SlideShare a Scribd company logo
1 of 166
Download to read offline
Dam
Dam
ۢ۹۳۱‫ﻫ‬
1.................................................................................................................................2
2..................................................................................................................................2
3..........................................................................4
4....................................................................................................................5
5......................................................................................................5
6.............................................................................................................................................5
7................................................................................................................................6
8..................................................................................6
9....................................................................6
11........................................................................................................9
11...........................................................................9
12..............................................................................................................11
13............................................................................................11
14.................................................................................................................................................11
15.......................................................................................................................................11
16........................................................................................................11
17.............................................................................................................11
18................................................................................................................12
19.................................................................................................................................12
21.A–..........................................................................................................12
21.B–............................................................................................................................13
22.Gravity dams......................................................................................................13
23.......................................................................................................................13
24.Arch dams................................................................................................................13
25.C–.................................................................................................................................14
26.D–..............................................................................................................................14
27.E–...............................................................................................................14
28...........................................................................................15
29.ۢ–...................................................................................................................15
31.۲–...........................................................................................................................15
31.ۢ–.....................................................................................................................15
32.۲–................................................................................................................................15
33...............................................................................................................................16
34..............................................................................................18
35.–..............................................................................19
36.–.........................................................19
37.–............................................................................................19
38.–............................................................................................................21
39.–.........................................................................................................21
41.–............................................................................21
41.–....................................21
42.–..........................................22
43.–..............................................................................................22
44...............................................................................................23
45................................................................................................................26
46....................................................................................26
47................................................................................27
48.( Minimum surface ( Min. S)..............................................................................27
49.(free Board (HfB)...........................................................................................................27
51........................................................................................................................................27
51.( Reservoir General Capacity ( R.G.C ).......................................................28
52.Dead capacity (D.C).........................................................................................................28
53.Live capacity (Liv. C)............................................................................................28
54.Surplus Capacity (S.C)......................................................................................28
55.Inactive Capacity........................................................................................28
56.Active Capacity..................................................................................................................28
57..................................................................................................................................31
58................................................................................................................................31
59............................................................................................31
61..........................................................................................................................31
61........................................................................31
62............................................................................................................................32
63......................................................................................................32
64...........................................................................................33
65.( Corrosion ).......................................................................33
66................................................................................................34
67.................................................................................................35
68.................................................35
69.....................................................................................36
71.............................................................................................37
71................................................................................................................................................37
72................................................................................................................................37
73................................................................................................................37
74......................................................................................................................37
75................................................................................................................37
76...................................................................................................38
77.......................................................................................................................38
78........................................................................................................................................41
79.......................................................................41
81....................................................................................................................................41
81..............................................................................................................41
82.........................................................................................................43
83................................................................................................43
84.
.......................................................................43
85..........................................................................44
86.............................................................44
87..........................................................................................................46
88............................................................................................46
89..........................................................................................................47
91.................................................................................................................................47
91...........................................................................47
92........................................................49
93............................................................................49
94............................................................................................51
95..........................................................................................................................52
96.........................................................................................................................................54
97...................................................................................54
98......................................................................................................................54
99..........................................................................................................................................54
111...............................................................................................................................55
111..............................................................................................................56
112...........................................................................................................................................56
113.58
114...............................................................................................................................59
115......................................................................................................................59
116............................................................................................................................63
117...........................................................................................................................................63
118.Hydraulic Calculation for spillways..................................................................................................74
119.Hydraulic calculation for top and bottom of spillway.....................................................................76
111.Shape of ogee – crest......................................................................................................................78
111.Design of Barge................................................................................................................................89
112.Slab Design.......................................................................................................................................89
113.Force acting on a Dam:..................................................................................................................112
114.Water pressure:.............................................................................................................................112
115.Uplift pressure:..............................................................................................................................113
116.Wave pressure:..............................................................................................................................114
117.Ice pressure:..................................................................................................................................115
118.Earth quake pressure:....................................................................................................................115
119.Checking........................................................................................................................................111
121.Case I. Reservoir full case:.............................................................................................................111
121.(a) Normal Load Combinations......................................................................................................111
122.Case II. Reservoir empty case :......................................................................................................112
123.(2} By crushing..............................................................................................................................112
124.Case 1. Reservoir Empty:...............................................................................................................114
125.Case 2 when Reservoir is full:........................................................................................................116
126.Case 2 (b) Reservoir full, without up lift........................................................................................118
127........................................................................................................................121
128.........................................................................................................................................121
129.................................................................................................................................122
131................................................................................122
131.............................................................................................................................123
132.............................................................................................................127
133...................................................................................................................................128
134....................................................................................................................................131
135...........................................................................................................131
136.................................................132
137............................................................................................133
138..................................................................................................134
139..........................................................................................136
141................................................................................................................137
141......................................................................................................................138
142...............................................................................................................................138
143.Design of Kaplan turbine...............................................................................................................139
144.Section head:.................................................................................................................................141
145.Generator Design:.........................................................................................................................143
146.Design at civil structure:................................................................................................................144
ΫΆ
Ϋ²
ΫΉ
2
(Hydrosphere)
ΫΆ Ϋ΅Ϋ΄
Ϋ³ΫΉ
ΫΆΫΉΫΆΫ΅Ϋ΄
ΫΉΫ΅ΫΆΫ΄ΫΉΫ²Ϋ³Ϋ΄ΫΉ
ΫΆΫ²Ϋ΅Ϋ±ΫΉΫΆΫ±
3
4
(Water Economy)
(Water Resource Engineering)
5
(Water Supply)
6
ΫΆΫΉΫ΅Ϋ³ΫΆΫΉΫ³ΫΆ
Ϋ²ΫΉΫΆΫΉΫ²ΫΉΫΆΫ²
(Civil Engineering)
7
(Hydraulic structures Engineering)
(Hydraulic structures)
ΫΉΫ΄ΫΉMWΫ±Ϋ±
ΫΆΫΉΫΉMWΫΉΫΉ
ΫΆΫΉΫΉMWΫΆΫΉΫΉ
Ϋ΄ΫΉMWΫ²Ϋ²
8
ΫΆΫ΅MWΫΆΫΆ Ϋ΄
MW
ΫΆΫΉ Ϋ΅
MWΫ² Ϋ΅
MWΫ² Ϋ΅
MWΫ² ΫΉ
MWΫ² Ϋ΄
MWΫΉ Ϋ±
(Micro Hydropower)
9
–
(Locks)
10
–Single purpose
(Multipurpose Hydraulic structures)
11
(Dams)
ΫΆ
(Detention Dams)
12
Small DamsΫΆΫ΄
Medium DamsΫΆΫ΄Ϋ΄ΫΉ
High DamsΫ΄ΫΉ
A –
Earth fill dams
Rock fill dams
Earth Rock fill dams
13
B –
( Concrete dams)
Gravity dams
Ϋ²Ϋ΄ΫΉΫΉ
(Buttress Dams)
Arch dams
Arch dams
14
C –
( steel dams)ΫΆΫ³Ϋ΄ΫΉ
Direct strutted type
Cantilever type Dams
D –
Timber
E –
15
۱–
( Non-overflow Dams)
۲–
( Overflow Dams)
۱–
( Rigid )
۲–
16



17
ΫΉΫΉ
18
–
19
–
–
–
20
( Verifications)
–
21
–
–
–
22
–
–
23
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
24
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·(
Plankton)
25
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
26
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ο‚·
ΫΆΫΆ
27
Maximum water surface (Max. W.S or flood surface ( FI.S)
( Minimum surface ( Min. S)
( Minimum surface)
(free Board (HfB)
parapet
ΫΆΫΆΫΉΫΆΫ΄ΫΉ
28
( Dead Surface D.S)
( Reservoir General Capacity ( R.G.C )
Dead capacity (D.C)
Live capacity (Liv. C)
Surplus Capacity (S.C)
( N.W.S.el)
( Max. W.S.el)
Inactive Capacity
Active Capacity
29
30
31




ΫΆΫ²ΫΉΫ΅
Ϋ΄Ϋ±
Ϋ±Ϋ΅
Ϋ³ΫΆΫΉ
32
(20x20x20) cm
Ϋ²Ϋ΅ΫΆΫ΅ΫΉ
ΫΆΫ΄
ΫΉΫΉΫ²Ϋ΅
M500, M400, M350, M300, M250, M200, M150,
M100
P35, P31, P27, P23, P20, P18, P15, P11
( Water Cement ratio = 0.5-0.55 )
33
B8,B6,B4,B2
( Samples)
5-
Ax109-
Ax10
300,200,150,100,50400( Samples )
( 25% )
( Corrosion )
2Ca (OH)
34
10 m/sec
( Abrasion)
Cavitation
12 m/sec
400,350500
40
( Water Cement ratio )0.400.45
35
Ϋ΅ΫΉ
Ϋ²Ϋ΅
ۢ–
( 210 k Jul/Kg)(252 k. Jul/Kg)
۲–3
1m
۹–
36
ۡ–
0.05 mm/m
0.07 mm/m
Ϋ²Ϋ΅0.3 mm/ mΫΆΫ΅ΫΉ0.7 mm/ m
Ϋ²Ϋ΅0.1 mm/mΫΆΫ΅ΫΉ0.3 mm/m
Ϋ²
Ϋ²Ϋ΅
Ϋ΄Ϋ΅
ΫΆ
Ϋ΅ΫΆΫ²
37

400,300500
(20-15)%
ΫΆΫ²
( Hydro phobia cement )400 – 300
( Pozzolana Portland cement )
38
( 70 – 60 ) %
(
40 – 25 ) %
( Sulphate resisting cement )
400 – 300
۲۹۹۹۹۹( Slag Portland cement)
(60 – 30 )%
-0.150.6
-0.60.48
39
-Ϋ΄ΫΆΫΉ
-ΫΆΫΉΫ²ΫΉ
-Ϋ²ΫΉΫ΅ΫΉ
-Ϋ΅ΫΉΫ΅ΫΉ
-Ϋ΅ΫΉΫΆΫ²ΫΉ
-ΫΆΫ²ΫΉΫ²ΫΉΫΉ
Ϋ΅
ΫΆΫΉΫΉ
Ϋ±ΫΉ
40
0.15%
Ϋ²ΫΆΫΉΫΉΫ±Ϋ΅ΫΉΫΉ
2
) kg /cm6
2.10*10–( 1.9
41
-
ΫΆΫ±ΫΉ
-
Ϋ²ΫΉΫΉΫ²Ϋ΅ΫΉ
-
Ϋ²Ϋ±ΫΉ
-12
m/secΫ²Ϋ±ΫΉ
ΫΆΫ³Ϋ±ΫΆ
ΫΆΫ΅ΫΉ
42
)f( T
)f(T)1(P
1
2
= 0.5 * Β₯ * H1P
P1–
= G*ffT–
F–
)1>Pf( T
(P1)
ΫΆΫ³Ϋ±ΫΉΫΆΫ³Ϋ±Ϋ΅
43
ο‚·By head ( height)
ο‚·By type of
foundation materials
ο‚·By forms of cross profile
ο‚·
1ΫΆΫ΄
2ΫΆΫ΄Ϋ΄ΫΉ
3Ϋ΄ΫΉ
A
44
B
Ϋ±ΫΉ
45
A
B
C
ΫΆΫΉΫΉΫΆΫ΄ΫΉ
46
( Penitence )ΫΆΫ±Ϋ³ΫΆ
( Grobo )ΫΆΫ΅ΫΉΫ΅
47
A
B
A( Dead load)
B( Live load )
48
ο‚·
ο‚·
49
50
)nN–( Normative force
)n( N)n( N(n)
)c( N
n*nN=cN
( n = 1.0 – 1.2 )
(Nc)Ϋ²ΫΉ
( Nn)(
n = 0.9 – 0.8 )
RR
Nc
R
≀R m/SFc* Ncn
nc=c( n
1.0 )=0.9)c(n
m–
m1.0
51
SF–
Grid
SF=1.25SF=1.20
SF=1.15SF=1.10
SF
all≀ Ο‰cal; Ο‰all≀ Ξ”/cal; Ξ”/all≀ Β£calΒ£
Ξ”/ £ω
52
1
2
3
ΫΆ
1UNi-i
2UNi-i
1DNi-i
2DNi-i
53
YUOi-iY
YDO–i-iY
XUOi-iX
XDO–i-iX
Dam
54
ΫΆΫΈ
Ϋ±Ϋ²
ΫΉΫ³Ϋ³Ϋ΄
Ϋ³Ϋ³
Ϋ°Ϋ·Ϋ±Ϋ².
