-A2
14"HG-013-1"HC-C2
1/4"DY-014-N-A2 1/4"DY-015-N-A2
14"HG-017-1"HC-C2
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
PLOT SCALE:
1=1
SCALE:
NONE
AFE: LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
NG PRETREATERS AND PHASE
SEPARATOR #1
REVISIONS:
LINE DESIGNATION
AA”BB-CCC-D-E-FFF
AA: NOMINAL SIZE LINE
BB: SERVICE CODE
CCC: LINE NUMBER
D: INSULATON SIZE
E: INSULATION CLASS
FFF: PIPING SPECIFICATION
INSULATION
CLASS TYPE
C: CONSENSATE CONTROL
HC: HOT INSULATION
(CALCIUM SILICATE
N: NONE
LINE COMMODITIES
CODE SERVICE
DY: SANITARY SEWER
EX: EXHAUST
FG: FUEL GAS
HG: HYDROCARBON GAS
WT: PROCESS WATER
CW: COOLING WATER
PIPING SPECIFICATIONS
A2
A: NOMINAL PRESSURE CLASS
2: PIPING MATERIAL
NOMINAL PRESSURE
CLASS
A: 150 PSI
B: 300 PSI
C: 400 PSI
D: 600 PSI
PIPING MATERIAL
1: CAST IRON
2: CARBON STEEL
3: 304 OR 304L S.S.
32
H 2P En er g y DWG NO:
800-MAST-A02
AFE:
A01C2
M
FE
816
FT
816
FI
816
FAL
816
FAH
816
F.O.
A01 C2
ASV
816
ASY
816
PT
816
PI
816
PAH
816
PAL
816 PIC
816
SY
816
ASC
816
ASY
816
FI
816
FIC
816
ASY
817
818
PT
PI
818
PIC
818
ASY
819
PI
818
PAH
818
PAL
818
P
I
PI
816
M
FE
820
FT
820
FI
820
FAL
820
FAH
820
F.O.
ASV
819
ASY
819
PT
819
PI
819
PAH
819
PAL
819 PIC
819
SY
819
ASC
819
ASY
819
FI
820
FIC
820
ASY
820
821
PT
PI
821
PIC
821
ASY
821
PI
821
PAH
821
PAL
821
P
I
PI
819
L.O.
L.O.
A06B13
A05 C13
F.C.
TV
825
TY
825
P
I
TE
824
TI
824
N.C.
A2
RTD
TE
822
TI
822
RTD
TIC
823
TE
823
RTD
TT
823
TAH
823
TAL
823
A2
D2
TE
826
TI
826
RTD
L.O.
L.O.
TE
827
TI
827
N.C.
RTD
TE
829
TI
829
RTD
N.C.
TE
828
TI
828
RTD
TE
830
RTD
TT
830
L.O.
L.O.
TE
831
TI
831
N.C.
RTD
TE
833
TI
833
RTD
N.C.
TE
832
TI
832
RTD
TE
834
RTD
TT
834
A04D2
A03B13
C-8800A C-8800B
E-8800 E-8801
E-8802
A2
SKID #2
SKID #3
SKID #4
PSV
837
PSV
836
PSV
835DRY NATURAL
GAS
FROM
V-8800
NATURAL GAS
RECYCLE
TO V-8800
TO R-8802
REFORMER
FURNACE
FROM R-8803
WGS REACTOR
EFLLUENT
TO WARM
FLARE
TO WARM
FLARE
TO WARM
FLARE
BOILER FEED
WATER
BOILER FEED
WATER TANK
TO V-8801
TO E-8803
R-8800A/B
NG COMPRESSOR(S)
16 STAGES
12,000 CFM @ 2000 kPaa ΔP
E-8800
NG PREHEATER
2.7 MW
SHELL: 2200 kPaa @ 25/310°C
TUBES: 1870 kPaa @ 350/420°C
2 TUBE PASSES/2 CROSS PASSES
E-8801
SYNGAS COOLER #1
4.0 MW
SHELL: 3100 kPaa @ 25/180°C
TUBES: 1770 kPaa @ 140/350°C
2 TUBE PASSES/18 CROSS PASSES
E-8802
SYNGAS COOLER #2
4.0 MW
SHELL: 3100 kPaa @ 25/180°C
TUBES: 1770 kPaa @ 140/350°C
2 TUBE PASSES/18 CROSS PASSES
14"HG-017-1"HC-C2
14"HG-018-1"HC-C2
6"HG-019-1"HC-C2
6"HG-020-1"HC-C2
6"HG-025-1"HC-C2
8"HG-027-1 1/2"HC-C13
14"HG-033-2"HC-B13
14"HG-035-1 1/2"HC-B13
14"HG-036-1 1/2"HC-B13
10"HG-038-1 1/2"C-B13
3"WT-067-N-D2
3"WT-069-1"HC-D2
10"WT-071-1"HC-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
NG COMPRESSOR(S) AND HEAT
EXCHANGER(S) #1 & #2
REVISIONS: PLOT SCALE:
33
H 2P En er g y DWG NO:
800-MAST-A03
AFE:
L.O.
L.O.
TE
838
TI
838
RTD
TE
840
TI
840
RTD
N.C.
E-8803
A02B13
D2
TE
839
TI
839
RTD
N.C.
TE
841
TI
841
RTD
A2
L.O.
L.O.
TE
842
TI
842
RTD
TE
844
TI
844
RTD
N.C.
E-8804
TE
843
TI
843
RTD
N.C.
TE
845
TI
845
RTD
L.O.
L.O.
TE
846
TI
846
RTD
TE
848
TI
848
RTD
N.C.
E-8805
TE
847
TI
847
RTD
N.C.
TE
849
TI
849
RTD
A2
A2
L.O.
L.O.
TE
850
TI
850
RTD
TE
852
TI
852
RTD
N.C.
E-8806
TE
851
TI
851
RTD
N.C.
TE
853
TI
853
RTD
A04D2
A2
SKID #5
A07B2
PSV
855
PSV
857
PSV
856
PSV
854
FROM E-8802
BOILER FEED
WATER
TO WARM
FLARE
TO WARM
FLARE
TO WARM
FLARE
TO WARM
FLARE
BOILER FEED
WATER TANK
TO V-8801
E-8803
SYNGAS COOLER #3
1.6 MW
SHELL: 3100 kPaa @ 25/110°C
TUBES: 1470 kPaa @ 120/70°C
2 TUBE PASSES/13 CROSS PASSES
E-8804
SYNGAS COOLER #4
1.6 MW
SHELL: 3100 kPaa @ 25/110°C
TUBES: 1470 kPaa @ 120/70°C
2 TUBE PASSES/13 CROSS PASSES
E-8805
SYNGAS COOLER #5
1.6 MW
SHELL: 3100 kPaa @ 25/110°C
TUBES: 1470 kPaa @ 120/70°C
2 TUBE PASSES/13 CROSS PASSES
E-8806
SYNGAS COOLER #6
1.6 MW
SHELL: 3100 kPaa @ 25/110°C
TUBES: 1470 kPaa @ 120/70°C
2 TUBE PASSES/13 CROSS PASSES
TO V-8802 PHASE
SEPARATOR
10"HG-038-1 1/2"C-B13
10"HG-040-11/2"C-B13
10"HG-042-1 1/2"C-B13
10"HG-044-11/2"C-B13
10"HG-046-1"C-B2
4"WT-072-N-D2
4"WT-074-1"HC-D2
4"WT-076-1"HC-D2
4"WT-078-1"HC-D2
4"WT-080-1"HC-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
HEAT EXCHANGER(S) #3
REVISIONS: PLOT SCALE:
34
H 2P En er g y DWG NO:
800-MAST-A04
AFE:
HHLL 1.2 m
HLL 1.0 m
NLL 0.8 m
LLL 0.5 m
LLLL 0.2m
LT
858 D/P
LIC
858
LAH
858
LAL
858
P
I
LSLL
858
LALL
858
LSHH
858
LAHH
858
LG
858
F.C.
A03D2 A02 D2
LV
858
LY
858
AT
858
AI
858
AAH
858
FE
858
FT
858
FI
858
FI
858
V-8801
A06 D2
A05D2
L.O.
L.O.
PT
858
F.O.
PV
858
PY
858
PIC
858
PI
858
PAL
858
PAH
858
PI
858
A2
F.O.
859
PT
M
860
PT
F.O.
A06D2
PI
859
PI
859FE
860
PI
860
PI
860
FT
860
FY
860
P
I
P
I
FIC
860
FI
860
FV
860
FV
861
FY
861
P
I
F.O.
862
PT
M
863
PT
F.O.
PI
862
PI
862FE
863
PI
863
PI
863
FT
863
FY
863
P
I
FIC
863
FI
863
FV
863
FV
864
FY
864
P
I
F.O.
865
PT
M
866
PT
F.O.
PI
865
PI
865 FE
866
PI
866
PI
866
FT
866
FY
866
P
I
FIC
866
FI
866
FV
866
FV
867
FY
867
P
I
F.O.
868
PT
M
869
PT
F.O.
PI
868
PI
868 FE
869
PI
869
PI
869
FT
869
FY
869
P
I
FIC
869
FI
869
FV
869
FV
870
FY
870
P
I
A05 D2
A05D2
20m
GRADE
PSV
871
P-8800AP-8800B
P-8801A P-8801B
SKID #6
FROM E-8806
SHELL
FROM E-8802
SHELL
FROM E-8807
REFORMER
FURNACE
TO R-8802
REBOILER
TO WARM
FLARE
FROM R-8802
REFORMER
FURNACE
20"
MW
TO E-8807 REBOILER TO R-8802 REFORMER
FURNACE
V-8801
BFW TANK
1.6 m I.D. x 6.5 m T/T
2800 kPaa @ 200°C
P-8800A/B
BFW PUMP(S)#1
33.6 CMH @ 150 kPaa ΔP
HP: 3.0
P-8801A/B
BFW PUMP(S)#2
17.3 CMH @ 110 kPaa ΔP
HP: 1.0
10"WT-071-1"HC-D24"WT-080-1"HC-D2
6"WT-083-1"HC-D2
3"WT-084-1"HC-D2
3"WT-084-1"HC-D2
3"WT-084-1"HC-D2
2 1/2"WT-085-1"HC-D2
21/2"WT-085-1"HC-D2
6"WT-088-2"HC-D2
2"WT-089-1"HC-D2
2"WT-089-1"HC-D2
2"WT-089-1"HC-D2
1 1/2"WT-090-1"HC-D2
11/2"WT-090-1"HC-D2
3"WT-093-1"HC-D2 3"WT-094-1"HC-D2
2"WT-092-2"HC-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
BFW TANK AND PUMPS
REVISIONS: PLOT SCALE:
35
H 2P En er g y DWG NO:
AFE:
A2
M
FE
872
FT
872
FI
872
PT
872
PI
872
SY
872
873
PT PI
873
M
FE
874
FT
874
FI
874
PT
874
PI
874
SY
874
875
PT PI
875
M
FE
887
FT
887
FI
887
PT
887
PI
887
SY
887
888
PTPI
888
M
FE
889
FT
889
FI
889
PT
889
PI
889
SY
889
890
PTPI
890
AT
891
AI
891
TE
891
TI
891
RTD
A2
F.C.
F.O. F.O.
A2
A09 B2
TE
882
TI
882
RTD
TE
883
TI
883
RTD
TE
885
TI
885
RTD
PT
884
PI
884
A02 C13
A06B13
AT
XXX
AI
XXX
TE
XXX
TI
XXX
RTD
A04D2
A04D2
A04D2
AT
881
AI
881
TE
881
TI
881
RTD
AT
877
PLC
FE
878
FT
878
FV
880
PV
879
PY
879
FY
880
PLC
886
PT
FE
877
FE
876
FV
876
FY
876
AT
876
FT
876
FT
877
F-8800A F-8800B
F-8801A
F-8801B
P
I
P
I
P
I
R-8802
SKID #7
FLUE
GASES
TO
ATMOSPHERE
COMBUSTION
AIR
EXPORT
STEAM
NATURAL GAS
FROM E-8800
SHELL
TO E-8807
TUBES
SYNGAS
PSA TAIL GAS
FROM V-8805
FUEL GAS
FROM P-8801
BFW PUMP
TO V-8801
BFW TANK
FROM V-8801
BFW TANK
F-8800A/B
FORCED DRAFT FAN(S)
73,000 CFM
1.5 kPaa ΔP
F-8801A/B
INDUCED DRAFT FAN(S)
91,000 CFM
0.5 kPaa ΔP
R-8802
REFORMER FURNACE
17 x 11 x 16 m BOX @ 11.3 MW
2200 kPaa @ 1200°C
114.3 mm I.D. x 13 m PER TUBE
# OF TUBES = 136
ST-8800
FLUE GAS STACK
184" I.D. x 26'-0" T/T
14.7 PSIA @ 150°C
8"HG-027-1 1/2"HC-C13
10"HG-028-2"HC-C13
12"HG-029-2"HC-C13
16"HG-030-3"HC-B13
A2
11/2"WT-090-1"HC-D2
2"WT-092-2"HC-D2
3"WT-094-1"HC-D2
8"WT-098-2 1/2"HC-D2 8"WT-101-2 1/2"HC-D2
12"HG-066-1/2"C-B2
10"FG-102-N-A2
H 2P En er g y DWG NO:
800-MAST-A05
AFE:
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
REFORMER FURNACE, FORCED &
INDUCED DRAFT FANS AND STACK
REVISIONS: PLOT SCALE:
36
H 2P En er g y DWG NO:
800-MAST-A06
AFE:
PDT
898
PDI
898
R-8803
E-8804
E-8807
A05B13
A04D2
A04 D2
TE
892
TI
892
RTD
TE
894
TIC
894
RTD
TE
896
TI
896
RTD
N.C.
TE
895
TI
895
RTD
TV
893
TY
893
P
I
TT
894