55
Ϋ±Ϋ²Ϋ³Ϋ·
ΫΉΫ·Ϋ·
Ϋ²Ϋ±
ΫΉΫΆ
𝑅 π‘ π‘œπ‘–π‘™ = 28 βˆ— 103 π‘˜π‘”
π‘π‘š2⁄
(10β€”15m)
56
(6-7)
57
Agricultureland
Houses
Tree
ExestingDranage
River
MinorContur
MajorContur
ExestingAsphaltRoad
LEGEND
DESIGNOFMANAGAIHYDROPOWERPROJECT
KUNARPROVINCE(AFGHANISTAN)
DrawingTitle
DrawingN1ScaleDesiognedby
Cheeckedby1:1000
Can.-1
SiteTopographicalPlan,Crossprofileslocation
&HeadracecanalalignmentPlan.
Prof.Dr.M.Asef
Amin
Kapisa
Construction
Company
AKCCMinistryofEnergy&Water
Scale1:4000
I
H
G
A
B
BENCHMARK
BUILDING
ASPHALTEDROAD
EXISTENCEROAD
DRAINAGE
AGRICULTURELAND
RIVER
RIVERBED
CULVERT
MASQUE
STATIONS
CEMETRY
TREE
WATERWELL
LEGEND
NORTHARROW
I
H
G
F
E
C
A
B
D
NO
BM1
BM2
BM3
BM4
BM5
BM6
BM7
BM8
BM9
BM10
BM11
BM12
BM13
BM14
BM15
BM16
BM17
BM19
BM20
BM21
MANODAMBENCHMARKSCOORDINATES
X(EASTING)Y(NORTHING)Z(ELEVATION)
689406.92023868116.9284875.325
689127.53363868073.6554922.223
688959.58733868150.3778967.548
688665.50763868314.5217935.068
688525.63213868402.7225934.307
688328.00613868473.8644934.739
687740.56853868733.1686894.823
688085.78083868643.3000890.891
686472.5916
686368.6806
689314.4977
689240.1187
686004.1852
685988.2037
685909.6491
685916.8786
685146.625
684557.9163
684557.4027
684563.9821
3868734.7779940.118
3868734.7299939.21
3868086.1151886.032
3868131.7081885.205
3868625.8313942.439
3868614.8156943.05
3868567.8692941.879
3868571.322942.128
3868223.5932952.781
3868471.6049936.234
3868457.6059931.792
3868455.5039931.632
MAJORCONTOUR
MINORCONTOUR
684596.5253868467.174930.899BM22
684609.5273868394.100928.127BM23
684615.0843868401.273928.077BM24
PECHRIVER
PECH
RIV
ER
PECH
RIVER
PECHRIVER
PECHRIVER
PECH RIVER
B
905.00
905.00
905.00
910.00
910.00
910.00
915.00
915.00
915.00
920.00
920.00
920.00
920.00
925.00
925.00
925.00
925.00
930.00
930.00
930.00
930.00
935.00
935.00
906.00
907.00
907.00
907.00
908.00
909.00
937.00
CP-1
CP-2
CP-3
CP-4
MANAGAIHYDROPOWERPROJECTKUNARPROVINCE(aFGHANISTAN
HEADRACECANALALIGNMENT,BEDSLOPE(0.0015)DISCHARGE(7.5mΒ³/s),BED
WEDTH(2.75m).
58
59
1
2
3
4
5
60
Riverbasinkabulcode
river:pechcode
stationchaghasaraicode
gagerecorderloactaionLat.34̊54Long71̊08
totalrunoff(M.m)
yearOctNovDecJanFebMarAprMayJunJulAugSepMinMaxMeanRunoff
195900
196033.385.892.316516864.518.318.316889.60
196110.513.58.186.468.4915.458.412417985.541.530.76.4617948.471530
19621012.39.748.038.9612.455.975.812968.232.5198.0312936.821164
196322.115.17.966.587.862774.914521612453.320.56.5821660.031899
196411.89.311.87.798.9418.771.612917511252.418.67.7917552.241653
196510.28.590.39.221.7931672722196126.90.327274.822388
1966139.299.314.137.810515322314263.732.5922367.632138
196724.615.98.366.167.8915.477.914924616156.133.86.1624666.842122
196821.31610.49.6415.339.610015325820484.525.19.6425878.072472.8
196919.613.812.710.213.554.710216329014552.124.310.229075.081326.2
197030.123.11049.498.717.463.713712033.531.418.98.713749.771001.7
19719.326.434.733.54.2614.646.112896.438.219.49.173.512831.682321
19726.735.944.014.5712.739.510519633112332.620.74.0133173.482916
197315.113.213.113.216.946.117427830615160.120.113.130692.231420
197413.18.787.716.188.3919.764.614217476.51710.36.1817445.691792.5
19758.67.858.846.856.1511.487.213821311255.427.76.1521356.921693
197616.29.477.716.5510.41537.815816411643.121.46.5516450.471303
1977108.236.617.587.6118.342.712517057.92515.66.6117041.211843
197810.49.237.979.036.4312.48919018811937.419.76.4319058.21
197910.89.5476.69.96.610.88.77
198000
Mean14.3911.3413.627.269.7724.7680.77149.64206.07118.7346.4721.75
200793.418916515259.925.259.9189114.0833
200815.410.56.624.847.3632.167.713613612734.810.74.8413649.085
200910.310.811.96.38.528.465.712417411937.611.46.317450.65833
20106.446.035.62.574.733.369.312813910352.49.82.5713946.67833
20114.835.675.356.398.081743.990.454.915.817.86.084.8390.423.01667
201200#DIV/0!
Mean9.248.257.375.037.1627.7068.00133.48133.78103.3640.5012.64
NOdatafromMarch1979toMarch2007
1
1-4.1R0
1-4.1R0-1A
years
Elevation
Drainagearea
1945-1980
850
3.855
61
62
63
IIIIII
IVV
VI
𝐴 = π‘„π‘šπ‘Žπ‘₯ βˆ’ π‘„π‘šπ‘–π‘›
𝐴 = 331 βˆ’ 10.8 = 320.2
π‘š3
𝑠𝑒𝑐
C=10-20
VII
βˆ†Q =
𝐴
𝐢
=
320.2
15
= 21.35
π‘š3
𝑠𝑒𝑐
⟹ βˆ†π‘„ = 21.35
π‘š3
𝑠𝑒𝑐
βˆ†Q331 βˆ’ 21.35 =
309.65IXV
XIX
V
X
25 ↔ 100%
1 ↔ 𝑋
π‘₯ =
100%
25
= 4%
64
X
XI
XIIXXIIXIII
XIIXIII
Microsoft ExcelXI
maxQ
65
AmpletodeInteval
βˆ†Q=A/C
YearQM3
/secYearQM3
/secA=Qmax-QminCleaghtofIntervalNofoyearspercentaqeNofoyearspercentaqe
IIIIIIIVVVIVIIVIIIXXXIXIIXIII
1195901972331320.21521.35331.00309.651414
219601681973306320.21521.35308.65287.3128312
319611791969290320.21521.35286.31264.9614416
419621291965272320.21521.35263.96242.6128624
519632161968258320.21521.35241.61220.2714728
619641751967246320.21521.35219.27197.9228936
719652721966223320.21521.35196.92175.574161352
819662231963216320.21521.35174.57153.235201872
919672461975213320.21521.35152.23130.883122184
1019682581978190320.21521.35129.88108.53282392
1119692902007189320.21521.35107.5386.19142496
1219701371961179320.21521.3585.1963.84002496
1319711281964175320.21521.3562.8441.49002496
1419723311974174320.21521.3540.4919.15002496
1519733062009174320.21521.3518.15-3.201425100
1619741741977170320.21521.35025100
1719752131960168320.21521.35025100
1819761641976164320.21521.35025100
1919771702010139320.21521.35025100
2019781901970137320.21521.35025100
21197910.82008136320.21521.35025100
22198001962129320.21521.3525100
2320071891971128320.21521.35
242008136201190.4320.21521.35
252009174197910.8320.21521.35
NO
1stTable,Calculationformaximumdischarge
TimingAmountofInterval
FlowM3
/sec
MaxflowsortbyyearMaxflowsortbyyearRepetiive
66
AmpletodeInteval
βˆ†Q=A/C
YearQM3
/secYearQM3
/secA=Qmax-QminCleaghtofIntervalNofoyearspercentaqeNofoyearspercentaqe
IIIIIIIVVVIVIIVIIIXXXIXIIXIII
1196089.60197392.2389.66155.9892.2386.262814
2196148.47196089.6089.66155.9886.2580.270014
3196236.82196878.0789.66155.9880.2674.2828312
4196360.03196975.0889.66155.9874.2768.2914416
5196452.24196574.8289.66155.9868.2862.31312728
6196574.82197273.4889.66155.9862.3056.324161144
7196667.63196667.6389.66155.9856.3150.33281352
8196766.84196766.8489.66155.9850.3244.343121664
9196878.07196360.0389.66155.9844.3338.36141768
10196975.08200759.9089.66155.9838.3532.37141872
11197049.77197858.2189.66155.9832.3626.38141976
12197131.68197556.9289.66155.9826.3720.40001976
13197273.48196452.2489.66155.9820.3914.41001976
14197392.23197650.4789.66155.9814.408.42142080
15197445.69197049.7789.66155.988.412.434162496
16197556.92196148.4789.66155.9802496
17197650.47197445.6989.66155.9802496
18197741.21197741.2189.66155.9802496
19197858.21196236.8289.66155.9802496
2019798.77197131.6889.66155.9802496
21200759.9019798.7789.66155.9802496
2220084.8420096.3089.66155.9825100
2320096.3020084.8489.66155.98
2420102.5720114.8389.66155.98
2520114.8320102.5789.66155.98
2stTable,Calculationformindischarge
NO
Timing
Amountof
Interval
FlowM3
/sec
Minflowsortbyyear
Minflowsortby
year
Repetiive
67
AmpletodeInteval
βˆ†Q=A/C
NOYearQM3
/secYearQM3
/secA=Qmax-QminCleaghtofIntervalNofoyearspercentaqeNofoyearspercentaqe
IIIIIIIVVVIVIIVIIXXIXIIXIII
1196018.302007114.08113.78157.59114.083106.4981414
219616.46200950.66113.78157.59106.49798.9120014
319628.03200849.09113.78157.5998.91191.3250014
419636.58201046.68113.78157.5991.32483.7390014
519647.79201123.02113.78157.5983.73876.1530014
619650.30196018.30113.78157.5976.15268.5660014
719669.00197313.10113.78157.5968.56560.9800014
819676.16196910.20113.78157.5960.97953.3940014
919689.6419689.64113.78157.5953.39345.807312416
10196910.2019669.00113.78157.5945.80638.22100416
1119708.7019708.70113.78157.5938.22030.63500416
1219713.5019628.03113.78157.5930.63423.04814520
1319724.0119647.79113.78157.5923.04715.46214624
14197313.1019776.61113.78157.5915.4617.8767281352
1519746.1819796.60113.78157.597.8750.289124825100
1619756.1519636.58113.78157.590.288-7.297025100
1719766.5519766.55113.78157.59025100
1819776.6119616.46113.78157.59025100
1919786.4319786.43113.78157.59025100
2019796.6019746.18113.78157.59025100
212007114.0819676.16113.78157.59025100
22200849.0919756.15113.78157.5925100
23200950.6619724.01113.78157.59
24201046.6819713.50113.78157.59
25201123.0219650.30113.78157.59
3stTable,CalculationforAveragedischarge
TimingAmountofInterval
FlowM3
/sec
IX
MinflowsortbyyearMinflowsortbyyearRepetiive
68
P
Qave
π‘„π‘Žπ‘£π‘’ =
βˆ‘ 𝑄𝑛
𝑖=1
𝑛
=
4708.2
25
= 188.33
π‘š3
𝑠
KiQi/Qave
Ki-1 ,(Ki-1)2,m-0.3,n+0.4
mn
P
𝑃 =
π‘š βˆ’ 0.3
𝑛 + 0.4
βˆ— 100
Cs
Timing
P=(m-0.3)/(n+0.4)*100
1 1959 0 1972 331 188.33 1.76 0.76 0.57 0.7 25.4 2.76
2 1960 168 1973 306 188.33 1.62 0.62 0.39 1.7 25.4 6.69
3 1961 179 1969 290 188.33 1.54 0.54 0.29 2.7 25.4 10.63
4 1962 129 1965 272 188.33 1.44 0.44 0.20 3.7 25.4 14.57
5 1963 216 1968 258 188.33 1.37 0.37 0.14 4.7 25.4 18.50
6 1964 175 1967 246 188.33 1.31 0.31 0.09 5.7 25.4 22.44
7 1965 272 1966 223 188.33 1.18 0.18 0.03 6.7 25.4 26.38
8 1966 223 1963 216 188.33 1.15 0.15 0.02 7.7 25.4 30.31
9 1967 246 1975 213 188.33 1.13 0.13 0.02 8.7 25.4 34.25
10 1968 258 1978 190 188.33 1.01 0.01 0.00 9.7 25.4 38.19
11 1969 290 2007 189 188.33 1.00 0.00 0.00 10.7 25.4 42.13
12 1970 137 1961 179 188.33 0.95 -0.05 0.00 11.7 25.4 46.06
13 1971 128 1964 175 188.33 0.93 -0.07 0.01 12.7 25.4 50.00
14 1972 331 1974 174 188.33 0.92 -0.08 0.01 13.7 25.4 53.94
15 1973 306 2009 174 188.33 0.92 -0.08 0.01 14.7 25.4 57.87
16 1974 174 1977 170 188.33 0.90 -0.10 0.01 15.7 25.4 61.81
17 1975 213 1960 168 188.33 0.89 -0.11 0.01 16.7 25.4 65.75
18 1976 164 1976 164 188.33 0.87 -0.13 0.02 17.7 25.4 69.69
19 1977 170 2010 139 188.33 0.74 -0.26 0.07 18.7 25.4 73.62
20 1978 190 1970 137 188.33 0.73 -0.27 0.07 19.7 25.4 77.56
21 1979 10.8 2008 136 188.33 0.72 -0.28 0.08 20.7 25.4 81.50
22 1980 0 1962 129 188.33 0.68 -0.32 0.10 21.7 25.4 85.43
23 2007 189 1971 128 188.33 0.68 -0.32 0.10 22.7 25.4 89.37
24 2008 136 2011 90.4 188.33 0.48 -0.52 0.27 23.7 25.4 93.31
25 2009 174 1979 10.8 188.33 0.06 -0.94 0.89 24.7 25.4 97.24
26 2010 139 1959 0 188.33 0.00 -1.00 1.00 25.7 25.4 101.18
27 2011 90.4 1980 0 188.33 0.00 -1.00 1.00 26.7 25.4 105.12
28 2012 0 2012 0 188.33 0.00 -1.00 1.00 27.7 25.4 109.06
YearsNO n+0.4m-0.3(KI-1)2
Ki-1
Ki=Qi/Qa
v
Q av.Flow sortYearsFolw
69
𝐢𝑣 = √
βˆ‘ (πΎπ‘–βˆ’1)2𝑖=𝑛
𝑖=1
π‘›βˆ’1
= √
6.39
25βˆ’1
= 0.516
Cs
Cs
Cs
Cs=2Cv
Cs=(2-2.5)Cv
Cs=(3-4)Cv
Cs=(3-4)Cv
Cs=4Cv
Cs=4Cv
Cs upCs downCs
Cs
Cs upØp upCs downØP downØP
KpQp%
70
Qp%
Real Number
Cs up Cs Cs Down Øp up Øp Øp Down
0.01 2 2.064 2.1 8.21 8.21 0.516 5.23631 188.33 986.155
0.1 2 2.064 2.1 5.91 5.9932 6.04 0.516 4.09244 188.33 770.729
0.5 2 2.064 2.1 4.3 4.3384 4.36 0.516 3.23858 188.33 609.922
1 2 2.064 2.1 3.6 3.632 3.65 0.516 2.87408 188.33 541.276
3 2 2.064 2.1 2.51 2.5228 2.53 0.516 2.30175 188.33 433.488
5 2 2.064 2.1 2 2.0064 2.01 0.516 2.03529 188.33 383.306
10 2 2.064 2.1 1.3 1.2936 1.29 0.516 1.66749 188.33 314.039
20 2 2.064 2.1 0.61 0.5972 0.59 0.516 1.30815 188.33 246.365
25 2 2.064 2.1 0.39 0.3772 0.37 0.516 1.19464 188.33 224.986
30 2 2.064 2.1 0.2 0.1872 0.18 0.516 1.09660 188.33 206.522
40 2 2.064 2.1 -0.08 -0.093 -0.1 0.516 0.95212 188.33 179.312
50 2 2.064 2.1 -0.31 -0.316 -0.32 0.516 0.83674 188.33 157.583
60 2 2.064 2.1 -0.49 -0.496 -0.5 0.516 0.74386 188.33 140.091
70 2 2.064 2.1 -0.64 -0.64 -0.64 0.516 0.66976 188.33 126.137
75 2 2.064 2.1 -0.7 -0.706 -0.71 0.516 0.63550 188.33 119.684
80 2 2.064 2.1 -0.78 -0.767 -0.76 0.516 0.60413 188.33 113.775
90 2 2.064 2.1 0.9 -0.23 -0.867 0.516 0.88108 188.33 165.934
95 2 2.064 2.1 -0.95 -0.927 -0.914 0.516 0.52169 188.33 98.250
97 2 2.064 2.1 -0.97 -0.944 -0.93 0.516 0.51269 188.33 96.555
99 2 2.064 2.1 -0.99 -0.961 -0.945 0.516 0.50402 188.33 94.922
99.9 2 2.064 2.1 -1 -0.969 -0.952 0.516 0.49985 188.33 94.137
Qp%=Qav*Kp
Timing
Real
Numbers
Cs coifecents ØP Foster Coifecent Cv Kp=Øp*Cv+1 Qav
71
50
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
0.01 0.1 0.5 1 3 5 10 20 25 30 40 50 60 70 75 80 90 95 97 99 99.9
72
10.000
30.000
50.000
70.000
90.000
110.000
130.000
150.000
170.000
190.000
210.000
230.000
250.000
270.000
290.000
310.000
330.000
350.000
0.01 0.1 0.5 1 3 5 10 20 25 30 40 50 60 70 75 80 90 95 97 99 99.9
Cs up Cs Cs Down Øp up Øp Øp Down
0.01 2.1 2.120 2.2 8.21 0.530 5.35078 57.66 308.526
0.1 2.1 2.120 2.2 6.04 6.0597 6.14 0.530 4.21129 57.66 242.823
0.5 2.1 2.120 2.2 4.36 4.3718 4.42 0.530 3.31681 57.66 191.247
1 2.1 2.120 2.2 3.65 3.6559 3.68 0.530 2.93741 57.66 169.371
3 2.1 2.120 2.2 2.53 2.532 2.54 0.530 2.34179 57.66 135.027
5 2.1 2.120 2.2 2.01 2.012 2.02 0.530 2.06622 57.66 119.138
10 2.1 2.120 2.2 1.29 1.2861 1.27 0.530 1.68153 57.66 96.957
20 2.1 2.120 2.2 0.59 0.5861 0.57 0.530 1.31057 57.66 75.567
25 2.1 2.120 2.2 0.37 0.3661 0.35 0.530 1.19398 57.66 68.845
30 2.1 2.120 2.2 0.18 0.1761 0.16 0.530 1.09330 57.66 63.039
40 2.1 2.120 2.2 -0.1 -0.104 -0.12 0.530 0.94491 57.66 54.484
50 2.1 2.120 2.2 -0.32 -0.322 -0.33 0.530 0.82937 57.66 47.822
60 2.1 2.120 2.2 -0.5 -0.5 -0.5 0.530 0.73503 57.66 42.382
70 2.1 2.120 2.2 -0.64 -0.64 -0.64 0.530 0.66084 57.66 38.104
75 2.1 2.120 2.2 -0.71 -0.706 -0.69 0.530 0.62584 57.66 36.086
80 2.1 2.120 2.2 -0.76 -0.758 -0.75 0.530 0.59829 57.66 34.498
90 2.1 2.120 2.2 -0.867 -0.862 -0.842 0.530 0.54316 57.66 31.319
95 2.1 2.120 2.2 -0.914 -0.908 -0.882 0.530 0.51899 57.66 29.925
97 2.1 2.120 2.2 -0.93 -0.923 -0.895 0.530 0.51082 57.66 29.454
99 2.1 2.120 2.2 -0.945 -0.937 -0.905 0.530 0.50340 57.66 29.026
99.9 2.1 2.120 2.2 -0.952 -0.944 -0.909 0.530 0.50000 57.66 28.830
Qp%=Qav*Kp
TimingReal
Numbers
Cs coifecents ØP Foster Coifecent Cv Kp=Ø*Cv+1 Qav
73
Dam
74
Hydraulic Calculation for spillways
Width of spillways: B =
π‘„π‘šπ‘Žπ‘₯
𝑐𝑑π‘₯𝐻0π‘₯√2𝑔
π‘š
Cd = coefficient of discharge (C=0.6, 0.67)
K = pier Construction coefficient (k=1) ,
g= gravity acceleration g=9.81m/sec2
H0 = Total head on crest (H0 = βˆ†π» +
π‘Žπ‘£02
2𝑔
)
βˆ†π»= design head m
a = Karialos coefficient (a = 1.05) V0 = water velocity over
spillway crest (1-2 m/s)
v0= 1.5m/sec βˆ†π»= 2m
H0 = 2+
1.05π‘₯1.52
2π‘₯9.81
= 2.12π‘š, Qmax= 360m3/sec
B =
360
0.65π‘₯1π‘₯2.123/2 π‘₯√2π‘₯9.81
= 40.5 π‘ π‘Žπ‘¦ 41π‘š
Now we can find width of every span by equation:
B = n*I + (n-1) *bp (m)
n= number of span (n=5)
I= width of span
bp= width of pier (2-3m) accept bp=2.5m
41= 5xI+(5-1) x2.5, I = 6.2 say 6.5m
B = 5x6.5+ (5-1) x2.5 = 42.5
75
76
Hydraulic calculation for top and bottom of
spillway
Discharge per meter width of spillway crest:
q = cv x h1 x √2π‘₯𝑔( 𝐻0 + 𝑝) βˆ’ β„Ž1 m3/sec x m
cv= coefficient of velocity (0.85-0.95) accept cv=0.9
P = height of spillway (p=29m)
q = 9.81
h1 = first hydraulic jump, also q= Qmax/B => 360/42.5 =
8.47 m3/sec2
Now we can find h1 from equation:
q = cv x h1 √2π‘₯𝑔 (𝐻0+ 𝑝) βˆ’ β„Ž1 if
h1=0.5m=>q=0.9x0.45√2π‘₯9.81π‘₯(2.12 + 29) βˆ’ 0.5
=11.11m2/sec
if h1=0.5m =>q = 0.9x0.45 √2π‘₯9.81(2.12 + 29) βˆ’ 0.45
=10 m2/sec
if h1 = 0.4 => q = 0.9x0.4√2π‘₯9.81(2.12 + 29) βˆ’ 0.4 =
8.89 m2/sec
if h1 = 0.39 => q = 0.9x0.39 √2π‘₯9.81(2.12 + 29) βˆ’ 0.39
= 8.67 m2/sec
if h1 = 0.3818 => q = 8.488 m2/sec accept h1 = 0.381 m
Height of second hydraulic jumps:
h2 =
β„Ž1
2
√
1+8π‘Žπ‘ž2
π‘”β„Ž1
3 π‘š =
0.381
2
√1 + 8 = 6.35π‘š
77
Length of stilling basin is finding from equation:
L = 5(h2-h1) => 5(6.35-0.381) = 29.8 m
78
Shape of ogee – crest
1. Based on latest research of US corps up streams
curve is drawing by following formula:
 Y =
0.724(π‘₯+0.27𝐻0)1.8
𝐻0
0.5 + 0.126 𝐻0 βˆ’
0.4315𝐻0
0.375
(π‘₯ + 0.27𝐻0)0.652
 BY empirical formulas r1=0.5H0, r2=0.2H0, a=
0.175H0, b= 0.282H0
2. For drawing down stream curve we use the
following formulas:
 X1.85 = 2H0
0.85y
For upstream curve: r1 =0.5x2.12= 1.06m, r2 =
0.2x2.12= 0.424, a = 0.175x2.12 = 0.371
b= 0.282x2.12 = 0.6
For downstream curve X1.85 = 2H0
0.85y => y =
𝑋1.85
2𝐻00.85
X = 1m, y =
11.85
2π‘₯120.85 = 0.264m
X = 3m, y =
31.85
2π‘₯120.85 = 2.621m
X = 5m, y =
51.85
2π‘₯120.85 = 5.184m
X = 7m, y =
71.85
2π‘₯120.85 = 9.661m
X = 9m, y =
91.85
2π‘₯120.85 = 15.38m
X = 12m, y =
121.85
2π‘₯120.85 = 26.186m
X = 12.7m, y =
12.71.85
2π‘₯120.85 = 29.08m
79
80
new formula empircal X2
=2HY
H0 X Y1 Y2 y 3
2.12 0 -0.312566732 0 0
2.12 1 -1.624164718 -0.2639882 -0.23585
2.12 2 -3.515713249 -0.951678 -0.9434
2.12 3 -5.963986392 -2.0149248 -2.12264
2.12 4 -8.944382643 -3.4308008 -3.77358
2.12 5 -12.43668006 -5.1841676 -5.89623
2.12 6 -16.42422483 -7.2638077 -8.49057
2.12 7 -20.89302808 -9.6608624 -11.5566
2.12 8 -25.83111178 -12.368043 -15.0943
2.12 9 -31.22805079 -15.379179 -19.1038
2.12 10 -18.688934 -23.5849
2.12 11 -22.292614 -28.5377
2.12 12 -26.18604
-35
-30
-25
-20
-15
-10
-5
0
0 2 4 6 8 10 12 14 16
Chart Title
Y1 Y2 y 3
81
H0
82
R
ho 200
X Y
X Y -52.8 -25.4
1 -16.4 -49.4 47 -29.4 -4.2
2 0 -106 106 0 0
3 0 -165 165 43.4 -5.8
4 -30.8 -277.8 282 116.6 -37.4
5 -176 -515 560 246 -146.8
6 -733.6 -1001.4 1300 368 -311.12
7 -1665.8 -1585.4 2400 551.6 -667.6
Center
R
83
XY
84
Stability Calculation for Spillway Cross Section
Gravity center of Spillway Section is calculation in Auto CAD easily.