TAH
894
TAL
894
L.O.
L.O.
PSV
900
F.C.
TE
897
TI
897
RTD
AT
897
AI
897
TE
899
TI
899
AT
899
AI
899
A02B13
L.O.
L.O.
PSV
901
A2
SKID #7
SKID #8
20"
MW
TO WARM
FLARE
TO WARM
FLARE
TO V-8801
BFW TANK
FROM P-8800
BFW PUMP
FROM R-8802
REFORMER
FURNACE
TO E-8800
E-8807
REBOILER
17.1 MW
SHELL: 3000 kPaa @ 180/240°C
TUBES: 1990 kPaa @ 420/850°C
2 TUBE PASSES
R-8803
WGS REACTOR
1.5 m I.D. x 3.0 m T/T
1750 kPaa @ 430°C
2,800 kg
CATALYST LOADING
16"HG-030-3"HC-B13
14"HG-032-2"HC-B13
14"HG-033-2"HC-B13
A2
2 1/2"WT-085-1"HC-D2
6"WT-088-2"HC-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
BFW KETTLE REBOILER AND WGS
REACTOR
REVISIONS: PLOT SCALE:
37
H 2P En er g y DWG NO:
800-MAST-A07
AFE:
PDT
902
PDI
902 XXX
XXX
LT
902D/P
LIC
902
LAH
902
LAL
902
LV
902
LY
902
P
I
LSLL
902
LALL
902
LSHH
902
LAHH
902
LG
902
PV
902
PT
902
PI
902
PAH
902
PAL
902
PI
902
L.O.
L.O.
A2
PIC
902
PY
902
P
I
F.O.
F.O.
PSV
907
V-8802
LLLL 14"
LLL 15"
NLL 15.1"
HLL 15.2"
HHLL 16"
1'00"
A03B2
A2
L.O.
L.O.
TE
903
TI
903
RTD
TE
905
TI
905
RTD
N.C.
E-8808
TE
904
TI
904
RTD
N.C.
TE
906
TI
906
RTD
A2
PSV
908
A08D2
A08B2
TV
905
D2
TY
905
P
I
TIC
905
TAH
905
TAL
905
A08
SKID #9 SKID #10
FROM E-8806
COOLED
SYNGAS
TO WARM
FLARE
TO PROCESS
SEWER
20"
MW
TO WARM
FLARE
COOLING
WATER
TO E-8809
TUBES
TO E-8809
SHELL
V-8802
PHASE SEPARATOR
72" I.D. x 9'-11" T/T
184 PSIA @ 70°C
E-8808
SYNGAS COOLER #7
0.6 MW
SHELL: 101 kPaa @ 25/50°C
TUBES: 1270 kPaa @ 30/70°C
2 TUBE PASSES/27 CROSS PASSES
TO TT 914
10"HG-046-1"C-B2
2"DY-047-N-A2 2"DY-048-N-A2
10"HG-050-1"C-B2 10"HG-051-1"C-B2
10"HG-054-1"C-B2
4"CW-103-N-D2
4"CW-104-N-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
PHASE SEPARATOR #2 AND HEAT
EXCHANGER #4
REVISIONS: PLOT SCALE:
38
H 2P En er g y DWG NO:
800-MAST-A08
AFE:
L.O.
L.O.
TE
909
TI
909
RTD
TE
911
TI
911
RTD
N.C.
E-8809
TE
910
TI
910
RTD
N.C.
TE
912
TI
912
RTD
L.O.
L.O.
TE
913
TI
913
RTD
TE
915
TI
915
RTD
N.C.
E-8810
TE
914
TT
914
RTD
N.C.
TE
916
TI
916
RTD
PSV
919
PSV
918
PDT
917
PDI
917 XXX
XXX
LT
917D/P
LIC
917
LAH
917
LAL
917
LV
917
LY
917
P
I
LSLL
917
LALL
917
LSHH
917
LAHH
917
LG
917
A2
A09B2
PV
917
PT
917
PI
917
PAH
917
PAL
917
PI
917
L.O.
L.O.
A2
PIC
917
PY
917
P
I
F.O.
F.O.
PSV
920
V-8803
LLLL 14"
LLL 15"
NLL 16.7"
HLL 17.4"
HHLL 20"
1'00"
A07D2
A07B2
D2
A2
A2
SKID #10
SKID #11
FROM E-8808
TUBES
FROM E-8808
SHELL
A07
TO TIC
905
TO COOLING
WATER RETURN
TO WARM
FLARE
TO WARM
FLARE
TO WARM
FLARE
TO V-8804
A/B/C/D
PSA UNIT
TO PROCESS
SEWER
E-8809
SYNGAS COOLER #7
0.6 MW
SHELL: 101 kPaa @ 25/50°C
TUBES: 1270 kPaa @ 30/70°C
2 TUBE PASSES/27 CROSS PASSES
E-8810
SYNGAS COOLER #7
0.6 MW
SHELL: 101 kPaa @ 25/50°C
TUBES: 1270 kPaa @ 30/70°C
2 TUBE PASSES/27 CROSS PASSES
V-8803
PHASE SEPARATOR
72" I.D. x 7'-8" T/T
155 PSIA @ 30°C
10"HG-054-1"C-B210"HG-056-1"C-B2
10"HG-058-1/2"C-B2
1/2"DY-059-N-A2
1/2"DY-060-N-A2
10"HG-062-1/2"C-B2 10"HG-063-1/2"C-B2
4"CW-104-N-D2
4"CW-105-N-D2
4"CW-106-N-D2
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
HEAT EXCHANGER(S) #4 AND PHASE
SEPARATOR #3
REVISIONS: PLOT SCALE:
39
H 2P En er g y DWG NO:
800-MAST-A09
AFE:
PDT PDI
XXX
XXX
LT
934D/P
LIC
934
LAH
934
LAL
934
LV
934
LY
934
P
I
LSLL
934
LALL
934
LSHH
934
LAHH
934
LG
934
A2
PV
934
PT
934
PI
934
PAH
934
PAL
934
PI
934
L.O.
L.O.
A2
PIC
934
PY
934
P
I
F.O.
F.O.
PSV
XXX
V-8805
LLLL 14"
LLL 15"
NLL 15.5"
HLL 16"
HHLL 16.5"
1'00"
A08B2
A05 B2
R-8804A
PDT
922
PDI
922
R-8804B
PDT
925
PDI
925
R-8804C
PDT
928
PDI
928
R-8804D
PDT
931
PDI
931
AI
922
RTD
TE
922
AT
922
AI
925
RTD
TE
925
AT
925
AI
928
RTD
TE
928
AT
928
AI
XXXX
RTD
TE
931
AT
931
TE
921
RTD
AI
921
AT
921
AI
921
TE
924
RTD AI
924
AT
924
AI
924
TE
927
RTD AI
927
AT
927
AI
927
AT
930
AI
930
TE
930
RTD AI
930
A2
TI
922
TAH
922
TAL
922
TI
925
TAH
925
TAL
925
TI
928
TAH
928
TAL
928
TI
931
TAH
931
TAL
931
RTD
TE
923
TI
923
AT
923
AI
923
RTD
TE
926
TI
926
AT
926
AI
926
RTD
TE
929
TI
929
AT
929
AI
929
RTD
TE
932
TI
932
AT
932
AI
932
FROM V-8803
COOLED
SYNGAS
TO R-8802
REFORMER
FURNACE
HYDROGEN
PRODUCT
TO PROCESS
SEWER
TO WARM
FLARE
V-8805
PHASE SEPARATOR
72" I.D. x 7'-8" T/T
155 PSIG @ 30°C
V-8804A
PSA VESSEL
3.5 m I.D. x 10.6 m T/T
1100 kPaa @ 30°C
50,000 kg
ADSORBENT LOADING
V-8804B
PSA VESSEL
3.5 m I.D. x 10.6 m T/T
1100 kPaa @ 30°C
50,000 kg
ADSORBENT LOADING
V-8804C
PSA VESSEL
3.5 m I.D. x 10.6 m T/T
1100 kPaa @ 30°C
50,000 kg
ADSORBENT LOADING
V-8804D
PSA VESSEL
3.5 m I.D. x 10.6 m T/T
1100 kPaa @ 30°C
50,000 kg
ADSORBENT LOADING
PLC10"HG-063-1/2"C-B2
10"EX-065-1/2"C-A2
12"HG-066-1/2"C-B2
FE
933
FT
933
FI
933
934934
H 2P En er g y DWG NO:
ALBERTA PROCESS
DEVELOPMENT
CORPORATION
1=1
SCALE:
NONE
LOCATION:
REV:
A
DATE:
APRIL 14, 2014
STEAM-METHANE REFORMER PIPING AND
INSTRUMENTATION DIAGRAM
PSA VESSELS AND PSA TAIL GAS BUFFER
TANK
REVISIONS: PLOT SCALE:
40
Raw
Materials
Title:
Plot Size:
Plot Plan
150m x 95m
800-MAST-B01
Reformer Furnace,
WGS Reactor,
& Phase Separators
Boiler Configuration
CompressorsSulfur Scavenging Heat Exchangers
Maintenance & Operations
Vehicle Parking PSA
Flue Gas
Stack
H 2P En er g y DWG NO:
Hydrogen to Refinery
41
Name Air BFW_In1 BFW_Out1 BFW_Out2 Combustion_Mix Combustion_Out Compressed_NG Cooler_Flue_Gases Cooling_Water1 Cooling_Water2 Cooling_Water_In Cooling_Water_Out Excess_Flue_Gas
Vapour Fraction: 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.13 0.00 0.00 0.00 1.00
T [C]: 15.00 200.00 186.00 186.02 16.10 1000.00 702.87 257.24 233.29 115.99 25.00 51.77 250.26
P [kPa]: 101.00 3000.00 3000.00 3100.00 101.00 101.00 2190.00 81.00 3000.00 3000.00 101.00 91.00 31.00
Volume Flow [m3/hr]: 98473.52 17.68 17.35 17.35 109219.42 481189.44 2926.39 249875.93 408.23 64.35 61.23 61.85 644355.57
Mass Flow [kg/h]:
119843.87 15300.00 15300.00 15300.00 126843.87 126843.87 12600.00 126843.87 40000.00 61000.00 61000.00 61000.00 126843.87
H2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N2 Mass Flow [kg/h]: 91930.19 0.00 0.00 0.00 91930.19 91930.19 0.00 91930.19 0.00 0.00 0.00 0.00 91930.19
CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
O2 Mass Flow [kg/h]: 27913.67 0.00 0.00 0.00 27913.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH4 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 7000.00 2.80 12600.00 2.80 0.00 0.00 0.00 0.00 2.80
CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 19195.51 0.00 19195.51 0.00 0.00 0.00 0.00 19195.51
H2O Mass Flow [kg/h]: 0.00 15300.00 15300.00 15300.00 0.00 15715.36 0.00 15715.36 40000.00 61000.00 61000.00 61000.00 15715.36
Name H2_Out H2_Product H2_Regen Hot_Flue_Gases Hot_NG_Inlet Inlet_Water KO1_Gas KO1_In KO1_Liquid KO2_Gas KO2_In KO2_Liquid KO_Cooler1_In
Vapour Fraction: 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.80 0.00 1.00 0.98 0.00 1.00
T [C]: 138.00 138.00 138.00 764.21 312.79 186.15 69.00 69.00 69.00 30.00 30.00 30.00 350.00
P [kPa]: 297.00 297.00 297.00 91.00 190.00 3000.00 1270.00 1270.00 1270.00 1070.00 1070.00 1070.00 1670.00
Volume Flow [m3/hr]: 27586.55 24827.89 2758.65 435153.77 20140.59 114.55 7301.58 7316.15 14.57 7516.15 7517.38 1.23 12565.74
Mass Flow [kg/h]: 4825.70 4343.13 482.57 126843.87 12600.00 101000.00 34346.65 48600.00 14253.35 33125.10 34346.65 1221.55 48600.00
H2 Mass Flow [kg/h]: 4825.70 4343.13 482.57 0.00 0.00 0.00 4825.70 4825.73 0.02 4825.70 4825.70 0.00 4825.73
N2 Mass Flow [kg/h]: 0.00 0.00 0.00 91930.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 3909.97 3909.97 0.01 3909.97 3909.97 0.00 3909.97
O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH4 Mass Flow [kg/h]: 0.00 0.00 0.00 2.80 12600.00 0.00 2439.31 2439.31 0.00 2439.31 2439.31 0.00 2439.31
CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 19195.51 0.00 0.00 21713.45 21730.60 17.15 21711.09 21713.45 2.36 21730.60
H2O Mass Flow [kg/h]: 0.00 0.00 0.00 15715.36 0.00 101000.00 1458.21 15694.39 14236.17 239.03 1458.21 1219.18 15694.39
42
Name KO_Cooler2_In Mixed_Feed NG_Fuel NG_Inlet NG_Water PSA_Tail_Gas SMR_In SMR_Out1 SMR_Out2 SMR_Out3 SMR_Out4 SMR_Out5 Sat_Water
Vapour Fraction: 0.90 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
T [C]: 117.00 455.95 25.00 25.00 25.00 138.00 760.00 778.00 796.00 814.00 832.00 850.00 10.00
P [kPa]: 1470.00 2190.00 200.00 200.00 200.00 297.00 2090.00 2070.00 2050.00 2030.00 2010.00 1990.00 250.00
Volume Flow [m3/hr]: 8033.87 7598.26 5384.93 9692.87 0.22 9155.46 11399.83 15854.72 16638.25 17436.58 18241.09 19043.49 0.22
Mass Flow [kg/h]: 48600.00 48600.00 7000.00 12600.00 222.78 28299.40 48600.00 48600.00 48600.00 48600.00 48600.00 48600.00 222.78
H2 Mass Flow [kg/h]: 4825.73 0.00 0.00 0.00 0.00 0.00 0.00 2925.04 3169.04 3404.83 3626.87 3830.35 0.00
N2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO Mass Flow [kg/h]: 3909.97 0.00 0.00 0.00 0.00 3909.97 0.00 13547.55 14677.64 15769.74 16798.10 17740.54 0.00
O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH4 Mass Flow [kg/h]: 2439.31 12600.00 7000.00 12600.00 0.00 2439.31 12600.00 4840.80 4193.55 3568.07 2979.08 2439.31 0.00
CO2 Mass Flow [kg/h]: 21730.60 0.00 0.00 0.00 0.00 21711.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H2O Mass Flow [kg/h]: 15694.39 36000.00 0.00 0.00 222.78 239.03 36000.00 27286.61 26559.77 25857.36 25195.95 24589.80 222.78
Name Satd_NG Steam_Inlet Treated_NG WGS_Cool_Water1 WGS_Cool_Water2 WGS_Cool_Water3 WGS_In WGS_Out Water_Inlet Water_Inlet1 Water_Inlet2
Vapour Fraction: 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
T [C]: 25.00 300.00 25.00 186.00 186.02 234.12 420.00 420.00 186.00 25.00 25.00
P [kPa]: 200.00 2700.00 200.00 3000.00 3100.00 3000.00 1890.00 1870.00 3000.00 3100.00 3100.00
Volume Flow [m3/hr]: 9845.27 3257.30 9692.87 33.56 33.56 2018.95 12338.75 12496.46 40.82 40.13 61.21
Mass Flow [kg/h]: 12822.78 36000.00 12600.00 29600.00 29600.00 29600.00 48600.00 48600.00 36000.00 40000.00 61000.00
H2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 3830.35 4825.73 0.00 0.00 0.00
N2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 17740.54 3909.97 0.00 0.00 0.00
O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CH4 Mass Flow [kg/h]: 12600.00 0.00 12600.00 0.00 0.00 0.00 2439.31 2439.31 0.00 0.00 0.00
CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21730.60 0.00 0.00 0.00
H2O Mass Flow [kg/h]: 222.78 36000.00 0.00 29600.00 29600.00 29600.00 24589.80 15694.39 36000.00 40000.00 61000.00
43
Heat Exchangers
Name /Furnace /KO_Cooler1 /KO_Cooler2 /PSA_Cooler /SMR_Product_Cooler /Steam_Coil /WGS_Product_Cooler /Water_Heating_Coil
/Water_Heating_Coil.Tube DP [kPa] 100 200 200 200 100 300 200 100
/Water_Heating_Coil.Shell DP [kPa] 10 100 100 10 100 10 10 50
/Water_Heating_Coil.UA [W/K] 41727.29 5.13E+05 4.84E+05 1.65E+05 45657.29 1.08E+05 14352.93 4671.19
Approach T [C] 240 4.92 1.01 5 233.98 71.24 107.21 57.24
Duty [W] -1.13E+07 1.32E+07 6.55E+06 1.91E+06 1.71E+07 -2.23E+07 2.72E+06 -2.83E+05
Plug Flow Reactors
Name /SMR_R1 /SMR_R2 /SMR_R3 /SMR_R4 /SMR_R5 /WGS_Reactor
OutQ [W] -3.11E+07 -3.28E+06 -3.20E+06 -3.06E+06 -2.87E+06 5.17E+06
Delta P [kPa] 20 20 20 20 20 20
Inner Diameter [cm] 71.653 71.653 71.653 71.653 71.653 200
Length [m] 2.6 2.6 2.6 2.6 2.6 4
Volume [m3] 1.048 1.048 1.048 1.048 1.048 12.566
U [W/cm2-K] 50000 50000 50000 50000 50000 5000
External T [C] 778 796 814 832 850 420
Separators
Name /KO_Drum2 /KO_Drum3
In.Mole Flow [kgmole/h] 4050.44 3259.81
Liq0.Mole Flow [kgmole/h] 790.63 67.73
Vap.Mole Flow [kgmole/h] 3259.81 3192.09
Fixed Capital Investment
44
Unit(s) TMC 2014 CAD
Furnace + Reformer Tubes 8,015,026$
Compressor Water KO 89,956$
Phase Separator Tank 1 169,916$
Phase Separator Tank 2 123,897$
PSA Buffer Tank 95,578$
BFW Tank 161,998$
WGS Reactor 144,373$
PSA Vessels 3,320,586$
Sulfur Scavenging Vessels 799,606$
Natural Gas Compressor(s) 13,334,995$
Pump(s), Reboiler Loop 51,002$
Pump(s), BFW Loop 38,579$
NG preheater/post WGS cooler 1 350,624$
BFW preheater/post reforming cooler 638,017$
BFW preheater/post WGS cooler 2 813,308$
BFW preheater/post WGS cooler 3 2,402,955$
Syngas for PSA cooler 1,960,544$
Flue Gas Stack 104,254$
Combustion Air FD Fan(s) 57,756$
Flue Gas ID Fan(s) 44,275$
Piping (56% of all equipment cost[4]) 18,321,658$
TOTAL MAJOR EQUIPMENT COST 51,038,903$
Building Water Systems 3,623,762$
Instrumentation and Control 4,083,112$
Electrical Systems 4,083,112$
Buildings and Structures 4,695,579$
FIXED CAPITAL INVESTMENT 67,524,469$
Annual Operating Costs
45
Parameter Quantity Reference Literature
Operational days/ year 350 As stated in the project
contract
Plant Efficiency (%) 90 44
UTILITIES
Natural Gas Price (2014 CAD $/GJ) 4.5 16
Process Requirements (GJ/year) 6.47 x 106
VMG, 90% efficiency
Fuel Requirements (GJ/year) 3.59 X 106
VMG
Total Natural Gas Costs (2014 CAD MM$/year) 45.38
Electricity Price (2014 CAD $/kWh) 0.08 45
Electricity Load (GWh/year) 19.4 61, adjustment factor
Total Electricity Costs (2014 CAD MM$/year) 1.55
Water Price (2014 CAD $/1000 gallons) 0.5 44
Process Requirements (MMgal/year) 224.1 VMG
Cooling Requirements (MMgal/year) 135.4 VMG
Total Water Costs (2014 CAD MM$/year) 0.18
Total Utility Costs (2014 CAD MM$/year) 47.11
Annual Operating Costs
46
SULFATREAT®, CATALYSTS AND ADSORBENT MATERIALS
SULFATREAT® Price (2014 USD $/lb) 7.00 M-I Swaco (vendor)
Loading (lbs) 60,000 M-I Swaco (vendor)
Days Until Spent 1089 M-I Swaco (vendor)
Cost (2014 CAD MM$/year) 0.29
Reformer Catalyst Price (2014 USD $/lb) 12.00 Alfa Aesar (vendor)
Loading (lbs) 536,000 Calculation
Days Until Spent 700
Cost (2014 CAD MM$/year) 3.51
WGS Catalyst Price (2014 USD $/lb) 6.00 Alfa Aesar (vendor)
Loading (lbs) 6,235 Calculation
Days Until Spent 700
Cost (2014 CAD MM$/year) 0.02
Activated Carbon Price (2014 USD $/lb) 2.55 Grace (vendor)
Loading (lbs) 15,500 Calculation
Days Until Spent 700
Cost (2014 CAD MM$/year) 0.02
Zeolite 5A Price (2014 USD $/lb) 2.55 Grace (vendor)
Loading (lbs) 36,500 Calculation
Days Until Spent 700
Cost (2014 CAD MM$/year) 0.05
Total Costs (2014 CAD MM$/year) 3.89
Annual Operating Costs
47
LABOR
# of operators 10 44
Wage (1997 USD $/year) 56,000 44
Total paid to operators (1997 USD MM$/year) 0.56
Total paid to managers (1997 USD MM$/year) 0.1 44, adjustment factor
TOTAL LABOR COSTS (1997 USD MM$/year) 0.66
CEPCI Index, 1997 386.5 40
CEPCI Index, 2013 565 40
CAD/USD exchange rate 1.09 April 2014
Total Labor Costs (2014 CAD MM$/year) 1.05
MAINTENANCE
Labor (1997 USD MM$/year) 1.61 44, adjustment factor
Supervisors (1997 USD MM$/year) 0.25 44, adjustment factor
Material (1997 USD MM$/year) 1.61 44, adjustment factor
TOTAL MAINTENANCE COSTS (1997 USD MM$/year) 3.47
CEPCI Index, 1997 386.5 40
CEPCI Index, 2013 565 40
CAD/USD exchange rate 1.09 April 2014
Total Maintenance Costs (2014 CAD MM$/year) 5.33
Annual Operating Costs
48
OTHER COSTS
Support Labor (1997 USD MM$/year) 0.40 44, adjustment factor
Fringe Benefits (1997 USD MM$/year) 0.50 44, adjustment factor
Insurance (1997 USD MM$/year) 1.08 44, adjustment factor
General & Admin (1997 USD MM$/year) 1.08 44, adjustment factor
TOTAL OTHER COSTS (1997 USD MM$/year) 3.06
CEPCI Index, 1997 386.5 40
CEPCI Index, 2013 565 40
CAD/USD exchange rate 1.09 April 2014
Total Other Costs (2014 CAD MM$/year) 4.88
TOTAL OPERATING COSTS (2014 CAD MM$/year) 62.3
Alberta Water Use
49