Tools, inquiry, Region/mass, Properties
Area: 439.22m2
Perimeter: 108.21m
Centroid: X: 9.23m Y: 10.85m
Center of Gravity
85
Forces acting on a Spillway:
1. Water pressure:
a) = External water pressure per length of spillway
p1 =
𝑀π‘₯(βˆ†π»2)
2
T/m
w = Unit weight of water (w= 1000 kg/m3) =
1ton/m3
Ξ”H = Water head on spillway crest (Ξ”H = 2m)
P2=
𝑀π‘₯(βˆ†π»2)
2
T/m =
1π‘₯(22)
2
= 2 ton/m
b) Water pressure – sensitive on spillway vertical
wall.
P3= wxΞ”HxH = 1x2x24 = 48 T/m
P4=
𝑀π‘₯𝐻π‘₯𝐻
2
=
1π‘₯24π‘₯24
2
= 288 T/m
2. Total pressure on vertical wall:
86
P = p2 +p3 = 48 + 288 = 336 T/m
Position of resultant pressure:
Depth of the point of the resultant pressure from
base is calculating by taking moment of both the
pressure about point A and equation the source>
Pxh = (p2 x H/2) + (p3 x H/3) => 336xh = (48 x 24/2)
+ (288 x 24/3)
336h = 2880, h = 8.57m
3. Water pressure bellow the base of spillways or
uplift pressure:
P =
𝑀π‘₯𝐻π‘₯𝑙
2
T/m => Puplift =
1π‘₯24π‘₯27.48
2
= 329.76 ton/m
87
4. Psoil =
1
2
8h2 1βˆ’π‘ π‘–π‘›πœƒ
1+π‘ π‘–π‘›πœƒ
t/m
h = the height of the silt is depositor (h = 2)
𝛾 = the submerged unit of silt (1.2 t/m)
Q = the angle of internal fraction (πœƒ = 15 π‘œ
)
Psoil =
1
2
8h2 1βˆ’π‘ π‘–π‘›15
1+𝑠𝑖𝑛15
= 28.62 t/m
5. Self-weight of spillway:
The weight of the dam is major resisting force for
analysis purpose, generally unit length of the dam
is considered.
G = A x r x 1m t/m, G = weight of spillways
A = spillways cross section Area
r = unit weight of spillway marital
A = 439.22 m2
G = 439.22 x 2.7 x 1 = 1185.89 t/m
G = G – Puplift = 1185.89 – 329.76 = 856.13 t/m
Ptotal = P(p2+p3) + Psoil = 336+28.62 = 364.62 t/m
Safety calculation for spillways:
R = √(𝐺12) + (π‘ƒπ‘‘π‘œπ‘‘π‘Žπ‘™)2 = √856.132 + 364.622 = 930.54
t/m
TanΞ± =
𝑝 π‘‘π‘œπ‘‘π‘Žπ‘™
𝐺1
=
364.62
856.13
= 1.42589, Ξ± = 23.17o
B ≀
𝐡
6
b =
𝑃π‘₯𝑋′
𝐺1
=
364.62 π‘₯ 10.85
856.13
= 4.62 say b = 4.6209
88
𝐡
6
=
27.76
6
= 4.6267
b ≀
𝐡
6
, b = 4.6209 < 4.6267 0k
Resultant line calculation for Rotation taking moment at
point C :
Mc = p(p2+p3) x
𝐻
2
+ psoil x
𝐻 π‘ π‘œπ‘–π‘™
3
+ psoil x
𝐡
3
Mc = 336 x
33
2
+ 28.62 x
9
3
+ 329.76 x
27.76
3
Mc = 8681.24 T*m
Mc’ = G1 x X’ = 856.13 x 9.23 = 7912.1
T*m
𝑀𝑐
𝑀𝑐′
=
8681
7902
= 1.1 β‰₯ 1.1 safe against
overturning.
Calculation for slipper or sliding:
𝐺1
𝑝 π‘‘π‘œπ‘‘π‘Žπ‘™
x n =
856.13
364.62
x 0.7 = 1.644 > 1.1 ok
Safe against sliding
n = righty coefficient of material
89
Design of Barge
Slab Design
LL = 60 T/m2
L = 1.4
h = 25 cm
self-weight of slab = 0.25 x 24 = 0.6 T/m2
self-weight of pcc = 0.2 x 2.9 = 0.44 T/m2
Total = 1.04 T/m2
Qu = 1.2 (1.04) + 1.6 (60) = 97.24 T/m2
Wu = 97.248 T/m per 1m strip
Wu = 97.248 x 1.4 = 136.2 T/m, b = 1.4
-veMo =
𝑀𝐿2
βˆ’24
=
136.2 π‘₯ 1.42
24
= 11.123 T x m = 109.1 KN.m
-veMo =
𝑀𝐿2
10
=
136.2 π‘₯ 1.42
10
= 261.7 Txm = 261.84 KN.m
+veMo =
𝑀𝐿2
14
=
136.2 π‘₯ 1.42
14
= 19.1 T x m = 187.31 KN xm
Note: negative moment at face of all support for a slabs with
spans not exceeding 10 ft moment is
𝑀𝑙2
12
From Table 14.1 ACI coefficients
Design for 11.123 T x m = 109.1 KN x m
Rn =
𝑀𝑒
βˆ…π‘π‘‘2
=
109.1 π‘₯ 106
0.9 π‘₯ 1000 π‘₯ 2202
= 2.505 mpa
𝜌 =
0.85 π‘₯ 𝐹′𝑐
𝑓𝑦
( 1 - √1 βˆ’
2𝑅𝑛
0.85 π‘₯ 𝐹′𝑐
)
𝜌 =
0.85 π‘₯ 28
420
( 1 - √1 βˆ’
2 π‘₯ 2.2505
0.85 π‘₯ 28
) = 0.00632
As = 𝜌bd = 0.00632 x 1000 x 220 = 1390.4 m2
/sec
Trial and error Method:
βˆ…Mn = βˆ…Asfy (d-a/2)
90
Mn = Asfy (d – a/2)
Req As =
𝑀𝑒
βˆ…π‘“π‘¦ (π‘‘βˆ’
π‘Ž
2
)
Assume z = 0.9d
First trial
Z = 0.9 x (22) = 19.8 cm
As =
109.1 π‘₯ 106
0.9 π‘₯ 420 π‘₯
= 1457.7 mm2
a =
1457.7 π‘₯ 420
0.85 π‘₯ 28 1000
= 25.724mm
z = d -
π‘Ž
2
= 220 -
25.724
2
= 207.138 mm
2nd
trial:
Z = 207.138 mm
As =
109.1 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 207.138
= 1393.39 mm2
a =
1393.39 π‘₯ 420
0.85 π‘₯ 28 1000
= 24.589 mm
z = 220 -
24.589
2
= 207.71
3rd
trail:
Z = 207.71
As =
109.1 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 207.71
= 1389.55 mm2
closed
Req As = 1390 mm2
Try 14βˆ…mm
Ab =
πœ‹π‘‘2
4
=
πœ‹ π‘₯ 142
4
= 153.86 mm2
N =
1390
153.86
= 9.03 say 10
S =
𝐴𝑏
𝑅𝑒𝑑 𝐴𝑠
π‘₯ 1000
91
As = 9 x 153.86 = 1538.6
S =
153.86
1538.6
π‘₯ 1000 = 1000mm
βˆ…Mn = βˆ…Asfy ( d – a/2 )
a =
𝐴𝑠𝑓𝑦
0.85 𝐹′ 𝑐 𝑏
=
1538.6 π‘₯ 420
0.85 π‘₯ 28 1000
= 27.15 mm
∈t =
π‘‘βˆ’π‘
𝑐
x (0.003) > 0.005 Tension control
C =
π‘Ž
𝛽1
=
27.15
0.85
= 31.94
∈t =
220βˆ’31.
31.94
x (0.003) =0.0176 tension control
βˆ…Mn = 0.9 x 1588.6 x 420 (220 -
27.15
2
)
βˆ…Mn = 120054880.9 = 120.1 KN .m > 109.1 KN*M ok
Design for 26.7 T x m = 261.84 KN x m
Rn =
𝑀𝑒
βˆ…π‘π‘‘2
=
261.84 π‘₯ 106
0.9 π‘₯ 1000 π‘₯ 2202
= 6.01
𝜌 =
0.85 π‘₯ 𝐹′𝑐
𝑓𝑦
( 1 - √1 βˆ’
2𝑅𝑛
0.85 π‘₯ 𝐹′𝑐
) =
0.85 π‘₯ 28
𝑓𝑦420
( 1 - √1 βˆ’
2 π‘₯ 6.011
0.85 π‘₯ 28
) =
0.0168
As = 𝜌bd = 0.0168 x 1000 x 220 = 3696 mm2
Trial and Error method:
βˆ…Mn = βˆ…Asfy (d-a/2)
Mn = βˆ…Asfy (d-a/2)
Req As =
𝑀𝑒
βˆ…π‘“π‘¦ (π‘‘βˆ’
π‘Ž
2
)
Assume
Z = 0.9 d
a = 0.9 x 220 = 198 mm
first trial:
92
As =
201.84 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 198
= 3498.48 mm2
a =
3498.48π‘₯ 420
0.85 π‘₯ 28 1000
= 61.74mm
z = d -
π‘Ž
2
= 220 -
61.74
2
= 189.13 mm
2nd
trail:
As =
261.84 π‘₯ 106
0.9 π‘₯ 420 π‘₯189.13
= 3662.55 mm2
a =
3662.55π‘₯ 420
0.85 π‘₯ 28 1000
= 64.62 mm
z = d -
π‘Ž
2
= 220 -
64.62
2
= 187.69 mm
3rd
trail:
As =
261.84 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 187.69
= 3690.65 mm2
a =
3690.65 π‘₯ 420
0.85 π‘₯ 28 1000
= 65.13 mm
z = d -
π‘Ž
2
= 220 -
65.13
2
= 187.435 mm
4TH
trail:
As =
261.84 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 187.435
= 3695.67 mm2
a =
3695.67 π‘₯ 420
0.85 π‘₯ 28 1000
= 65.22mm
z = d -
π‘Ž
2
= 220 -
65.22
2
= 187.39 mm
5th
trial:
As =
261.54 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 187.39
= 3696.56 mm2
Req As = 3700mm2
Try βˆ… 32 mm
Ab =
πœ‹π‘‘2
4
=
πœ‹322
4
= 804.25 mm2
93
S =
𝐴𝑏
π‘…π‘’π‘ž 𝐴𝑠 π‘₯ 1000
=
804.25
3700
= 217.36 mm say 200 mm
βˆ…Mn = βˆ…Asfy ( d – a/2 )
200 1
1000 X
X=5
As = 5 x 804.25 = 4021.25 mm2
a =
4021π‘₯ 420
0.85 π‘₯ 28 1000
= 70.96 mm
∈t =
π‘‘βˆ’π‘
𝑐
x (0.003) > 0.005 Tension control
C =
π‘Ž
𝛽1
=
70.96
0.85
= 83.48
∈t =
220βˆ’83.48.
83.48
x (0.003) = 0.005 tension control
βˆ…Mn = 0.9 x 4021 x 420 (220 -
70.96
2
) = 280458959.8 N.mm =
280.46 KN.m > 261.84 0k
Design for positive moment:
Mo = 19.7 Txm = 187.3 kn.m
Rn =
𝑀𝑒
βˆ…π‘π‘‘2
=
187.3 π‘₯ 106
0.9 π‘₯ 1000 π‘₯ 2202
= 4.3
𝜌 =
0.85 π‘₯ 𝐹′𝑐
𝑓𝑦
( 1 - √1 βˆ’
2𝑅𝑛
0.85 π‘₯ 𝐹′𝑐
) =
0.85π‘₯ 28
420
( 1 - √1 βˆ’
2 π‘₯ 4.3
0.85 π‘₯ 28
) =
0.0114
Trial and error method:
βˆ…Mn = βˆ…Asfy (d-a/2)
Mn = βˆ…Asfy (d-a/2)
Req As =
𝑀𝑒
βˆ…π‘“π‘¦ (π‘‘βˆ’
π‘Ž
2
)
Assume
94
Z = 0.9 d
a = 0.9 x 220 = 198 mm
first trial:
As =
187.3 π‘₯ 106
0.9 π‘₯ 420 π‘₯ 198
= 2502.54 mm2
a =
2502.54π‘₯ 420
0.85 π‘₯ 28 1000
= 44.162mm
z = d -
π‘Ž
2
= 220 -
44.162
2
= 197.919 mm
2nd
trail:
As =
187.3 π‘₯ 106
0.9 π‘₯ 420 π‘₯197.919
= 2503.56 mm2
Req As = 2504 mm2
Try 250 mm
Ab =
πœ‹π‘‘2
4
=
πœ‹252
4
= 490.87 mm2
S =
𝐴𝑏
π‘…π‘’π‘ž 𝐴𝑠 π‘₯ 1000
=
490.87
2504 π‘₯ 1000
= 196.03 say 200mm
N = 5 from table B4
As = 2550 mm2
a =
2550 π‘₯ 420
0.85 π‘₯ 28 1000
= 45 mm
C = 45/0.85 = 52.94
∈t =
220βˆ’52.94.
52.94
x (0.003) = 0.0095 > 0.005 Tension control
βˆ…Mn = 0.9 x 2550 x 420 (220 -
45
2
) = 190.37 KN . m > 187.84 OK
Shrinkage Reinforcement:
Try 100mm, Ab = 78.54
Req As = 𝜌bd = 0.00181 x 1000 x 220 = 398.2 m
S =
𝐴𝑏
π‘…π‘’π‘ž 𝐴𝑠 π‘₯ 1000
=
78.54
398.2 π‘₯ 1000
= 197.2 say 190
95
S = 165mm, As = 430 mm2
ok
Design of Beam
Mu =
𝑀𝐿2
8
=
136.2 π‘₯ 8.52
8
= 1230 T*m = 12062.2 KN*m
96
F’c = 35, fy = 421
𝜌max is single reinforcement = 0.0216 from table B.9
As1 = 0.0216 x 700 x 1430 = 20020 mm2
𝑀𝑒1
βˆ…π‘π‘‘2
= ?
𝜌 =
0.85 π‘₯ 𝑓′𝑐
𝑓𝑦
(1 - √1 βˆ’
2π‘˜π‘›
085𝑓′𝑐
We want to find Rn
0.0216 =
0.85 π‘₯ 35
420
x (1 - √1 βˆ’ 2𝑅𝑛/0.85)
0.0216 = 0.070833 x (1 - √1 βˆ’
2𝑅𝑛
29.75
)
0.0216 = 0.070833 –0.070833 x (1 - √1 βˆ’
2𝑅𝑛
29.75
)
- 0.049233 = - 0.070833 x (1 - √1 βˆ’
2𝑅𝑛
29.75
)
0.002424 = 0.005017 (1 - √1 βˆ’
2𝑅𝑛
29.75
)
0.002424 = 0.005017 -
0.01𝑅𝑛
29.75
0.077742 = 0.01 Rn
Rn = 7.7142
𝜌 =
0.85 π‘₯ 35
420
x (1 - √1 βˆ’
2π‘₯7.7142
0.85 π‘₯ 35
) = 0.0217
R = 7.714
𝑀𝑒1
βˆ…π‘π‘‘2
= 7.714
Mu1 = βˆ…π‘π‘‘2
x 7.714 =
0.9 π‘₯ 700 π‘₯ 14302 π‘₯ 7.714
106
= 9937.84 KN.m
Mn1 =
9937.84
0.9
= 11042.1 Kn.m
97
Mn2 = Mn - Mn1 = 13402.44 – 11042.1 = 2360.34 Kn.m
Mn =
12062.2
0.9
= 13402.49
Checking to see compression steel yields:
a =
20020 π‘₯ 420
0.85 π‘₯ 35 π‘₯ 700
= 403.76
C =
π‘Ž
𝛽1
=
403.76
0.814
= 496.025 from table B7 B= 0.81 , f’c = 35
Es =
496.025βˆ’70
496.025
x (0.003) = 0.00256 >
420
2000 π‘€π‘π‘Ž
= 0.002
Compression steel yields
As’ Req =
𝑀𝑛2
𝑓𝑦 (π‘‘βˆ’π‘‘β€²)
=
2360.34 π‘₯ 106
420 (1430βˆ’70)
= 4132.25 mm2
Use 7 # 29 mm bars (4515) spicin 100mm
As = As1 + As2 = 20020 + 4132.25 = 24152.25
Use 10# 57 bar (25810) spicing 70 mm
98
Checked
As1 = As – As2
As = 25810 mm2
As2 = 4515 mm2
As1 = 25810 – 4515 = 21295 mm2
Fs = fy
a =
21295 π‘₯ 420
0.85 π‘₯ 35 π‘₯ 700
= 429.479 mm
c =
429.479
0.814
= 527.615 mm
Es = =
527.615βˆ’70
527.615
x (0.003) = 0.0026 > 0.0021
Fy =fs, As2 = As
Mn1 = As1fy (d – a/2) = 21295 x 420 (1430 -
429.48
2
) = 10869.16
Kn.m
Mn2 = As2fy (d-d’) = 4515 x 421nx (1431 – 70) = 2578.92 Kn.m
Mn = Mn1 + Mn2 = 10869.16 + 2578.97 = 13448.128 KN.m
∈t =
π‘‘βˆ’π‘
𝑐
x 0.003 =
1430βˆ’527.615
527.615
x 0.003 = 0.00513 > 0.005 tension
control
βˆ…Mn = 0.9 x 13448.128 = 12103.31 > Mu = 12062.2 OK
99
Design of Beam for shear
VA = VB =
π‘Šπ‘™
2
=
136.2 π‘₯ 8.5
2
= 518.85 T = 5676.58 KN
F’c = 35
Fy = 420
d = 1430 mm = 1.43 m
5676.58
4.25
=
𝑉𝑒
(4.25βˆ’1.43)
Vu = 3766.6 Kn
βˆ…vc =
βˆ…βˆšπΉβ€² 𝑐 𝑋 𝑏𝑀 π‘₯ 𝑑
6
=
0.75 √35 π‘₯ 700 π‘₯ 1430
6
= 740.249 KN
Vs =
π‘‰π‘’βˆ’ βˆ…π‘‰π‘
βˆ…
=
3766.6βˆ’740.25
0.75
= 4035.133 KN
Use 19βˆ…mm
Av = 283.53 mm2
S =
𝐴𝑣 π‘₯ 𝐹𝑦𝑑
𝑉𝑠
=
283.53 π‘₯ 420 π‘₯ 1430
4035.133
= 42.2 mm
100
Smax =
3𝐴𝑣 π‘₯ 𝐹𝑦
𝑏𝑀
=
3 π‘₯ 283.53 π‘₯ 420
700
= 510 mm
1. If VS < 1/3 βˆšπΉβ€²π‘π‘π‘€π‘‘
Smax = d/2
2. VS > 1/3 βˆšπΉβ€²π‘π‘π‘€π‘‘
Smax = d/4
3. VS > 2/3 βˆšπΉβ€²π‘π‘π‘€π‘‘
Not good
1/3 √35 π‘₯ 700 π‘₯ 1430 =1974 KN < Vs
2/3√35 x 700 x 1430 = 3948 KN < Vs
If we change d to up 1460 then its ok but
now we accepted this ok
The d/4 = 1430/4 = 357.5
S = 42mm
Av 283.53
Fy 420
Fc 35
Bw 700
d 1430
Vu 5676.58
L 4.25
oVc 740.249
Distance 1.43 1.5 1.6 1.7 1.8 1.9 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
Vu 3767 3673 3540 3406 3272 3139 3005 2738 2471 2204 1937 1670 1402 1135 868
Vs 4035 3910 3732 3554 3376 3198 3020 2664 2308 1951 1595 1239 883 527 171
S 42 44 46 48 50 53 56 64 74 87 107 137 193 323 998
Smax 510 510 510 510 510 510 510 510 510 510 510 510 510 510 510
1 con 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974
2 con 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974 1974
3 con 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948 3948
Spacing 42 44 46 48 50 53 56 64 74 87 107 137 193 323 715
Design for shear with deferent distance
101
B = (1.25 Γ· 1.75) H
B = (1.75 Γ· 2) H
B = (2 Γ· 2.25) H
B = (2 Γ· 2.5) H
𝐡
𝐻1
= m
𝐡
𝐻1
=
1
√
𝛾𝑐
𝛾𝑀
βˆ’π‘Ž
H = 32m
𝛾𝑐= (2.3 – 2.4) T/m3
𝛾𝑀 = 1.0 T/m3
𝐡
𝐻1
= m => B = m x H1 = 0.7 x 32 = 22.4
𝐡
𝐻1
=
1
√
𝛾𝑐
𝛾𝑀
βˆ’π‘Ž
=
32
√
2.4
1
βˆ’0.7
, B = 24.5 say 25m
b = 7m, Ξ”H = 3m
X =
𝐻 π‘₯ 𝑏
𝐡
=
32 π‘₯ 7
25
= 9m
H5 = H4 + Ξ”H = 9 + 3 = 12m
102
Force acting on a Dam:
1. Water pressure:
2. Uplift pressure
3. Pressure date earthquake force
4. Silt pressure
5. Wave pressure
6. Ice pressure
7. The stabilising force is the weight of the dam itself>
Water pressure:
P1 = Β½ 𝛾𝑀 H2
P1 = Β½ x 1 x 322
= 512 T/m
P4 = Β½ x 1 x 2.52
= 3.125 T/m
103
26 – 18
2.5 – X
X =
2.5 π‘₯ 18
26
= 1.73 m
Uplift pressure:
P2 =2.5* 25*1 = 62.5 T/m
P3= Β½ *25*29.5 = 368.5 T/m
104
Wave pressure:
Waves are generated on the surface of the reservoir by
the blowing winds, which causes a pressure towards the
downstream side. Wave pressure depends upon the wave
height. Wave height may be given by the equation,
Pw =
1
2
(2.9 𝛾𝑀 hw)
5
3
hw
Pw = 2 𝛾𝑀 hw2
hw = 0.032 √ 𝑉. 𝐹 + 0.763 – 0.271 (F)3/4
, F<32km
hw = 0.032 √ 𝑉. 𝐹 for F > 32 km
hw = height of water from top of crest to bottom of trough
in meters
V = wind velocity in Km/hr
F = fetch or straight length of water expanse in km
V = 124 km/hr
F = 7km
hw = ?
hw = 0.032 √124 + 0.763 βˆ’ 0.271(73/4)
hw = 1.75 – 1.167 = 0.543m
pw = 2 x 𝛾 x hw2
= 2x 1 x 0.5432
= 0.6 T/m
3/8 x 0.543 = 0.204m
Aram = 32 + 0.204 = 32.204
Moment = 19.32 T*m
105
Ice pressure:
The ice which may be formed on the water surface of the reservoir
in cold countries, may sometimes melt and expand. The dam face
has then to resist the thrust exerted by the expanding ice. This force
acts linearly along the length of the dam and at the reservoir level.
The magnitude of this force varies from 250 to 1500 kN/m 2
depending upon temperature variations. On an average, a value of
500 kN/m 2
may be allowed under ordinary conditions.
Earth quake pressure:
If the dam to be designed, is to be located in a region which
is susceptible to earthquakes, allowance must be made for
the stresses generated by the earthquakes.
An earthquake produces waves which are capable of shaking
the Earth upo~ which the dam is resting, in every possible
direction.
The effect of an earthquake is, therefore, equivalent to
imparting an acceleration to. the foundations of the dam iri the
direction in which the wave is travelling at the moment. Earthquake
wave may move in any direction, and for design purposes, it has to
be resolved in vertical and horizontal components. Hence, two
accelerations, i.e. one horizontal acceleration (ah) and one vertical
acceleration (av) are induced by an
earthquake. The values of these accelerations are generally
expressed as percentage of the acceleration due Β·tO gravity (g} 𝛼 =
0.1𝑔 π‘œπ‘Ÿ 0.2𝑔 𝑒𝑑𝑐
ln India, the entire country has been divided into five seismic
zones depending upon the severity of the earthquakes. Zone Vis
the most serious zone and includes Himalayan regions of NortJ::i
India. A map and description of theseΒ·zones is available in
"Physical and Engineering Geology" (1999 edition) by the same
author, and can be referred to, in order to obtain an idea of the value
of the a which should be chosen for designs. On an average, a value
of a equal to 0.1 to 0. 15 g is generally sufficient for high daqs in
seismic zones. A vaiue equal to 0.15 g has been used in ~hakra
dam design, and 0.2 g in Ramganga -dam design. However, for
areas not subjected to extreme earthquakes,
106
π›Όβ„Ž = 0.1 g and 𝛼 𝑣 = 0.05 g may by used. In areas
of no earthquakes
or very
less
earthquakes, these forces may be neglected. In extremely
seismic regions and in con-servative designs, even a value upto
0.3 _g may sometimes be adopted. -
Effect of vertical acceleration (CXy). A vertical acceleration
may either act downward or upward. When it is acting in the
upward direction, then the foundation of the dam will be lifted
upward and becomes closer to the body of the dam, and thus the
effective weight of the dam will increase and hence, the ~tress
developed will increase.