More Related Content

What's hot

Steam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer DesignSteam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer DesignGerard B. Hawkins
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsGerard B. Hawkins
 
Ammonia Formation over Steam Reforming Catalysts
Ammonia Formation over Steam Reforming CatalystsAmmonia Formation over Steam Reforming Catalysts
Ammonia Formation over Steam Reforming CatalystsGerard B. Hawkins
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming FlowsheetsGerard B. Hawkins
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming FlowsheetsGerard B. Hawkins
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Gerard B. Hawkins
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IIGerard B. Hawkins
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingGerard B. Hawkins
 
Gas dehydration using solid bed
Gas dehydration using solid bed Gas dehydration using solid bed
Gas dehydration using solid bed Mohamed Bedair
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technologyPrem Baboo
 
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer - Best Practices GuideGerard B. Hawkins
 
Catalyst Catastrophes in Syngas Production - I
Catalyst Catastrophes in Syngas Production - ICatalyst Catastrophes in Syngas Production - I
Catalyst Catastrophes in Syngas Production - IGerard B. Hawkins
 
Revamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsRevamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsGerard B. Hawkins
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetGerard B. Hawkins
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsGerard B. Hawkins
 
Fired Heaters-Key to Efficient Operation of Refineries and Petrochemicals
Fired Heaters-Key to Efficient Operation of Refineries and PetrochemicalsFired Heaters-Key to Efficient Operation of Refineries and Petrochemicals
Fired Heaters-Key to Efficient Operation of Refineries and PetrochemicalsAshutosh Garg
 
Steam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingSteam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingGerard B. Hawkins
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive OverviewGerard B. Hawkins
 

What's hot (20)

Steam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer DesignSteam Reforming - Types of Reformer Design
Steam Reforming - Types of Reformer Design
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
 
Ammonia Formation over Steam Reforming Catalysts
Ammonia Formation over Steam Reforming CatalystsAmmonia Formation over Steam Reforming Catalysts
Ammonia Formation over Steam Reforming Catalysts
 
Primary Reforming Flowsheets
Primary Reforming FlowsheetsPrimary Reforming Flowsheets
Primary Reforming Flowsheets
 
Secondary Reforming Flowsheets
Secondary Reforming FlowsheetsSecondary Reforming Flowsheets
Secondary Reforming Flowsheets
 
Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers - Theory and Operation - Secondary Reformers -
Theory and Operation - Secondary Reformers -
 
Catalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - IICatalyst Catastrophes in Syngas Production - II
Catalyst Catastrophes in Syngas Production - II
 
The Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam ReformingThe Benefits and Disadvantages of Potash in Steam Reforming
The Benefits and Disadvantages of Potash in Steam Reforming
 
Gas dehydration using solid bed
Gas dehydration using solid bed Gas dehydration using solid bed
Gas dehydration using solid bed
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technology
 
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide101 Things That Can Go Wrong on a Primary Reformer -  Best Practices Guide
101 Things That Can Go Wrong on a Primary Reformer - Best Practices Guide
 
Catalyst Catastrophes in Syngas Production - I
Catalyst Catastrophes in Syngas Production - ICatalyst Catastrophes in Syngas Production - I
Catalyst Catastrophes in Syngas Production - I
 
Revamps for Ageing Methanol Plants
Revamps for Ageing Methanol PlantsRevamps for Ageing Methanol Plants
Revamps for Ageing Methanol Plants
 
Water Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section FlowsheetWater Gas Shift & Hydrogen Purification Section Flowsheet
Water Gas Shift & Hydrogen Purification Section Flowsheet
 
Feedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen PlantsFeedstock Purfication in Hydrogen Plants
Feedstock Purfication in Hydrogen Plants
 
Fired Heaters-Key to Efficient Operation of Refineries and Petrochemicals
Fired Heaters-Key to Efficient Operation of Refineries and PetrochemicalsFired Heaters-Key to Efficient Operation of Refineries and Petrochemicals
Fired Heaters-Key to Efficient Operation of Refineries and Petrochemicals
 
Steam Reforming - Catalyst Loading
Steam Reforming - Catalyst LoadingSteam Reforming - Catalyst Loading
Steam Reforming - Catalyst Loading
 
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
(LTS) Low Temperature Shift Catalyst - Comprehensive Overview
 
FINAL REPORT (4)
FINAL REPORT (4)FINAL REPORT (4)
FINAL REPORT (4)
 
C2 Acetylene Hydrogenation
C2 Acetylene HydrogenationC2 Acetylene Hydrogenation
C2 Acetylene Hydrogenation
 

Viewers also liked (20)

Grupo #8 LA ECONOMIA EN EL SIGLO XX
Grupo #8 LA ECONOMIA EN EL SIGLO XXGrupo #8 LA ECONOMIA EN EL SIGLO XX
Grupo #8 LA ECONOMIA EN EL SIGLO XX
 
C.V. - ANNE NJOGU
C.V. - ANNE NJOGUC.V. - ANNE NJOGU
C.V. - ANNE NJOGU
 
Tesis in ii
Tesis in iiTesis in ii
Tesis in ii
 
Joel protocolo
Joel protocoloJoel protocolo
Joel protocolo
 
ClaireGentryRESUME1
ClaireGentryRESUME1ClaireGentryRESUME1
ClaireGentryRESUME1
 
Encuesta de los estudiantes de intrductorios
Encuesta de los estudiantes de intrductoriosEncuesta de los estudiantes de intrductorios
Encuesta de los estudiantes de intrductorios
 
Ps argumentation
Ps argumentationPs argumentation
Ps argumentation
 
Hire4event.com
Hire4event.comHire4event.com
Hire4event.com
 
Ethics in the Workplace 10
Ethics in the Workplace 10Ethics in the Workplace 10
Ethics in the Workplace 10
 
Self
SelfSelf
Self
 
Model Jobs
Model JobsModel Jobs
Model Jobs
 
Resume-Ranjeet_Latest
Resume-Ranjeet_LatestResume-Ranjeet_Latest
Resume-Ranjeet_Latest
 
Tesis in
Tesis inTesis in
Tesis in
 
Salam_Tradisional_Orang_Kamboja
Salam_Tradisional_Orang_KambojaSalam_Tradisional_Orang_Kamboja
Salam_Tradisional_Orang_Kamboja
 
Uñas Degradadas
Uñas Degradadas Uñas Degradadas
Uñas Degradadas
 
Journal_of_thesis2014
Journal_of_thesis2014Journal_of_thesis2014
Journal_of_thesis2014
 
Evaluacion programacion
Evaluacion programacionEvaluacion programacion
Evaluacion programacion
 
Joel MAPA
Joel MAPAJoel MAPA
Joel MAPA
 
agi software solutions
agi software solutionsagi software solutions
agi software solutions
 
Facing col writ.2ppt
Facing col writ.2pptFacing col writ.2ppt
Facing col writ.2ppt
 

Similar to H2P_Energy_Final_Presentation_ENCH_531

Society automotive engineering
Society automotive engineeringSociety automotive engineering
Society automotive engineeringAir Fuel Synthesis
 
Technologies for Carbon Capture in Oil Refineries
Technologies for Carbon Capture in Oil RefineriesTechnologies for Carbon Capture in Oil Refineries
Technologies for Carbon Capture in Oil Refineriescanaleenergia
 
15th EPConf 5-14-2013 SJ Final
15th EPConf 5-14-2013 SJ Final15th EPConf 5-14-2013 SJ Final
15th EPConf 5-14-2013 SJ FinalSuresh Jambunathan
 
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfQuestion Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfPremBaboo4
 
Introduction to ppe
Introduction to ppeIntroduction to ppe
Introduction to ppeYash Shah
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINALSandra Broekema
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationThomas Holcombe
 
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...Global CCS Institute
 
Thermal Power Plants
Thermal Power PlantsThermal Power Plants
Thermal Power Plantspeeyush95
 
Power Generation Facility with Amine Based Carbon Capture
Power Generation Facility with Amine Based Carbon CapturePower Generation Facility with Amine Based Carbon Capture
Power Generation Facility with Amine Based Carbon CapturePeter Zhou
 

Similar to H2P_Energy_Final_Presentation_ENCH_531 (20)

Society automotive engineering
Society automotive engineeringSociety automotive engineering
Society automotive engineering
 
Technologies for Carbon Capture in Oil Refineries
Technologies for Carbon Capture in Oil RefineriesTechnologies for Carbon Capture in Oil Refineries
Technologies for Carbon Capture in Oil Refineries
 
CO2 Capture - Jon Gibbins, UKCCSRC, at the UKCCSRC ECR Winter School 2015
CO2 Capture - Jon Gibbins, UKCCSRC, at the UKCCSRC ECR Winter School 2015CO2 Capture - Jon Gibbins, UKCCSRC, at the UKCCSRC ECR Winter School 2015
CO2 Capture - Jon Gibbins, UKCCSRC, at the UKCCSRC ECR Winter School 2015
 
A perspective on transition engineering options from capture-readiness to ful...
A perspective on transition engineering options from capture-readiness to ful...A perspective on transition engineering options from capture-readiness to ful...
A perspective on transition engineering options from capture-readiness to ful...
 
15th EPConf 5-14-2013 SJ Final
15th EPConf 5-14-2013 SJ Final15th EPConf 5-14-2013 SJ Final
15th EPConf 5-14-2013 SJ Final
 
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfQuestion Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
 
Fyppt
FypptFyppt
Fyppt
 
Introduction to ppe
Introduction to ppeIntroduction to ppe
Introduction to ppe
 
312 r.j.basavaraj
312 r.j.basavaraj312 r.j.basavaraj
312 r.j.basavaraj
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL
 
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
Capturing CO2 from air: Research at the University of Edinburgh - Dr Maria Ch...
 
CatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentationCatFT(r) Fischer-Tropsch Process presentation
CatFT(r) Fischer-Tropsch Process presentation
 
Article - 2012 PTQ Q1
Article - 2012 PTQ Q1Article - 2012 PTQ Q1
Article - 2012 PTQ Q1
 
PRESENTATION ON HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OI...
PRESENTATION ON HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OI...PRESENTATION ON HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OI...
PRESENTATION ON HYDROGEN GAS PRODUCTION BY PARTIAL OXIDATION OF HEAVY FUEL OI...
 
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...
CO2 capture within refining: case studies - Rosa Maria Domenichini, Foster Wh...
 
JE Final Presentation
JE Final PresentationJE Final Presentation
JE Final Presentation
 
Thermal Power Plants
Thermal Power PlantsThermal Power Plants
Thermal Power Plants
 
Power Generation Facility with Amine Based Carbon Capture
Power Generation Facility with Amine Based Carbon CapturePower Generation Facility with Amine Based Carbon Capture
Power Generation Facility with Amine Based Carbon Capture
 