When the vertical acceleration is acting downward, the
foundation shall try to move downward away from the dam
body ; thus reducing the effective weight and the stability of the
dam, and hence is the worst case for designs .
Such acceleration will, therefore, exert an inertia force
given by
π‘Š
𝑔
𝛼 𝑣 (i.e. force= Mass x Acceleration)
where W is the total weight of the
darn.
:. The net effective weight of the dam=
π‘Š βˆ’
π‘Š
𝑔
𝛼 𝑣
If
where kv is the fraction of gravity
adopted for ver-tical acceler-at:ion,
such as 0.1 or 0.2, etc.].
Then, the net effective weight of the darn
107
In other words, vertical acceleration reduces the unit
weight of the darn material and that of water to (I - ky) times
their original unit weights.
Effect at vertical acceleration:
av = Kv*g
Kv = is the fraction of gravity adopted for vertical
acceleration such as 0.1 or 0.2 ok
w/g*av
The net effect weight of dam = w
𝑀
𝑔
av => w
𝑀
𝑔
kv = w [1-kv]
Av = 0.2 x 1 = 0.2 t/sec
Effect of horizontal acceleration:
ah = horizontal acceleration may cause the following two
force:
I. Hydrodynamic pressure
II. Horizontal inert force
A. Hydrodynamic pressure:
Pe = 0.555 KN rw H2
If act at the height of 4H/3πœ‹ above the base where kh is
the fraction at gravity adopted for horizontal , such 0.1 ,
1.2 etc…
𝛾𝑀 = unit weight of water
π‘šπ‘œπ‘šπ‘’π‘›π‘‘ π‘œπ‘“ π‘‘β„Žπ‘–π‘  π‘“π‘œπ‘Ÿπ‘π‘’π‘ :
108
Mc = pe
4𝐻
3πœ‹
= 0.424 pe *H
Zanger formula:
Zanger.has given certain-big.formulas for evaluating
theamoi.mLoLthis force and_ itsΒ· position, etc. on the
vertical as well as on an inclined faces. The results of these
big formulas are quite comparable to those given by Von-
Karman equation and hence, for average ordinary purposes,
the Von-Karman equation (19.1) is sufficient.
Zanger's formula for hydrodynamic force. According to
Zanger
Pe= 0.726pe Β· H
where Pe =-Cm KN Β· Yw Β· H
Pe= 0.726 Cm. kh. Yw. H2
Pe = 0.555 x 0.1 x 1 x 322
= 56.83 T/m
Me= 0.299 PeΒ·
H2
or
Me=0.412Pe
Β·H
Me = 56.83 (
4π‘₯32
3πœ‹
) = 771.1 txm
Silt pressure:
It has been explained under 'Reservoir Sedimentation' in
chapter 18 that silt gets deposited against the upstream face of
the dam. If his the height of silt Β· deposited, then the force
exerted by this silt in addition to external water pressure, can
be represented by Rankine's formula
as : Β· -
109
Psilt =
1
2
𝛾𝑠𝑒𝑏 π‘₯ β„Ž2
π‘˜π‘Ž
And its acts at h/3 from base:
Ka = is the coefficient at active earth pressure of silt =
1βˆ’π‘ π‘–π‘›πœƒ
1+π‘ π‘–π‘›πœƒ
where πœƒ is the angles at internal fraction of soil, and
cohesion is neglected.
π›Ύπ‘ π‘Žπ‘ = submerged unit weight of salt material
h = height of silt deposited
unit wt equal to 3.6 KN/m3
for horizontal direction and
vertical 9.2 KN/m3
the total horizontal force will be 1.8h2
KN/m
1.8 KN/m = 0.184 T/m, 4.6 KN/m = 0.469 T/m
110
No Name of the force Symbol
Deminsion
(m)
Area
(m2
)
Ξ΄w
(T)
F (T)
Downword=+ve,
Upword =-ve
Arm
(m)
Moment
(T*m)
1 W1 7*35 245 2.7 661.5 21.5 14222.25
2 W2 (18*26)/2 234 2.7 631.8 12 7581.6
βˆ‘V1,βˆ‘M1 1293.3 21803.85
3 weight of Water W3 (1.73*2.5)/2 2.1625 1 2.1625 0.5767 1.247041667
βˆ‘V2,βˆ‘M2 2.1625 1.247041667
4 U1 (-)25*2.5 -62.5 1 -62.5 12.5 -781.25
5 U2 (-)(25*29.5)/2 -245.8 1 -245.8333333 16.667 -4097.222222
βˆ‘V3,βˆ‘M3 -308.3333333 -4878.472222
6 P1 (32*32)/2 -341.3 1 -341.3333333 10.667 -3640.888889
7 P2 (1.73*2.5)/3 1.0813 1 1.08125 1.6667 1.802083333
βˆ‘H1,βˆ‘M4 -340.2520833 -3639.086806
8 Wave pressure P(wave) 1 -0.6 32.204 -19.3224
βˆ‘H2,βˆ‘M5 -0.6 -19.3224
9
Upword vertical
earthquak force (-)1.15*βˆ‘V1 -64.665 -109.01925
βˆ‘V4,βˆ‘M6 -64.665 -109.01925
10
Horizontal
hydrodynamic
pressure pe -56.83 -771.1
βˆ‘H3,βˆ‘M7 -56.83 -771.1
11 (-)0.1*W1 -66.15 17.5 -1157.625
12 (-)0.1*W2 -63.18 8.6667 -547.56
13 βˆ‘H4,βˆ‘M8 -129.33 -1705.185
Uplift force
Horizontal
hydrostatic pressure
weight of dam
Horizantal inertia
force due to
earthquak
total moments 10682.91136
total of vertical force 922.4641667
Total of positive moment 21805.09704
total of nagitive moment -11122.18568
Total of horzoantal forces -527.0120833
111
Checking
Combination of forces for Designs. The design of a gravity
dam should be checked for two cases, i.e. (i) when Reservoir is
full; and (ii) when Reservoir is empty.
Case I. Reservoir full case:
When reservoir is full, the m~jor forces acting are: weight of
the dam, external water pressure, uplift pressure, and
earthquake forces in serious seismic zones. The minor forces are:
silt pressure, ice pressure and wave pressure. For the most
conserva-tive designs, and from purely theoretical point of view,
one can say that a situation may arise when all the forces may act
together. But such a situation will never arise and hence, all the
forces are not generally taken together. U.S.B.R. has classified the
'normal load combinations' and 'extreme load combination, as
given below:
(a) Normal Load Combinations
(i) Water pressure upto normal pool level, normal uplift, silt
pressure and ice pressure. This class of loading is taken when ice
force is serious.
(ii)Water pressure upto normal pool level, normal uplift,
earthquake force. s, and silt pressure.
(iii)Water pressure upto maximum reservoir level (maximum
pool level), normal uplift, and silt pressure.
(b)Extreme Load Combinations
(i)Water pressure due to maximum pool levcl, extreme uplift
pressure witho_ut any
reduction due to drainage and silt pressure. -
112
Case II. Reservoir empty case :
(i)- Empty rese-rvo1r - w-ithout eartlicfuake- fotce-s-ro-be-
computed-for-determining-bending diagrams, etc. for
reinforcement design, for grouting studies or other puiyoses.
(ii) Empty reservoir with a horizontal earthquake force
produced towards the
upstream has to be checked for non- development of tension at
toe.
Modes of Failure and Criteria for Structural Stability of
Gravity Dams A gravity dam may fail in the following
ways:
(1) By overturning (or rotation) about the toe
(2} By crushing.
(3) By development of tension, causing ultimate failure
by crushing.
( 4) By shear failure called sliding.
The failure may occur at the foundation plane (i.e. at the base
of the dam) or at any other plane at higher level.
(lj Over-turning. If the resultant of all the- forces acting on a
dam at any of its sections, passes outside the toe, the dam shall
rotate and overturn about the toe. Practi-cally, such a condition
shall not arise, as the dam will fail much earlier by compression.
The ratio of the righting moments about toe (anti clockwise) to
the over turning moments about toe (clock-wise) is called the
factor of safety against overturning. Its value, generally varies
between 2 to 3.
113
(2)Compression or crushing. A dam may fail by the failure of its materials, i.e.
the compressive stresses produced may exceed the allowable stresses, and the
dam-material may get crushed. The vertical direct stress distribution at the
baseis given by the equation:
Pmax/min =
βˆ‘ 𝑣
𝐡
(1 Β±
6𝑒
𝐡
)
Note. Resultant is nearer theΒ· toe and hence,
maximum compressive stress is produced at the toe
114
(Reservoir full case)
Not.,, The resultant is nearer the heel and
hence,
maximum compressive stress (+ve stress)
is
produced at the heel (Reservoir empty
with
horizontal earthquake wave moving away
from
reservoir-case).
If Pmin comes out to be negative, it means that tension shall be produced
at the appropriate end.
If Pmin exceeds the allowable compressive stress of dam material
[generally taken as 3000kN/m2
(30 kg/cm2
) for concrete]; the dam may crush
and fail by crushing.
Case 1. Reservoir Empty:
βˆ‘ 𝑀 = Moment due to weight or dam M1+ due to horizontal earthquake
force moment due to vertical earth quack force.
βˆ‘ 𝑀 = M1 + M2 +M3
βˆ‘ 𝑀 = 21803.85 + 1705.185 +109 = 23618 Txm
βˆ‘ 𝑣 = βˆ‘ 𝑣 1 + βˆ‘ 𝑣 4
βˆ‘ 𝑣 = 1293.3 + 64.665 = 1357.965 T/m
Case 1. Reservoir empty and vertical earthquake force acting down word.
115
When the reservoir is empty, the only single force acting on it is the self-
weight CW) of the dam and it acts at a distance B/3 from the heel. This is the
maximum possible innermost position of the resultant for no tension to
develop. Hence, such a line of action of Wis the most ideal, as it gives the
maximum possible stabilising moment about the toe without causing tension at
toe, when the reservoir is empty. The vertical stress distribution at the base,
when the reservoir is empty, is given as:
X’ =
βˆ‘ 𝑀
βˆ‘ 𝑣
=
23618
1357.965
= 17.39m
e =
𝐡
2
– X’ =
25
2
– 17.39 = -4.89m >
𝐡
2
< 4.1667 m
Resultant acts near the heel and slight tension will be develop at toe
Pmax/min =
βˆ‘ 𝑣
𝐡
(1 Β±
6𝑒
𝐡
) =
1357.965
25
(1 Β±
6 π‘₯ 489
25
) = 54.32 ( 1Β± 1.174 )
Pmax = 118.1
Pmin =-9.45
Pv at heel = 118.1 T/m2
= 1158.165 KN/m ≀ 3000 (safe)
The allowable compressive stress of dam material:
(generally taken as 3000 KN/m2
= 306 T/m2
for concrete)
R at toe = -9.45 T/m2
= -92.67 KN/m2
< 420 (safe)
420 KN = 42.82 T
Average vertical stress:
βˆ‘ 𝑣
𝐡
=
1357.965
25
= 54.32 T/m2
< 306 t/m2
(safe)
Principle stress at toe
𝜎 = pv(heel) sec2
πœƒ
𝜎 = 48.1 = 118 T/m2
< 306 (safe)
Shear stress at toe
To (toe) = p toe tanΞ±
To(toe) = -9.45 x 0.7 = -6.615 < 42.82 (safe)
Shear stress at heel
βˆ‘ 0 (heel) = Pv (heel) tanπœƒ
To (heel) = 1357.965 x 0 = 0 < 306 (safe)
Case 1. (b) Reservoir empty and vertical earthquake force are acting up
word.
Then βˆ‘ 𝑣 = βˆ‘ 𝑣 1 - βˆ‘ 𝑣 4
116
βˆ‘ 𝑣 =1293.3 – 64.665 = 1228.635 T/m
βˆ‘ 𝑀 = βˆ‘ 𝑀 1 + βˆ‘ 𝑀 8 - βˆ‘ 𝑀 6
βˆ‘ 𝑀 = 21803.85 + 1705.185 – 109 = 23400.035 Txm
X’ =
βˆ‘ 𝑀
βˆ‘ 𝑣
=
23400.035
1228.635
= 19.05 m
e =
𝐡
2
– x’ =>
25
2
– 19.05 = -6.55m
e = -6.55 <
𝐡
6
= 4.167
Negative sign shows that resultant lies near heel and therefore, tension
will develop at toe
Average vertical stress:
βˆ‘ 𝑣
𝐡
=
1228.635
25
= 49.14 < 306 (safe)
Pmax/min =
βˆ‘ 𝑣
𝐡
(1Β±
6𝑒
𝐡
)
Pmax/min =
1228.635
25
(1Β±1.572)
Pmax = Pv at heel = 49.14 x 2.572 = 126.39 < 306 (safe)
Pmin = Pv at toe = 49.14 x (0.572) = -28.11 < 42.82 (safe)
Principal stress act on toe
𝜎 = Pv (toe) tanα = -28.11 x 0.7 = -19.68 < 42.82 (safe)
Shear stress act on toe:
= pv (toe) tanΞ± = -28.11 x 0.7 = -19.68 < 42.82 (safe)
Stresses at heel remain critical in this 1st case.
Case 2 when Reservoir is full:
Horizontal earthquake moving towards the reservoir causing
upstream acceleration,
and thus producing horizontal forces towards downstream is
considered, as it is the worst
case for this condition. Similarly, a vertical earthquake moving
downward and thus,
117
producing forces upward, i.e. subtractive to the weight of the dam
is considered.
The uplift coefficient C is taken as equal to 0.6, as given in the
equation, and thus
uplift pressure diagram as shown in Fig. 19.20 (c), is developed.
Case 2 (a) Reservoir full with all forces including uplift.
βˆ‘ 𝑀= βˆ‘ 𝑀 1 + βˆ‘ 𝑀 2 - βˆ‘ 𝑀 3 - βˆ‘ 𝑀 4 - βˆ‘ 𝑀 5 - βˆ‘ 𝑀 6 - βˆ‘ 𝑀7 - βˆ‘ 𝑀 8
βˆ‘ 𝑀 = 21803.85 + 1.25 – 4878.5 – 19.32 – 109 – 771.1 – 1705.185 =
10683 Txm
βˆ‘ 𝑣 = βˆ‘ 𝑣 1 + βˆ‘ 𝑣 2 - βˆ‘ 𝑣 3 - βˆ‘ 𝑣 4
βˆ‘ 𝑣 = 1293.3 + 2.16 – 308.33 – 64.665 = 922.465 T/m
X’ =
βˆ‘ 𝑀
βˆ‘ 𝑣
10683
922.5
= 11.58 m
e =
𝐡
2
– x’ =
25
2
– 11.58 = 0.92 <
𝐡
6
= 4.1667
Average vertical stress:
βˆ‘ 𝑣
𝐡
=
922.5
25
= 36.9 T/m2
Pmax/min =
βˆ‘ 𝑣
𝐡
(1Β±
6𝑒
𝐡
) =
922.5
25
(1Β±
6 π‘₯ 0.92
25
) =36.9 x (1 Β± 0.2208)
Pmax = Pv (toe) = 36.9 x 1.2208 = 45.05 T/m < 306 (safe)
Pmin = Pv (heel) = 36.9 x 0.7792 = 28.75 T/m < 42.82 (safe)
P = 𝛾𝑀 x H = 1 x32 = 32 T/m, P’= 𝛾𝑀 x H’ = 1x2.5 = 2.5 T/m
Principle stress at toe:
𝜎 = Pv(toe) x Sec2
Ξ± – P’ tan2
Ξ±
𝜎 = 45.05 x (1+0.49) – 2.5 x 0.49 = 65.9 T/m2
< 306 T/m2
(safe)
Principle stress of heel is:
𝜎1 = Pv (heel) sec2
πœƒ – (P + Pe) tan2
πœƒ, tan πœƒ = 0, Pe = 56.83 T/m
𝜎1 = 28.75 x ( 1+ tan2
0) – (32 + 56.83) x tan (0)2
118
𝜎 = 28.75 T/m2
< 42.82 T/m2
(safe)
Shear stress at toe
βˆ‘ 0 (toe) = (Pv(toe) – P’) tanΞ± = (45.05 – 2.5) x 0.7 = 29.785 T/m < 42.82
(safe)
Shear stress at heel:
βˆ‘ 0 (heel) = - (Pv(heel) – (P+Pe)tan πœƒ
βˆ‘ 0 (heel) = - (28.75) – (32 + 56.83) x tan0 = -28.75 < 306 T/m (safe)
Factor of safety against overturning:
=
βˆ‘ 𝑀 (+)
βˆ‘ 𝑀 (βˆ’)
=
21805.1
11122.18
= 1.96 > 1.5 (safe)
Factor of safety against sliding:
=
𝑀 βˆ‘ 𝑣
βˆ‘ 𝐻
=
0.7 π‘₯ 922.47
527.013
= 1.22 > 1 (safe)
Shear fraction factor:
S.F.F =
πœ‡ βˆ‘ 𝑣+π΅π‘ž
βˆ‘ 𝐻
q = Average shear strength of the joint which varies from about 1400 KN
/m2
for poor rocks to
about 4000 KN/m2
for good rocks.
Β΅ = 0.15 – 0.75
S.F.F =
0.75 π‘₯ 922.46+25 π‘₯ 1400
527.013
= 3.93 >3 (safe)
Case 2 (b) Reservoir full, without up lift
Sometimes, values of stresses at toe and heel are worked out when
there is no uplift, as the vertical downward forces. is maximum in this case?
For this case, we shall calculate 2:M and I: V by ignoring' the corresponding
values of 2: V3 and 2:M3 caused by uplift.
βˆ‘ 𝑀 = βˆ‘ 𝑀 1 + βˆ‘ 𝑀 2 - βˆ‘ 𝑀 4 - βˆ‘ 𝑀 5 - βˆ‘ 𝑀 6 - βˆ‘ 𝑀 7 - βˆ‘ 𝑀 8
βˆ‘ 𝑀 = 21803.85 + 1.25 – 3639.086 – 19.32 – 109 – 771.1 – 1705.185
βˆ‘ 𝑀 = 15561.41 T*m
119
βˆ‘ 𝑣 = βˆ‘ 𝑣 1 + βˆ‘ 𝑣 2 - βˆ‘ 𝑣 4 = 1293.3 + 2.16 – 64.665 = 1230.8 T/m =
1230.8 T/m
X’ =
βˆ‘ 𝑀
βˆ‘ 𝑣
=
15561.41
1230.8
= 12.64m
e =
𝐡
2
– x’ =
25
2
- 12.64 = -0.14 <
𝐡
6
Pmax/min =
βˆ‘ 𝑣
𝐡
(1Β±
6𝑒
𝐡
) =
1230.8
25
(1Β±
6 π‘₯ 0.4
25
) = 49.23 (1 Β± 0.096)
Pmax = Pv at toe = 53.96 T/m < 306 T/m2
(safe)
Pmin = Pv at heel = 44.50 T/m2
< 306 T/m2
(safe)
Principal stress at toe:
𝜎 = Pv x Sec2
Ξ± – P’ tan2
Ξ±
P’ = 2.5 T/m tan Ξ± = 0.7
𝜎 = 53.96 x (1 + tan2
Ξ±) – 2.5 tan2
Ξ± = 79.175 T/m2
< 306 (safe)
Principal stress at heel:
𝜎1 = Pv (heel) sec2
πœƒ – (P + Pe) tan2
πœƒ
𝜎1 = 49.23 T/m > 42.86
Shear stress at toe:
βˆ‘ 0 (toe) = (Pv(toe) – P’) tanΞ± = 53.5 -2.5 x 0.7 = 35.7 T/m2
< 1400 KN/m2
(safe)
120
Dam
121
(impulse)(Reaction)
122
ΫΆ
۲–
۹–
ۡ–
ΫΆΫ΄ΫΉΫΆΫΉΫΉΫΉ
ΫΆΫ±Ϋ±ΫΉ
(Pelton wheel)
ΫΉ Ϋ΅ΫΉΫΉ Ϋ΅Ϋ΅
123
( h = p/𝛾 + 𝑉2
/2𝑔)
𝐻𝑝 =
𝑄 π‘₯ β„Žπ‘’
75
Q
h–
γ–)3
(8 = 1000kg/m
e–
( Eddy losses)
Ϋ΅Ϋ΄Ϋ³ΫΉ
124
۱–
۲–
۳–
۴–
(Francis)(Kaplan)(Propeller)
(Tangential flow)(Radial flow)(Axial flow)
(Mixed flow)
(e)
125
(en)(em)(ev)
v*em*ehe = e
he
me–
ve–
Ϋ²
Ϋ°ΫΉ
(out put)
= βˆ… √2π‘”β„Žπœ‡1
βˆ… =
πœ‡1
√2π‘”β„Ž
=
π‘Šπ›Ύ1
√2π‘”β„Ž
=
(
2πœ‹π‘›
60
)(
𝐷
2
)
√2π‘”β„Ž
=
𝐷𝑁
84.6βˆšβ„Ž
D–
N–
126
h–
Q
QQeQe
Qe
0.430.48
0.60.9
1.42.0
𝑁𝑃1/2
4.42β„Ž5/4
=3N
sn–
N–
P–
h–
127
Q
Z1
𝜎 =
(
π‘ƒπ‘œπ‘‘π‘š
𝛾
βˆ’
𝑒𝑀
𝛾
)
β„Ž
-Z1
Z1h(
π‘ƒπ‘œπ‘‘π‘š
𝛾
βˆ’
𝑒𝑀
𝛾
)
o
20.110𝜎
πœŽπ‘
(
π‘ƒπ‘œπ‘‘π‘š
𝛾
βˆ’
𝑒𝑀
𝛾
) βˆ’ πœŽπ‘β„Ž=1Z
128
πœŽπ‘(Ns)
Ϋ²ΫΉΫΉΫ±ΫΆΫΉΫ±Ϋ²ΫΉΫ°ΫΉΫ΄ΫΉNs
Ϋ±Ϋ΅ΫΉΫΉ Ϋ°ΫΉΫΉ Ϋ΅Ϋ΅ΫΉ Ϋ΄ΫΉΫΉ Ϋ±ΫΉπœŽπ‘
nsh
h
o
27
۱–
۲–
۳–
Ϋ³ΫΉ
Ϋ³ΫΉΫ±ΫΆΫΉ
129
Ϋ±Ϋ΅ΫΉ
Ϋ±ΫΉΫΉΫΉ
hns
(m)
۱۹–۳ۡ۳۹۹
۳ۡ–۱۹۹۱ۡ۹–۳۹۹
Ϋ³Ϋ΅Ϋ΅Ϋ΅Ϋ²ΫΉΫΉΫ³ΫΉΫΉ
ۢ۹–۱۹۹۱ۡ۹–۲۹۹
۱۹۹–۲۲۹ۢ۹–۱ۡ۹
۲۲۹–۱۹۹۹ۢ۹
۲۲۹–۳۹۹۳۹–ۢ۹
۳۹۹–۱۹۹۹۱ۢ–۳۹
۳۹۹–۱۹۹۹۱ۢ–
130
Ϋ±Ϋ±ΫΆΫ±
kw/hf)9
( 3800 x 10Ϋ±Ϋ±
131
Ϋ±Ϋ³Ϋ°Ϋ΅Ϋ³ΫΉΫΉ
Ϋ³Ϋ΅Ϋ΄
Ϋ΄Ϋ³ΫΆΫ±Ϋ°Ϋ³
132
Ϋ΅
133
Ϋ°ΫΆΫ°
Ϋ°ΫΉΫ³ΫΉ
Ϋ΄ΫΉ
(Cross Head)
(Hydraulic efficiency)
ΫΆΫΉΫ±ΫΉ
Ϋ± Ϋ³Ϋ΄
(firm power)
(Surplus)
134
۱–
۲–
۳–
135
Ϋ±ΫΉΫ±ΫΉΫΉ
136
(Penstock)
(Surge tank)
۱–
۲–
۳–
۴–
137
۱–
۲–
۳–
۴–
ۡ–
ۢ–
۱–
138
TEP(NEP)(HEP)
(AHP)(OHP)
Ϋ²ΫΉ2650 Twh/yr
692GWΫΆΫΉ
ο‚·
Ϋ³ΫΉ
Ϋ΄ΫΉ
ο‚·ΫΉ Ϋ΅Ϋ΄
(Kwh)Ϋ΄ΫΉΫ΅ΫΉ
Ϋ²Ϋ΄
ο‚·Ϋ²Ϋ²ΫΆΫ²ΫΉ
139
Design of Kaplan turbine
Q = 15 m3
/sec, H = 29.5 m, nh = 0.9, 𝜌 = 998 kg/m3
, g = 9.81 m/sec2
Power and specific speed:
P= Q x H x nh x 𝜌 x g
P = 15 x 29.5 x 0.9 x 998 x 9.81 = 3899018.835w => 3899kw => 3.9Mw
Specific speed:
NQE =
2.294
𝐻𝑛0.486
H = Gross head
Hn = Net head
Hn = H x nh => 0.9 x 29.5 = 26.55m
NQE =
2.294
26.550.486
= 0.467
Rotational speed:
140
NQE =
𝑛 π‘₯ βˆšπ‘„
𝐸3/4
=> n =
𝑛 𝑄𝐸 π‘₯ 𝐸3/4
βˆšπ‘„
E = specific hydraulic anergy :
E = Hn x g = 26.55 x 9.81 = 260.45 J/kg
There for:
n =
0.467 π‘₯ 260.453/4
√15
= 7.82 5-1
= 469 Rpm
Run away speed:
The runaway speed is the max speed which the turbine can theoretically it’s
achieve during load reaction
The following guideline can be use to determine the runaway speed.