F O S S I L F U E L S
F O S S I L  F U E L SF O S S I L  F U E L S
F O S S I L F U E L S
 
Fossil fuels
Fossil fuelsFossil fuels
Fossil fuels
 

H2P_Energy_Final_Presentation_ENCH_531

  • 1. H2P Energy Large Scale Hydrogen Production in Alberta ENCH 531 WINTER 2014 LAWSON MACKENZIE, T’IEN MONTALVO, STEVEN RIETZE 1
  • 2. Project Summary •Goal: SMR plant capable of delivering 50,000 Nm3 of hydrogen per hour •Inlet Feed Requirements: • Natural Gas: • 18,600 Nm3 per hour for reaction • 10,400 Nm3 per hour for heating • Water: • 41,000 L per hour for reaction (consumed) • 61,000 L per hour for cooling (recycled) •Feed Costs: • Water: $0.5/1000 gallons (minimal) • Natural Gas: $4.51/GJ ($4.76/MMBtu, $4.76/MSCF) • Annual Natural Gas Costs: $45.4 Million • 64% for reformer feed • 36% for combustion fuel •Total Annual Operating Cost: $62.3 Million • Natural Gas accounts for 73% of total •Price of Hydrogen based on a DCFRR of 15%: $5.27/MSCF ($2.09/kg) 2
  • 3. Alberta Water Use 3 Alberta Environment Information Centre. Water for life: current and future water use in Alberta. Alberta Environment: Edmonton, Alberta, 2007.1
  • 4. Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132 4 Conventional Crude Oil Supply and Demand
  • 5. Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132 5 Unconventional Crude Oil Supply and Demand
  • 6. Crude Oil Export: Keystone Pipeline System • Made up of several sections, most note worthy is Keystone XL (currently unapproved for construction) • Once complete Keystone XL will have capacity to flow 830,000 bbl/day of crude oil from Alberta to USA • Combined Keystone exports from Alberta will then be approximately 1,290,000 bbl/day, accounting for 52.2% of total crude oil production for 2012 (2,470,000 bbl/day) • By 2022 total Alberta oil production expected to reach 4,270,000 bbl/day • Combined Keystone exports would then account for 30.2% of provincial oil production Image Source: TransCanada Corporation. Keystone XL Pipeline: About the Project. http://keystone-xl.com/about/the-project (accessed Jan 26, 2014)3 6
  • 7. Crude Oil Export: Railways 7 • Offer a cost competitive alternative to pipeline transport (although slightly more expensive) • Require minimal retro-fitting at stations to accommodate loading/unloading of crude oil • Can also be used to access crude oil markets not yet directly available by pipeline Image Source: Trains. http://christophermartinphotography.com/cat egory/trains (accessed Mar 26, 2014)4
  • 8. Alberta Refinery Locations and Capacities Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 20132 8
  • 9. Alberta Crude Oil Production, Upgrading, and Export • If crude bitumen oversupply (approx. 210,000 bbl/day) upgraded/refined in Alberta, the minimum amount of hydrogen required is 428,400 kg/day (2.04 kg of hydrogen/bbl)6 • Given target hydrogen production for proposed plant is 100,000 kg/day, amount of hydrogen required is more than 4 times greater • Therefore, significant opportunity exists for creation of hydrogen production facilities in Alberta • Best location for hydrogen production plant is next to 1 of 3 refineries immediately north of Edmonton • Given current combined hydrogen requirement for Alberta (4 refineries total) is approximately 929,220 kg/day 9
  • 10. Project Economics 10 Plant Life [years] 30 Fixed Capital Investment 67,524,469$ Working Capital @ 7% of FCI 4,726,713$ Start-up Expenses @ 2% of FCI 1,350,489$ Total Capital Investment 73,601,671$ Salvage Value @ 10% of FCI 6,752,447$ Depreciation (straight line) [$/year] 2,025,734$ Tax Rate 25% Operational Days per year 350 Total Expenses per year 62,264,149$ Hydrogen Production [kg/year] 3.65E+07 Hydrogen Production [Sm3/year] 4.10E+08 Hydrogen Production [1000SCF/year] 1.45E+07 Price of Hydrogen [$/kg] 2.09 Price of Hydrogen [$/1000SCF] 5.27 MARR 15.00% Average ROI 14.91% Total NPW 0$ DCFRR 15.00% Payout Period [years] 6.15
  • 12. Feed Preconditioning 12 M-I SWACO. H2S Removal through Fixed Bed Technologies. 9th Biogas Conference, Montreal, QC, May 25, 2011.5
  • 13. Furnace w/Reformer Tubes & Heat Exchange Coils Hot Flue Gases Reformer Inlet Preheat Steam Coil BFW Preheat Combustion Air Preheat CH4 + H2O ↔ 3H2 + CO ΔH°rxn = 206 kJ/mol 13 Thysen Krupp Uhde GmbH. The proprietary Uhde top-fired steam reformer. https://procurement.uhde- web.de/competence/technologies/ammonia/techprofile.en.epl?profile=1&pagetype=1&pagenum=1 (accessed March 6th , 2014)6
  • 14. Water-Gas Shift Reactor 14 CO + H2O H2 + CO2 ΔH°rxn = -40 kJ/mol
  • 15. Pressure Swing Adsorption 15 Caloric Anlagenbau GmbH. Pressure Swing Adsorption. http://www.caloric.com/upload/Products/H2Generation/HC_1000.jpg (accessed April 28th, 2014).7
  • 16. Pressure Swing Adsorption (cont’d) 16 Linde AG. Hydrogen Recovery by Pressure Swing Adsorption. http://www.linde-engineering.com/internet.global.lindeengineering.global/en/images/HA_H_1_1_e_12_150dpi19_6130.pdf (accessed September 30, 2013).8 .
  • 17. 17 H2P Energy Title Project # Drawing # Date Scale Drawer Checker Sheet TM LM, SR 24/3/2014 NONE ENCH 531 511-A 1 of 1 Natural Gas Pretreatment Units, Syngas Phase Separators and Heat Exchange Network E-101 Heat Exchanger 2.7 MW E-102 V-103R-101 Sulfur Scavenging Reactor 84" I.D. x 30'-0" S/S R-102 Sulfur Scavenging Reactor 84" I.D. x 30'-0" S/S C-101 E-103 E-104 V-102 R-101 R-102 FC AC SC TC LC LC TC FC PC PC AC AC Treated Water Natural Gas To Process Sewer To Process Sewer Cooling Water 511-C 511-B 511-B 511-B Hot Syngas from WGS Reactor Warm Treated Water to BFW Tank Treated Natural Gas to Reformer Furnace Boiler Feed Water Boiler Feed Water To PSA Units Cooling Water Return C-101 E-101 V-102 V-103 E-102 E-103 E-104 Heat Exchanger 7.9 MW Heat Exchanger 6.5 MW Heat Exchanger 1.9 MW Water KO (2) 72" I.D. x 9'-11" T/T Water KO (3) 72" I.D. x 7'-8" T/T NG Compressor 12,000 CFM @ 2000 kPaa ΔP 1 23 4 5 18 19 20 21 22 23 24 PC LC To Process Sewer V-101 V-101 NG – Water KO 60" I.D. x 6'-11" T/T
  • 18. 18 H2P Energy Title Project # Drawing # Date Scale Drawer Checker Sheet TM LM, SR 24/3/2014 NONE ENCH 531 511-B 1 of 1 Steam-Methane Reforming Furnace and Water-Gas Shift Reactor E-105 Heat Exchanger 17.1 MW V-104 BFW Tank 1.6 m I.D. x 6.5 m T/T R-103 Furnace & Steam- Methane Reformer 11.3 MW R-104 Water-Gas Shift Reactor 1.5 m I.D. x 3.0 m T/T F-101 Air Fan 73,000 CFM @ 1.3 kPaa ΔP F-102 Flue Gas Fan 91,000 CFM @ 0.3 kPaa ΔP ST-101 Flue Gas Stack 184" I.D. x 26'-0" T/T TC LC FC FC SC FC TT PT AT FCRC PC FT PC FC RC FT ATTT 511-A 511-A 511-A Warm BFW Fuel Gas Hot Syngas to Heat Exchangers Treated Natural Gas Export Steam Process Steam Reformer Feed Flue Gases Air P-101 BFW Pump 33.6 CMH @ 150 kPaa ΔP P-102 BFW Pump 17.3 CMH @ 110 kPaa ΔP E-105 F-101 F-102 P-101 P-102 R-103 R-104 ST-101 V-104 Reformer Syngas Effluent 4 5 6 7 8 9 10 11 12 13 14 TTTT 15 16 18 511-C PSA Tail Gas
  • 19. 19 511-A H2P Energy Title Project # Drawing # Date Scale Drawer Checker Sheet TM LM, SR 24/3/2014 NONE ENCH 531 511-C 1 of 1 Pressure Swing Adsorption Unit Cooled Syngas from Heat Exchangers PSA Tail Gas V-105 V-106 V-107 V-108 V-105 PSA Vessel (1) 3.5 m I.D. x 10.6 m T/T V-106 PSA Vessel (2) 3.5 m I.D. x 10.6 m T/T V-107 PSA Vessel (3) 3.5 m I.D. x 10.6 m T/T V-108 PSA Vessel (4) 3.5 m I.D. x 10.6 m T/T Hydrogen V-109 PSA Tail Gas Buffer Tank 72" I.D. x 7'-8" T/T V-109 LC PC PC FT To Process Sewer TT PT AT TT PT AT TT PT AT TT PT AT 24 25 26 27 511-B
  • 20. 20
  • 21. Steam Reforming of Methane Reaction Kinetics • CH4 + H2O ↔ 3H2 + CO ΔH°rxn = 206 kJ/mol (Reaction 1) • Global Rate Expression: • 𝑟1 = 127 𝑃 exp − 15800 𝑅𝑇 𝑥 𝐶𝐻4 − 𝑥 𝐻2 3 𝑥 𝐶𝑂 𝑃2 𝐾1 𝑥 𝐻2 𝑂 units [kmol/kPa0.5 m3] (Equation 1) • 𝐾1 = 10000 exp − 26830 𝑇 + 30.114 units [kPa2] (Equation 2) • Yielded approximately 80.6% conversion of methane 21
  • 22. Water-Gas Shift Reaction Kinetics • CO + H2O ↔ H2 + CO2 ΔH°rxn = -40 kJ/mol (Reaction 2) • Global Rate Expression: • 𝑟2 = exp − 25000 𝑅𝑇 + 8.02 𝑃 𝑥 𝐶𝑂 − 𝑥 𝐻2 𝑥 𝐶𝑂2 𝐾2 𝑥 𝐻2 𝑂 units [kmol/kPa0.5 m3] (Equation 3) • 𝐾2 = exp 4577.8 𝑇 − 4.33 (Equation 4) • Yielded approximately 78.0% conversion of carbon monoxide 22
  • 23. Dry Reforming of Methane: An Assessment 23 CO2 + CH4 ↔ 2H2 + 2CO ΔH°rxn = 247 kJ/mol Feed Pretreatment Reforming Water-Gas Shift Pressure Swing Adsorption Waste Heat Recovery Water Natural Gas Steam PSA Tail Gas Export Steam Hydrogen Carbon Dioxide Flue Gases 19,000 Sm3/h Steam 50,000 Nm3/h Hydrogen Purge Gas 9,000 kg CO2/h 16,000 kg CO2/h 22,000 kg CO2/h TOTALS SMR: 22,000 + 9,000 = 31,000 kg CO2/h DMR: 16,000 kg CO2/h 40,000 L/h
  • 24. Reverse Water-Gas Shift Reaction (RWGS) 24 H2 + CO2 ↔ H2O+ CO ΔH°rxn = 40 kJ/mol Oyama ST, Hacarlioglu P, Gu Y, Lee D. Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors. International Journal of Hydrogen Energy, 2012; 37:10444-10450.9
  • 25. Catalyst Deactivation Due to Coking 25 CH4 ↔ 2H2+ C ΔH°rxn = 75 kJ/mol 2CO ↔ CO2+ C ΔH°rxn = -172 kJ/mol Kahle L.C.S., Roussiere T., Maier L., Herrera Delgado K., Wasserschaff G., Schunk S.A., and Deutschmann O. Methane Dry Reforming at Higt Temperatures and Elevated Pressure: Impact of Gas-Phase Reactions. I&EC research: Industrial & Engineering Chemistry Research. 2013: 52(34), 11920-11930. 10
  • 26. Products Derived from Syngas 26 Ricci M, Perego C. From syngas to fuels and chemicals: chemical and biotechnological routes. http://www.eurobioref.org/Summer_School/Lectures_Slides/day6/L17_M.Ricci.pdf (accessed December 3, 2013).11
  • 27. Conclusion 27 • Steam methane reforming is a reliable and time-tested technology to produce hydrogen • Given current economic conditions in the province, it is recommended that at least one but not more than four SMR plants capable of producing 50,000 Nm3 of hydrogen per hour be constructed • Based on a DCFRR of 15% and an average natural gas price of $4.51 per GJ, the recommended sales price of hydrogen is $5.27 per MSCF ($2.09 per kg) • Due to current technical limitations and a lack of reduction in net carbon emissions, dry reforming of methane is not economically or environmentally feasible at this time
  • 28. References 1. Alberta Environment Information Centre. Water for life: current and future water use in Alberta. Alberta Environment: Edmonton, Alberta, 2007. 2. Alberta Energy and Utilities Board. ST98-2013: Alberta’s Energy Reserves 2012 and Supply/Demand Outlook 2013-2022; ST98-2013; EUB: Calgary, AB, 2013 3. TransCanada Corporation. Keystone XL Pipeline: About the Project. http://keystone-xl.com/about/the-project (accessed Jan 26, 2014) 4. Trains. http://christophermartinphotography.com/category/trains (accessed Mar 26, 2014) 5. M-I SWACO. H2S Removal through Fixed Bed Technologies. 9th Biogas Conference, Montreal, QC, May 25, 2011. 6. Thysen Krupp Uhde GmbH. The proprietary Uhde top-fired steam reformer. https://procurement.uhde- web.de/competence/technologies/ammonia/techprofile.en.epl?profile=1&pagetype=1&pagenum=1 (accessed March 6th , 2014) 7. Caloric Anlagenbau GmbH. Pressure Swing Adsorption. http://www.caloric.com/upload/Products/H2Generation/HC_1000.jpg (accessed April 28th, 2014). 8. Linde AG. Hydrogen Recovery by Pressure Swing Adsorption. http://www.linde- engineering.com/internet.global.lindeengineering.global/en/images/HA_H_1_1_e_12_150dpi19_6130.pdf (accessed September 30, 2013). 9. Oyama ST, Hacarlioglu P, Gu Y, Lee D. Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors. International Journal of Hydrogen Energy, 2012; 37:10444-10450. 10. Kahle L.C.S., Roussiere T., Maier L., Herrera Delgado K., Wasserschaff G., Schunk S.A., and Deutschmann O. Methane Dry Reforming at Higt Temperatures and Elevated Pressure: Impact of Gas-Phase Reactions. I&EC research: Industrial & Engineering Chemistry Research. 2013: 52(34), 11920-11930. 11. Ricci M, Perego C. From syngas to fuels and chemicals: chemical and biotechnological routes. http://www.eurobioref.org/Summer_School/Lectures_Slides/day6/L17_M.Ricci.pdf (accessed December 3, 2013). 28
  • 29. Block Flow Diagram - SMR 29 Feed Pretreatment Steam Methane Reforming Water-Gas Shift Pressure Swing Adsorption Waste Heat Recovery Natural Gas Steam PSA Tail Gas Export Steam Hydrogen Flue Gases Hydrogen Purge Gas
  • 30. Block Flow Diagram - DMR 30 Feed Pretreatment Dry Methane Reforming Water-Gas Shift Pressure Swing Adsorption Waste Heat Recovery Natural Gas Steam PSA Tail Gas Export Steam Carbon Dioxide Flue Gases Hydrogen Purge Gas
  • 31. 31 H 2P En er g y DWG NO: 800-MAST-A01 A2 A2 PDT 803 PDI 803 PDT 812 PDI 812 L.O. L.O. AT 804 AT 808 A2 L.O. L.O. A2 PDT 807 PDI 807 LT 812D/P LIC 812 LAH 812 LAL 812 LV 812 LY 812 P I LSLL 812 LALL 812 LSHH 812 LAHH 812 LG 812 A2 A02C2 PV 812 PT 812 PI 812 PAH 812 PAL 812 PI 812 L.O. L.O. A2 A02 C2 PIC 812 PY 812 P I PV 800 PT 800 PI 800 PAH 800 PAL 800 PI 800 PIC 800 P I PY 800 AT 801 AIC 801 FY 801 FIC 801 FY 801 P I FV 801 PLC FY 810 FY 811 FY 809 FY 806 FY 802 805 FY F.C. F.C. F.O. F.O. PSV 814 PSV 813 PSV 815 SKID #1 SKID #2 1/4"WT-004-N-A2 R-8800 R-8801 V-8800 LLLL 14" LLL 15" NLL 15.5" HLL 15.7" HHLL 18" 1'00" PROCESS WATER NATURAL GAS TO PROCESS SEWER TO WARM FLARE TO C-8800A/B TO WARM FLARE TO WARM FLARE FROM C-8800A/B NG COMPRESSOR R-8800 NG PRETREATER 84" I.D. x 30'-0" S/S 29 PSIA @ 77°F 60,000 LBS SULFATREAT LOADING R-8801 NG PRETREATER 84" I.D. x 30'-0" S/S 29 PSIA @ 77°F 60,000 LBS SULFATREAT LOADING V-8800 NG PHASE SEPARATOR 60" I.D. x 6'-11" T/T 29 PSIA @ 25°C NG COMPRESSOR 20" MW 20" MW 20" MW 20" MW 12"HG-001-N-A2 12"HG-002-N-A2 1/4"WT-005-N-A2 12"HG-007-N-A2 12"HG-008-N-A2 12"HG-009-N-A2 12"HG-010-N-A2 12"HG-011-N-A2 12"HG-012-N-A2 14"HG-013-1"HC-C2 1/4"DY-014-N-A2 1/4"DY-015-N-A2 14"HG-017-1"HC-C2 ALBERTA PROCESS DEVELOPMENT CORPORATION PLOT SCALE: 1=1 SCALE: NONE AFE: LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM NG PRETREATERS AND PHASE SEPARATOR #1 REVISIONS: LINE DESIGNATION AA”BB-CCC-D-E-FFF AA: NOMINAL SIZE LINE BB: SERVICE CODE CCC: LINE NUMBER D: INSULATON SIZE E: INSULATION CLASS FFF: PIPING SPECIFICATION INSULATION CLASS TYPE C: CONSENSATE CONTROL HC: HOT INSULATION (CALCIUM SILICATE N: NONE LINE COMMODITIES CODE SERVICE DY: SANITARY SEWER EX: EXHAUST FG: FUEL GAS HG: HYDROCARBON GAS WT: PROCESS WATER CW: COOLING WATER PIPING SPECIFICATIONS A2 A: NOMINAL PRESSURE CLASS 2: PIPING MATERIAL NOMINAL PRESSURE CLASS A: 150 PSI B: 300 PSI C: 400 PSI D: 600 PSI PIPING MATERIAL 1: CAST IRON 2: CARBON STEEL 3: 304 OR 304L S.S.
  • 32. 32 H 2P En er g y DWG NO: 800-MAST-A02 AFE: A01C2 M FE 816 FT 816 FI 816 FAL 816 FAH 816 F.O. A01 C2 ASV 816 ASY 816 PT 816 PI 816 PAH 816 PAL 816 PIC 816 SY 816 ASC 816 ASY 816 FI 816 FIC 816 ASY 817 818 PT PI 818 PIC 818 ASY 819 PI 818 PAH 818 PAL 818 P I PI 816 M FE 820 FT 820 FI 820 FAL 820 FAH 820 F.O. ASV 819 ASY 819 PT 819 PI 819 PAH 819 PAL 819 PIC 819 SY 819 ASC 819 ASY 819 FI 820 FIC 820 ASY 820 821 PT PI 821 PIC 821 ASY 821 PI 821 PAH 821 PAL 821 P I PI 819 L.O. L.O. A06B13 A05 C13 F.C. TV 825 TY 825 P I TE 824 TI 824 N.C. A2 RTD TE 822 TI 822 RTD TIC 823 TE 823 RTD TT 823 TAH 823 TAL 823 A2 D2 TE 826 TI 826 RTD L.O. L.O. TE 827 TI 827 N.C. RTD TE 829 TI 829 RTD N.C. TE 828 TI 828 RTD TE 830 RTD TT 830 L.O. L.O. TE 831 TI 831 N.C. RTD TE 833 TI 833 RTD N.C. TE 832 TI 832 RTD TE 834 RTD TT 834 A04D2 A03B13 C-8800A C-8800B E-8800 E-8801 E-8802 A2 SKID #2 SKID #3 SKID #4 PSV 837 PSV 836 PSV 835DRY NATURAL GAS FROM V-8800 NATURAL GAS RECYCLE TO V-8800 TO R-8802 REFORMER FURNACE FROM R-8803 WGS REACTOR EFLLUENT TO WARM FLARE TO WARM FLARE TO WARM FLARE BOILER FEED WATER BOILER FEED WATER TANK TO V-8801 TO E-8803 R-8800A/B NG COMPRESSOR(S) 16 STAGES 12,000 CFM @ 2000 kPaa ΔP E-8800 NG PREHEATER 2.7 MW SHELL: 2200 kPaa @ 25/310°C TUBES: 1870 kPaa @ 350/420°C 2 TUBE PASSES/2 CROSS PASSES E-8801 SYNGAS COOLER #1 4.0 MW SHELL: 3100 kPaa @ 25/180°C TUBES: 1770 kPaa @ 140/350°C 2 TUBE PASSES/18 CROSS PASSES E-8802 SYNGAS COOLER #2 4.0 MW SHELL: 3100 kPaa @ 25/180°C TUBES: 1770 kPaa @ 140/350°C 2 TUBE PASSES/18 CROSS PASSES 14"HG-017-1"HC-C2 14"HG-018-1"HC-C2 6"HG-019-1"HC-C2 6"HG-020-1"HC-C2 6"HG-025-1"HC-C2 8"HG-027-1 1/2"HC-C13 14"HG-033-2"HC-B13 14"HG-035-1 1/2"HC-B13 14"HG-036-1 1/2"HC-B13 10"HG-038-1 1/2"C-B13 3"WT-067-N-D2 3"WT-069-1"HC-D2 10"WT-071-1"HC-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM NG COMPRESSOR(S) AND HEAT EXCHANGER(S) #1 & #2 REVISIONS: PLOT SCALE:
  • 33. 33 H 2P En er g y DWG NO: 800-MAST-A03 AFE: L.O. L.O. TE 838 TI 838 RTD TE 840 TI 840 RTD N.C. E-8803 A02B13 D2 TE 839 TI 839 RTD N.C. TE 841 TI 841 RTD A2 L.O. L.O. TE 842 TI 842 RTD TE 844 TI 844 RTD N.C. E-8804 TE 843 TI 843 RTD N.C. TE 845 TI 845 RTD L.O. L.O. TE 846 TI 846 RTD TE 848 TI 848 RTD N.C. E-8805 TE 847 TI 847 RTD N.C. TE 849 TI 849 RTD A2 A2 L.O. L.O. TE 850 TI 850 RTD TE 852 TI 852 RTD N.C. E-8806 TE 851 TI 851 RTD N.C. TE 853 TI 853 RTD A04D2 A2 SKID #5 A07B2 PSV 855 PSV 857 PSV 856 PSV 854 FROM E-8802 BOILER FEED WATER TO WARM FLARE TO WARM FLARE TO WARM FLARE TO WARM FLARE BOILER FEED WATER TANK TO V-8801 E-8803 SYNGAS COOLER #3 1.6 MW SHELL: 3100 kPaa @ 25/110°C TUBES: 1470 kPaa @ 120/70°C 2 TUBE PASSES/13 CROSS PASSES E-8804 SYNGAS COOLER #4 1.6 MW SHELL: 3100 kPaa @ 25/110°C TUBES: 1470 kPaa @ 120/70°C 2 TUBE PASSES/13 CROSS PASSES E-8805 SYNGAS COOLER #5 1.6 MW SHELL: 3100 kPaa @ 25/110°C TUBES: 1470 kPaa @ 120/70°C 2 TUBE PASSES/13 CROSS PASSES E-8806 SYNGAS COOLER #6 1.6 MW SHELL: 3100 kPaa @ 25/110°C TUBES: 1470 kPaa @ 120/70°C 2 TUBE PASSES/13 CROSS PASSES TO V-8802 PHASE SEPARATOR 10"HG-038-1 1/2"C-B13 10"HG-040-11/2"C-B13 10"HG-042-1 1/2"C-B13 10"HG-044-11/2"C-B13 10"HG-046-1"C-B2 4"WT-072-N-D2 4"WT-074-1"HC-D2 4"WT-076-1"HC-D2 4"WT-078-1"HC-D2 4"WT-080-1"HC-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM HEAT EXCHANGER(S) #3 REVISIONS: PLOT SCALE:
  • 34. 34 H 2P En er g y DWG NO: 800-MAST-A04 AFE: HHLL 1.2 m HLL 1.0 m NLL 0.8 m LLL 0.5 m LLLL 0.2m LT 858 D/P LIC 858 LAH 858 LAL 858 P I LSLL 858 LALL 858 LSHH 858 LAHH 858 LG 858 F.C. A03D2 A02 D2 LV 858 LY 858 AT 858 AI 858 AAH 858 FE 858 FT 858 FI 858 FI 858 V-8801 A06 D2 A05D2 L.O. L.O. PT 858 F.O. PV 858 PY 858 PIC 858 PI 858 PAL 858 PAH 858 PI 858 A2 F.O. 859 PT M 860 PT F.O. A06D2 PI 859 PI 859FE 860 PI 860 PI 860 FT 860 FY 860 P I P I FIC 860 FI 860 FV 860 FV 861 FY 861 P I F.O. 862 PT M 863 PT F.O. PI 862 PI 862FE 863 PI 863 PI 863 FT 863 FY 863 P I FIC 863 FI 863 FV 863 FV 864 FY 864 P I F.O. 865 PT M 866 PT F.O. PI 865 PI 865 FE 866 PI 866 PI 866 FT 866 FY 866 P I FIC 866 FI 866 FV 866 FV 867 FY 867 P I F.O. 868 PT M 869 PT F.O. PI 868 PI 868 FE 869 PI 869 PI 869 FT 869 FY 869 P I FIC 869 FI 869 FV 869 FV 870 FY 870 P I A05 D2 A05D2 20m GRADE PSV 871 P-8800AP-8800B P-8801A P-8801B SKID #6 FROM E-8806 SHELL FROM E-8802 SHELL FROM E-8807 REFORMER FURNACE TO R-8802 REBOILER TO WARM FLARE FROM R-8802 REFORMER FURNACE 20" MW TO E-8807 REBOILER TO R-8802 REFORMER FURNACE V-8801 BFW TANK 1.6 m I.D. x 6.5 m T/T 2800 kPaa @ 200°C P-8800A/B BFW PUMP(S)#1 33.6 CMH @ 150 kPaa ΔP HP: 3.0 P-8801A/B BFW PUMP(S)#2 17.3 CMH @ 110 kPaa ΔP HP: 1.0 10"WT-071-1"HC-D24"WT-080-1"HC-D2 6"WT-083-1"HC-D2 3"WT-084-1"HC-D2 3"WT-084-1"HC-D2 3"WT-084-1"HC-D2 2 1/2"WT-085-1"HC-D2 21/2"WT-085-1"HC-D2 6"WT-088-2"HC-D2 2"WT-089-1"HC-D2 2"WT-089-1"HC-D2 2"WT-089-1"HC-D2 1 1/2"WT-090-1"HC-D2 11/2"WT-090-1"HC-D2 3"WT-093-1"HC-D2 3"WT-094-1"HC-D2 2"WT-092-2"HC-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM BFW TANK AND PUMPS REVISIONS: PLOT SCALE:
  • 35. 35 H 2P En er g y DWG NO: AFE: A2 M FE 872 FT 872 FI 872 PT 872 PI 872 SY 872 873 PT PI 873 M FE 874 FT 874 FI 874 PT 874 PI 874 SY 874 875 PT PI 875 M FE 887 FT 887 FI 887 PT 887 PI 887 SY 887 888 PTPI 888 M FE 889 FT 889 FI 889 PT 889 PI 889 SY 889 890 PTPI 890 AT 891 AI 891 TE 891 TI 891 RTD A2 F.C. F.O. F.O. A2 A09 B2 TE 882 TI 882 RTD TE 883 TI 883 RTD TE 885 TI 885 RTD PT 884 PI 884 A02 C13 A06B13 AT XXX AI XXX TE XXX TI XXX RTD A04D2 A04D2 A04D2 AT 881 AI 881 TE 881 TI 881 RTD AT 877 PLC FE 878 FT 878 FV 880 PV 879 PY 879 FY 880 PLC 886 PT FE 877 FE 876 FV 876 FY 876 AT 876 FT 876 FT 877 F-8800A F-8800B F-8801A F-8801B P I P I P I R-8802 SKID #7 FLUE GASES TO ATMOSPHERE COMBUSTION AIR EXPORT STEAM NATURAL GAS FROM E-8800 SHELL TO E-8807 TUBES SYNGAS PSA TAIL GAS FROM V-8805 FUEL GAS FROM P-8801 BFW PUMP TO V-8801 BFW TANK FROM V-8801 BFW TANK F-8800A/B FORCED DRAFT FAN(S) 73,000 CFM 1.5 kPaa ΔP F-8801A/B INDUCED DRAFT FAN(S) 91,000 CFM 0.5 kPaa ΔP R-8802 REFORMER FURNACE 17 x 11 x 16 m BOX @ 11.3 MW 2200 kPaa @ 1200°C 114.3 mm I.D. x 13 m PER TUBE # OF TUBES = 136 ST-8800 FLUE GAS STACK 184" I.D. x 26'-0" T/T 14.7 PSIA @ 150°C 8"HG-027-1 1/2"HC-C13 10"HG-028-2"HC-C13 12"HG-029-2"HC-C13 16"HG-030-3"HC-B13 A2 11/2"WT-090-1"HC-D2 2"WT-092-2"HC-D2 3"WT-094-1"HC-D2 8"WT-098-2 1/2"HC-D2 8"WT-101-2 1/2"HC-D2 12"HG-066-1/2"C-B2 10"FG-102-N-A2 H 2P En er g y DWG NO: 800-MAST-A05 AFE: H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM REFORMER FURNACE, FORCED & INDUCED DRAFT FANS AND STACK REVISIONS: PLOT SCALE:
  • 36. 36 H 2P En er g y DWG NO: 800-MAST-A06 AFE: PDT 898 PDI 898 R-8803 E-8804 E-8807 A05B13 A04D2 A04 D2 TE 892 TI 892 RTD TE 894 TIC 894 RTD TE 896 TI 896 RTD N.C. TE 895 TI 895 RTD TV 893 TY 893 P I TT 894 TAH 894 TAL 894 L.O. L.O. PSV 900 F.C. TE 897 TI 897 RTD AT 897 AI 897 TE 899 TI 899 AT 899 AI 899 A02B13 L.O. L.O. PSV 901 A2 SKID #7 SKID #8 20" MW TO WARM FLARE TO WARM FLARE TO V-8801 BFW TANK FROM P-8800 BFW PUMP FROM R-8802 REFORMER FURNACE TO E-8800 E-8807 REBOILER 17.1 MW SHELL: 3000 kPaa @ 180/240°C TUBES: 1990 kPaa @ 420/850°C 2 TUBE PASSES R-8803 WGS REACTOR 1.5 m I.D. x 3.0 m T/T 1750 kPaa @ 430°C 2,800 kg CATALYST LOADING 16"HG-030-3"HC-B13 14"HG-032-2"HC-B13 14"HG-033-2"HC-B13 A2 2 1/2"WT-085-1"HC-D2 6"WT-088-2"HC-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM BFW KETTLE REBOILER AND WGS REACTOR REVISIONS: PLOT SCALE:
  • 37. 37 H 2P En er g y DWG NO: 800-MAST-A07 AFE: PDT 902 PDI 902 XXX XXX LT 902D/P LIC 902 LAH 902 LAL 902 LV 902 LY 902 P I LSLL 902 LALL 902 LSHH 902 LAHH 902 LG 902 PV 902 PT 902 PI 902 PAH 902 PAL 902 PI 902 L.O. L.O. A2 PIC 902 PY 902 P I F.O. F.O. PSV 907 V-8802 LLLL 14" LLL 15" NLL 15.1" HLL 15.2" HHLL 16" 1'00" A03B2 A2 L.O. L.O. TE 903 TI 903 RTD TE 905 TI 905 RTD N.C. E-8808 TE 904 TI 904 RTD N.C. TE 906 TI 906 RTD A2 PSV 908 A08D2 A08B2 TV 905 D2 TY 905 P I TIC 905 TAH 905 TAL 905 A08 SKID #9 SKID #10 FROM E-8806 COOLED SYNGAS TO WARM FLARE TO PROCESS SEWER 20" MW TO WARM FLARE COOLING WATER TO E-8809 TUBES TO E-8809 SHELL V-8802 PHASE SEPARATOR 72" I.D. x 9'-11" T/T 184 PSIA @ 70°C E-8808 SYNGAS COOLER #7 0.6 MW SHELL: 101 kPaa @ 25/50°C TUBES: 1270 kPaa @ 30/70°C 2 TUBE PASSES/27 CROSS PASSES TO TT 914 10"HG-046-1"C-B2 2"DY-047-N-A2 2"DY-048-N-A2 10"HG-050-1"C-B2 10"HG-051-1"C-B2 10"HG-054-1"C-B2 4"CW-103-N-D2 4"CW-104-N-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM PHASE SEPARATOR #2 AND HEAT EXCHANGER #4 REVISIONS: PLOT SCALE:
  • 38. 38 H 2P En er g y DWG NO: 800-MAST-A08 AFE: L.O. L.O. TE 909 TI 909 RTD TE 911 TI 911 RTD N.C. E-8809 TE 910 TI 910 RTD N.C. TE 912 TI 912 RTD L.O. L.O. TE 913 TI 913 RTD TE 915 TI 915 RTD N.C. E-8810 TE 914 TT 914 RTD N.C. TE 916 TI 916 RTD PSV 919 PSV 918 PDT 917 PDI 917 XXX XXX LT 917D/P LIC 917 LAH 917 LAL 917 LV 917 LY 917 P I LSLL 917 LALL 917 LSHH 917 LAHH 917 LG 917 A2 A09B2 PV 917 PT 917 PI 917 PAH 917 PAL 917 PI 917 L.O. L.O. A2 PIC 917 PY 917 P I F.O. F.O. PSV 920 V-8803 LLLL 14" LLL 15" NLL 16.7" HLL 17.4" HHLL 20" 1'00" A07D2 A07B2 D2 A2 A2 SKID #10 SKID #11 FROM E-8808 TUBES FROM E-8808 SHELL A07 TO TIC 905 TO COOLING WATER RETURN TO WARM FLARE TO WARM FLARE TO WARM FLARE TO V-8804 A/B/C/D PSA UNIT TO PROCESS SEWER E-8809 SYNGAS COOLER #7 0.6 MW SHELL: 101 kPaa @ 25/50°C TUBES: 1270 kPaa @ 30/70°C 2 TUBE PASSES/27 CROSS PASSES E-8810 SYNGAS COOLER #7 0.6 MW SHELL: 101 kPaa @ 25/50°C TUBES: 1270 kPaa @ 30/70°C 2 TUBE PASSES/27 CROSS PASSES V-8803 PHASE SEPARATOR 72" I.D. x 7'-8" T/T 155 PSIA @ 30°C 10"HG-054-1"C-B210"HG-056-1"C-B2 10"HG-058-1/2"C-B2 1/2"DY-059-N-A2 1/2"DY-060-N-A2 10"HG-062-1/2"C-B2 10"HG-063-1/2"C-B2 4"CW-104-N-D2 4"CW-105-N-D2 4"CW-106-N-D2 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM HEAT EXCHANGER(S) #4 AND PHASE SEPARATOR #3 REVISIONS: PLOT SCALE:
  • 39. 39 H 2P En er g y DWG NO: 800-MAST-A09 AFE: PDT PDI XXX XXX LT 934D/P LIC 934 LAH 934 LAL 934 LV 934 LY 934 P I LSLL 934 LALL 934 LSHH 934 LAHH 934 LG 934 A2 PV 934 PT 934 PI 934 PAH 934 PAL 934 PI 934 L.O. L.O. A2 PIC 934 PY 934 P I F.O. F.O. PSV XXX V-8805 LLLL 14" LLL 15" NLL 15.5" HLL 16" HHLL 16.5" 1'00" A08B2 A05 B2 R-8804A PDT 922 PDI 922 R-8804B PDT 925 PDI 925 R-8804C PDT 928 PDI 928 R-8804D PDT 931 PDI 931 AI 922 RTD TE 922 AT 922 AI 925 RTD TE 925 AT 925 AI 928 RTD TE 928 AT 928 AI XXXX RTD TE 931 AT 931 TE 921 RTD AI 921 AT 921 AI 921 TE 924 RTD AI 924 AT 924 AI 924 TE 927 RTD AI 927 AT 927 AI 927 AT 930 AI 930 TE 930 RTD AI 930 A2 TI 922 TAH 922 TAL 922 TI 925 TAH 925 TAL 925 TI 928 TAH 928 TAL 928 TI 931 TAH 931 TAL 931 RTD TE 923 TI 923 AT 923 AI 923 RTD TE 926 TI 926 AT 926 AI 926 RTD TE 929 TI 929 AT 929 AI 929 RTD TE 932 TI 932 AT 932 AI 932 FROM V-8803 COOLED SYNGAS TO R-8802 REFORMER FURNACE HYDROGEN PRODUCT TO PROCESS SEWER TO WARM FLARE V-8805 PHASE SEPARATOR 72" I.D. x 7'-8" T/T 155 PSIG @ 30°C V-8804A PSA VESSEL 3.5 m I.D. x 10.6 m T/T 1100 kPaa @ 30°C 50,000 kg ADSORBENT LOADING V-8804B PSA VESSEL 3.5 m I.D. x 10.6 m T/T 1100 kPaa @ 30°C 50,000 kg ADSORBENT LOADING V-8804C PSA VESSEL 3.5 m I.D. x 10.6 m T/T 1100 kPaa @ 30°C 50,000 kg ADSORBENT LOADING V-8804D PSA VESSEL 3.5 m I.D. x 10.6 m T/T 1100 kPaa @ 30°C 50,000 kg ADSORBENT LOADING PLC10"HG-063-1/2"C-B2 10"EX-065-1/2"C-A2 12"HG-066-1/2"C-B2 FE 933 FT 933 FI 933 934934 H 2P En er g y DWG NO: ALBERTA PROCESS DEVELOPMENT CORPORATION 1=1 SCALE: NONE LOCATION: REV: A DATE: APRIL 14, 2014 STEAM-METHANE REFORMER PIPING AND INSTRUMENTATION DIAGRAM PSA VESSELS AND PSA TAIL GAS BUFFER TANK REVISIONS: PLOT SCALE:
  • 40. 40 Raw Materials Title: Plot Size: Plot Plan 150m x 95m 800-MAST-B01 Reformer Furnace, WGS Reactor, & Phase Separators Boiler Configuration CompressorsSulfur Scavenging Heat Exchangers Maintenance & Operations Vehicle Parking PSA Flue Gas Stack H 2P En er g y DWG NO: Hydrogen to Refinery
  • 41. 41 Name Air BFW_In1 BFW_Out1 BFW_Out2 Combustion_Mix Combustion_Out Compressed_NG Cooler_Flue_Gases Cooling_Water1 Cooling_Water2 Cooling_Water_In Cooling_Water_Out Excess_Flue_Gas Vapour Fraction: 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.13 0.00 0.00 0.00 1.00 T [C]: 15.00 200.00 186.00 186.02 16.10 1000.00 702.87 257.24 233.29 115.99 25.00 51.77 250.26 P [kPa]: 101.00 3000.00 3000.00 3100.00 101.00 101.00 2190.00 81.00 3000.00 3000.00 101.00 91.00 31.00 Volume Flow [m3/hr]: 98473.52 17.68 17.35 17.35 109219.42 481189.44 2926.39 249875.93 408.23 64.35 61.23 61.85 644355.57 Mass Flow [kg/h]: 119843.87 15300.00 15300.00 15300.00 126843.87 126843.87 12600.00 126843.87 40000.00 61000.00 61000.00 61000.00 126843.87 H2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N2 Mass Flow [kg/h]: 91930.19 0.00 0.00 0.00 91930.19 91930.19 0.00 91930.19 0.00 0.00 0.00 0.00 91930.19 CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O2 Mass Flow [kg/h]: 27913.67 0.00 0.00 0.00 27913.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CH4 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 7000.00 2.80 12600.00 2.80 0.00 0.00 0.00 0.00 2.80 CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 19195.51 0.00 19195.51 0.00 0.00 0.00 0.00 19195.51 H2O Mass Flow [kg/h]: 0.00 15300.00 15300.00 15300.00 0.00 15715.36 0.00 15715.36 40000.00 61000.00 61000.00 61000.00 15715.36 Name H2_Out H2_Product H2_Regen Hot_Flue_Gases Hot_NG_Inlet Inlet_Water KO1_Gas KO1_In KO1_Liquid KO2_Gas KO2_In KO2_Liquid KO_Cooler1_In Vapour Fraction: 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.80 0.00 1.00 0.98 0.00 1.00 T [C]: 138.00 138.00 138.00 764.21 312.79 186.15 69.00 69.00 69.00 30.00 30.00 30.00 350.00 P [kPa]: 297.00 297.00 297.00 91.00 190.00 3000.00 1270.00 1270.00 1270.00 1070.00 1070.00 1070.00 1670.00 Volume Flow [m3/hr]: 27586.55 24827.89 2758.65 435153.77 20140.59 114.55 7301.58 7316.15 14.57 7516.15 7517.38 1.23 12565.74 Mass Flow [kg/h]: 4825.70 4343.13 482.57 126843.87 12600.00 101000.00 34346.65 48600.00 14253.35 33125.10 34346.65 1221.55 48600.00 H2 Mass Flow [kg/h]: 4825.70 4343.13 482.57 0.00 0.00 0.00 4825.70 4825.73 0.02 4825.70 4825.70 0.00 4825.73 N2 Mass Flow [kg/h]: 0.00 0.00 0.00 91930.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 3909.97 3909.97 0.01 3909.97 3909.97 0.00 3909.97 O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CH4 Mass Flow [kg/h]: 0.00 0.00 0.00 2.80 12600.00 0.00 2439.31 2439.31 0.00 2439.31 2439.31 0.00 2439.31 CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 19195.51 0.00 0.00 21713.45 21730.60 17.15 21711.09 21713.45 2.36 21730.60 H2O Mass Flow [kg/h]: 0.00 0.00 0.00 15715.36 0.00 101000.00 1458.21 15694.39 14236.17 239.03 1458.21 1219.18 15694.39
  • 42. 42 Name KO_Cooler2_In Mixed_Feed NG_Fuel NG_Inlet NG_Water PSA_Tail_Gas SMR_In SMR_Out1 SMR_Out2 SMR_Out3 SMR_Out4 SMR_Out5 Sat_Water Vapour Fraction: 0.90 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 T [C]: 117.00 455.95 25.00 25.00 25.00 138.00 760.00 778.00 796.00 814.00 832.00 850.00 10.00 P [kPa]: 1470.00 2190.00 200.00 200.00 200.00 297.00 2090.00 2070.00 2050.00 2030.00 2010.00 1990.00 250.00 Volume Flow [m3/hr]: 8033.87 7598.26 5384.93 9692.87 0.22 9155.46 11399.83 15854.72 16638.25 17436.58 18241.09 19043.49 0.22 Mass Flow [kg/h]: 48600.00 48600.00 7000.00 12600.00 222.78 28299.40 48600.00 48600.00 48600.00 48600.00 48600.00 48600.00 222.78 H2 Mass Flow [kg/h]: 4825.73 0.00 0.00 0.00 0.00 0.00 0.00 2925.04 3169.04 3404.83 3626.87 3830.35 0.00 N2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO Mass Flow [kg/h]: 3909.97 0.00 0.00 0.00 0.00 3909.97 0.00 13547.55 14677.64 15769.74 16798.10 17740.54 0.00 O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CH4 Mass Flow [kg/h]: 2439.31 12600.00 7000.00 12600.00 0.00 2439.31 12600.00 4840.80 4193.55 3568.07 2979.08 2439.31 0.00 CO2 Mass Flow [kg/h]: 21730.60 0.00 0.00 0.00 0.00 21711.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 H2O Mass Flow [kg/h]: 15694.39 36000.00 0.00 0.00 222.78 239.03 36000.00 27286.61 26559.77 25857.36 25195.95 24589.80 222.78 Name Satd_NG Steam_Inlet Treated_NG WGS_Cool_Water1 WGS_Cool_Water2 WGS_Cool_Water3 WGS_In WGS_Out Water_Inlet Water_Inlet1 Water_Inlet2 Vapour Fraction: 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 T [C]: 25.00 300.00 25.00 186.00 186.02 234.12 420.00 420.00 186.00 25.00 25.00 P [kPa]: 200.00 2700.00 200.00 3000.00 3100.00 3000.00 1890.00 1870.00 3000.00 3100.00 3100.00 Volume Flow [m3/hr]: 9845.27 3257.30 9692.87 33.56 33.56 2018.95 12338.75 12496.46 40.82 40.13 61.21 Mass Flow [kg/h]: 12822.78 36000.00 12600.00 29600.00 29600.00 29600.00 48600.00 48600.00 36000.00 40000.00 61000.00 H2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 3830.35 4825.73 0.00 0.00 0.00 N2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CO Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 17740.54 3909.97 0.00 0.00 0.00 O2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 CH4 Mass Flow [kg/h]: 12600.00 0.00 12600.00 0.00 0.00 0.00 2439.31 2439.31 0.00 0.00 0.00 CO2 Mass Flow [kg/h]: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21730.60 0.00 0.00 0.00 H2O Mass Flow [kg/h]: 222.78 36000.00 0.00 29600.00 29600.00 29600.00 24589.80 15694.39 36000.00 40000.00 61000.00
  • 43. 43 Heat Exchangers Name /Furnace /KO_Cooler1 /KO_Cooler2 /PSA_Cooler /SMR_Product_Cooler /Steam_Coil /WGS_Product_Cooler /Water_Heating_Coil /Water_Heating_Coil.Tube DP [kPa] 100 200 200 200 100 300 200 100 /Water_Heating_Coil.Shell DP [kPa] 10 100 100 10 100 10 10 50 /Water_Heating_Coil.UA [W/K] 41727.29 5.13E+05 4.84E+05 1.65E+05 45657.29 1.08E+05 14352.93 4671.19 Approach T [C] 240 4.92 1.01 5 233.98 71.24 107.21 57.24 Duty [W] -1.13E+07 1.32E+07 6.55E+06 1.91E+06 1.71E+07 -2.23E+07 2.72E+06 -2.83E+05 Plug Flow Reactors Name /SMR_R1 /SMR_R2 /SMR_R3 /SMR_R4 /SMR_R5 /WGS_Reactor OutQ [W] -3.11E+07 -3.28E+06 -3.20E+06 -3.06E+06 -2.87E+06 5.17E+06 Delta P [kPa] 20 20 20 20 20 20 Inner Diameter [cm] 71.653 71.653 71.653 71.653 71.653 200 Length [m] 2.6 2.6 2.6 2.6 2.6 4 Volume [m3] 1.048 1.048 1.048 1.048 1.048 12.566 U [W/cm2-K] 50000 50000 50000 50000 50000 5000 External T [C] 778 796 814 832 850 420 Separators Name /KO_Drum2 /KO_Drum3 In.Mole Flow [kgmole/h] 4050.44 3259.81 Liq0.Mole Flow [kgmole/h] 790.63 67.73 Vap.Mole Flow [kgmole/h] 3259.81 3192.09
  • 44. Fixed Capital Investment 44 Unit(s) TMC 2014 CAD Furnace + Reformer Tubes 8,015,026$ Compressor Water KO 89,956$ Phase Separator Tank 1 169,916$ Phase Separator Tank 2 123,897$ PSA Buffer Tank 95,578$ BFW Tank 161,998$ WGS Reactor 144,373$ PSA Vessels 3,320,586$ Sulfur Scavenging Vessels 799,606$ Natural Gas Compressor(s) 13,334,995$ Pump(s), Reboiler Loop 51,002$ Pump(s), BFW Loop 38,579$ NG preheater/post WGS cooler 1 350,624$ BFW preheater/post reforming cooler 638,017$ BFW preheater/post WGS cooler 2 813,308$ BFW preheater/post WGS cooler 3 2,402,955$ Syngas for PSA cooler 1,960,544$ Flue Gas Stack 104,254$ Combustion Air FD Fan(s) 57,756$ Flue Gas ID Fan(s) 44,275$ Piping (56% of all equipment cost[4]) 18,321,658$ TOTAL MAJOR EQUIPMENT COST 51,038,903$ Building Water Systems 3,623,762$ Instrumentation and Control 4,083,112$ Electrical Systems 4,083,112$ Buildings and Structures 4,695,579$ FIXED CAPITAL INVESTMENT 67,524,469$
  • 45. Annual Operating Costs 45 Parameter Quantity Reference Literature Operational days/ year 350 As stated in the project contract Plant Efficiency (%) 90 44 UTILITIES Natural Gas Price (2014 CAD $/GJ) 4.5 16 Process Requirements (GJ/year) 6.47 x 106 VMG, 90% efficiency Fuel Requirements (GJ/year) 3.59 X 106 VMG Total Natural Gas Costs (2014 CAD MM$/year) 45.38 Electricity Price (2014 CAD $/kWh) 0.08 45 Electricity Load (GWh/year) 19.4 61, adjustment factor Total Electricity Costs (2014 CAD MM$/year) 1.55 Water Price (2014 CAD $/1000 gallons) 0.5 44 Process Requirements (MMgal/year) 224.1 VMG Cooling Requirements (MMgal/year) 135.4 VMG Total Water Costs (2014 CAD MM$/year) 0.18 Total Utility Costs (2014 CAD MM$/year) 47.11
  • 46. Annual Operating Costs 46 SULFATREAT®, CATALYSTS AND ADSORBENT MATERIALS SULFATREAT® Price (2014 USD $/lb) 7.00 M-I Swaco (vendor) Loading (lbs) 60,000 M-I Swaco (vendor) Days Until Spent 1089 M-I Swaco (vendor) Cost (2014 CAD MM$/year) 0.29 Reformer Catalyst Price (2014 USD $/lb) 12.00 Alfa Aesar (vendor) Loading (lbs) 536,000 Calculation Days Until Spent 700 Cost (2014 CAD MM$/year) 3.51 WGS Catalyst Price (2014 USD $/lb) 6.00 Alfa Aesar (vendor) Loading (lbs) 6,235 Calculation Days Until Spent 700 Cost (2014 CAD MM$/year) 0.02 Activated Carbon Price (2014 USD $/lb) 2.55 Grace (vendor) Loading (lbs) 15,500 Calculation Days Until Spent 700 Cost (2014 CAD MM$/year) 0.02 Zeolite 5A Price (2014 USD $/lb) 2.55 Grace (vendor) Loading (lbs) 36,500 Calculation Days Until Spent 700 Cost (2014 CAD MM$/year) 0.05 Total Costs (2014 CAD MM$/year) 3.89
  • 47. Annual Operating Costs 47 LABOR # of operators 10 44 Wage (1997 USD $/year) 56,000 44 Total paid to operators (1997 USD MM$/year) 0.56 Total paid to managers (1997 USD MM$/year) 0.1 44, adjustment factor TOTAL LABOR COSTS (1997 USD MM$/year) 0.66 CEPCI Index, 1997 386.5 40 CEPCI Index, 2013 565 40 CAD/USD exchange rate 1.09 April 2014 Total Labor Costs (2014 CAD MM$/year) 1.05 MAINTENANCE Labor (1997 USD MM$/year) 1.61 44, adjustment factor Supervisors (1997 USD MM$/year) 0.25 44, adjustment factor Material (1997 USD MM$/year) 1.61 44, adjustment factor TOTAL MAINTENANCE COSTS (1997 USD MM$/year) 3.47 CEPCI Index, 1997 386.5 40 CEPCI Index, 2013 565 40 CAD/USD exchange rate 1.09 April 2014 Total Maintenance Costs (2014 CAD MM$/year) 5.33
  • 48. Annual Operating Costs 48 OTHER COSTS Support Labor (1997 USD MM$/year) 0.40 44, adjustment factor Fringe Benefits (1997 USD MM$/year) 0.50 44, adjustment factor Insurance (1997 USD MM$/year) 1.08 44, adjustment factor General & Admin (1997 USD MM$/year) 1.08 44, adjustment factor TOTAL OTHER COSTS (1997 USD MM$/year) 3.06 CEPCI Index, 1997 386.5 40 CEPCI Index, 2013 565 40 CAD/USD exchange rate 1.09 April 2014 Total Other Costs (2014 CAD MM$/year) 4.88 TOTAL OPERATING COSTS (2014 CAD MM$/year) 62.3