Turbine type Runaway speed max/n
Single regulated Kaplan turbine 2.0 – 2.6
Doled regulated Kaplan turbine 2.8 – 3.2
Choosing double regulated turbine
nmax = 3.2 x 7.82 = 25 5-1
Runner Diameter:
De = 84.5 x (0.79 + 1.602 x nQE) x
√ 𝐻
60 π‘₯ 𝑛
De = 84.5 x (0.79 + 1.602 x 0.467) x
√26.55
60 π‘₯ 7.82
= 1.43m
Hub Diameter:
Di = ( 0.25 +
0.0951
𝑛 𝑄𝐸
) x De
Di = ( 0.25 +
0.0951
0.467
) x 1.43 = 0.65m
141
Section head:
The section head, it’s the head where the turbine is installed it the section head
is positive the section head turbine is located above the trail water if the
section head is negative , the turbine is located under the trail water, to avoid
cavitation the range of the section head limited.
The maximum allowed section head can be calculated using the following
formula or equation:
Hs =
π‘π‘Žπ‘‘π‘œπ‘šβˆ’π‘π‘£
𝜌 π‘₯ 𝑔
+
𝐢𝑒2
2 π‘₯ 𝑔
– 6 x Hn
Where
Patom = atmospheric pressure (Pa)
Pv = water vaper pressure (Pv)
P = water density (kg/m3
)
g = acceleration of gravity
142
Cu = outlet average velocity (m/sec)
𝜎 = Conation coefficient (-)
Hn = net head (m)
Patom = 101300 pu, Cu = 2m/sec
Pv = 2985.7 pa, Hn = 26.55m
𝜎 = 1.5241 x nQE
1.46
+
2
2 π‘₯ 𝑔 π‘₯ 𝐻𝑛
𝜎 = 1.5241 x 0.4671.46
+
2
2 π‘₯ 9.81 π‘₯ 26.55
= 0.51
Hs =
101300βˆ’2985.7
998 π‘₯ 9.81
+
22
2 π‘₯ 9.81
– 0.51 x 26.55 = -3.29m
143
Generator Design:
Number of poles
Np = 120 x F/N
Where
Np = Number of poles
F = frequency of supply ie 50 Hz in Afghanistan
N = Rotational speed (RPM)
Np = 120 x
50
469.2
= 12.79 β‰… 13 poles
The table of standard rotational speed of Generator with explanation:
The ideal speed
= 1500 RPM1-
N = 25 5
Hence
Np = 120 x f/N => 120 x
50
1500
= 4 poles
Exciter of Generator
Explanation on page : 27
Type of exciter
1. Brush type
2. Brushless type
Explanation on page 27 – 28
Generator out put:
The output of generator is shown in VA and calculation following
Pg (KVA) = 9.81 x H x Q x q x P/Pf
Pg = required power output, KVA = kilo volt ampere.
H = net head
Q = design discharge
144
Mo = over all efficiency is turbine efficiency transmission efficiency, nm x
generator efficiency.
𝜌 = density of water
P𝛾 = power factor
Pg (KVA) =
9.81 π‘₯ 26.55 π‘₯ 15 π‘₯ 1000 π‘₯ 0.89/0.8
1000
= 4346.351 KVA
Speed Governor:
Explanation on page 28 – 29
Pd = pg x pt x s.f
Where
Pd = capacity of the dummy load
Pg = rated output of the generator
S.F = safety factor according the cooling method being employed (1.2 – 1.4)
Pd (KW) = 4.4MVA x 0.8 x 1.4 = 4.93 MW
Design at civil structure:
Penstock flow velocity = 4.5 m/sec
This is form ex…
Penstock rang (2m/s to 5m/s)
Find internal diameter
A = a/v =
15
4.5
= 3.33
Area of circle
A = πœ‹r2
=> A = πœ‹D2
/4
D2
= 4A/πœ‹ => D = 2 x √
𝐴
πœ‹
= 2 x √
3.33
πœ‹
= 2.1 m
Determination of the desntock thickness, tp
tp = p x 𝛾/6
p = pn + ps
where
p = total pressure
145
ph = pressure due to water hammer
ps = static water pressure
𝜎 = stress
Ph = 𝜌w x cp x v
Cp = for water under ordinary condition
Cp = 1120
Ph = 1000 x 1120 x 4.5 = 5.04 Mpa
Static pressure ps
Ps = 𝜌w x g x H
Ps = 1000 x 9,81 x 29.5 = 289395 = 0.2894 Mpa
Factor of safety n = 4
𝜎gp = 957 Mpa
But
P = hn + ps = 5.04 + 0.2894 = 5.3294 Mpa
𝜎 Allowable = p/n = 957 x 106
/4
𝜎 Allowable = 239.25 Mpa
Hence
tp = P x 𝛾/ 𝜎 Allowable = =
5.3294 π‘₯ 106 π‘₯ (
21
2
)
239.25 π‘₯ 106
= 0.023389m
tp = 23.4 mm β‰ˆ 24 mm
Head losing penstock:
hv = K x V2
/2xg
But k = 0.2
hv =
0.2 π‘₯ 4.52
2 π‘₯ 9.81
= 0.2064 m
but two values lie at the entry and exct
hut = 2 x 0.2064 = 0.42 m
146
head loss date bend, hb
hb = C x V2
/2g
for the deflection angle of 45 Co
= 0.09
hb =
0.09 π‘₯ 4.52
2 π‘₯ 9.81
= 0.093 m
head loss due to fraction hf
hf = f x (lp/Dp) x (V2
/2g)
f = 𝜎4/Re for Re ≀ 2111 (laminar flow)
Re = VD/𝛾
f =
1.325
⌊ln(
𝑒
3.7𝐷
+
5.74
𝑅𝑒0.9)βŒ‹2
for 5111 ≀ Re ≀ 118
and 10-6
≀ e/D ≀ 11-2
(Turbulent flow)
hf = 0.009 x 150/2.1 x 4.52
/2x9.81 = 0.663
total head loss in the ht
ht = 0.42 + 0.093 + 0.663 = 1.987 β‰ˆ 2m
ht = 1.176m
Net head is 29.5 – 1.176 = 28.3m
For the design rule:
hl ≀ 1.15 x 29.5 m
1.176 ≀ 1.15 x 29.5
1.176 ≀ 1.475
From the above rule head loss comply with it hence the design is safe.
Dam
148
Estimation of penstock pipes
Internal Diameter Di = 21m
Lengh of penstock lp = 150m
Thickness tp = 24mm
Density of steel 8000 kg /m3
Price of steel = 50 Afg per kg
Volume of steel = πœ‹ x lp (
𝐷𝑖+2 π‘₯ 𝑑𝑝
2
)2
– (
𝐷𝑖
2
)2
V = πœ‹ x 150 x (
2.1+2 π‘₯ 0.029
2
)2
– (
2.1
2
)2
= 24m3
Mass = density x voulume = 8000 x 24 = 192175 kg
Cost = (price/kg) (m)
Cost = 50 x 192975 = 1921750 Afg
1T = 60000 Af
149
18000
12335.8
308.50.71.5267.75
6122.53540
37331.15
58.570.2574.375
21091890
30092700Ϋ΅Ϋ·
2208.51870
43751505
43751505
3187.53.8412240
87032610
1200
124
807 75551 25425 96360816 987216 34
37405 52922110 8222110 8218194049 31363880 99
22662 0722536 7918554866 29371097 33
150
‍۱M310335 86807028344
Ϋ²T on124 94682539506 174936170 51
‍۲M3371097 33320 9877119117677
Ϋ³M322536 79370 37048346959 3
‍۳M322536 79370 37048346959 3
Ϋ΄K g24000501200000
‍۴3000000
Ϋ΅30000000
‍ۡ80000000
ΫΆ20000000
383487509 8281976110
151
1Cum405030tunalexcuvation
Cum30cofferdam
Cum30MobilzationofSiteCamp
2Sqm90060SitePreparation
3Cum3304105ExcavationofFoundation
4Sqm330430Compactionoffoundation
5Cum244180LeanConcretePCC
6Cum262.7415Steelworkandframework
7Cum436.3515RCCCloumn
8Cum23815Slabframeworkandsteel
9Sqm2119.8315slabconcrete
10Sqm2119.8315Plastering
11Sqm4239.3630Painting
12Sqm19890powerhouse
13LumpSumLumpSum60penstock
14LumpSumLumpSum30turbinework
15LumpSumLumpSum15generatorwork
16LumpSumLumpSum45electranics
810
15th Month
KhurasanUniversity,EngineeringFaculty,CivilDepartment,2017EngineeringFacultyGraduationCermony
ConstructionWorkPlanforadamonpeachrevirKonarpravence
1styear
Noofdays
11th Month
12th Month
13th Month
16th Month
17th Month
18th Month
19th Month
20th Month
2ndyear
21st Month
22nd Month
23rd Month
24th Month
14th Month
6th Month
7th Month
8th Month
9th Month
10th Month
1st Month
2nd Month
3rd Month
4th Month
5th Month
ActiviityDiscriptionS/NUnitQuanity
totalday
152
ΫΆ
153
REFERENCES:
1. β€œDesing of gravity dams” Denver Colorado, 1976
2. CelsoPenche, (1998) European Small Hydropower Association (ESHA), Guide on How to
Develop a Small Hydropower Plant, ESHA 2004
3. Kenya Bureau of Standard, manual guide
4. H.C. Huang and C.E. Hita, β€œHydraulic Engineering Systems”, Prentice Hall Inc.,
Englewood Cliffs, New Jersey 1987.
5. Allen R. Inversin, β€œMicro-Hydropower Sourcebook”, NRECA International Foundation,
Washington, D.C.
6. USBR, β€œDesign of Small Canal Structure”, Denver Colorado, 1978a.
7. USBR, β€œHydraulic Design of Spillways and Energy Dissipaters”, Washington DC, 19ΞΈ4.
8. T. Moore, β€œTLC for small hydro: good design means fewer headaches”, HydroReview,
April 1988.
9. ASCE, Committee on Intakes, β€œGuidelines for the Design of Intakes for Hydroelectric Plants”,
199Ξ·.
10. G. Munet y J.M. Compas, β€œPCH de recuperation d’energie au barrage de β€œLe Pouzin””,
Actas de HIDROENERGIA 93, Munich.
11. G. Schmausser& G. Hartl, β€œRubber seals for steel hydraulic gates”, Water Power & Dam
Construction September 1998.
12. Electrobras (CentraisElΓ©ctricasBrasileiras S.A.) β€œManual de MinicentraisHidrelΓ©tricas.”

More Related Content

Similar to 1.design of dam [mfsa]

100 Weight Loss Tips
100 Weight Loss Tips100 Weight Loss Tips
100 Weight Loss TipsFlavian Mwasi
Β 
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒ
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒ
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒGam Bky
Β 
Understanding Trinity ISE results (international)
Understanding Trinity ISE results (international)Understanding Trinity ISE results (international)
Understanding Trinity ISE results (international)Limerick English TV
Β 
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02Chia Ang
Β 
Usb2817 h(v6.027) nopw
Usb2817 h(v6.027) nopwUsb2817 h(v6.027) nopw
Usb2817 h(v6.027) nopwNuceretain
Β 
Second Revision Syria Regional Response Plan
Second Revision Syria Regional Response PlanSecond Revision Syria Regional Response Plan
Second Revision Syria Regional Response PlanJesse Budlong
Β 
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03Chia Ang
Β 
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”akivalevran
Β 
Accounting Monthly closing check list.pdf
Accounting Monthly closing check list.pdfAccounting Monthly closing check list.pdf
Accounting Monthly closing check list.pdfAsimUsman8
Β 
latest_ wasit rp data collection report_korrektur_ar
latest_ wasit  rp data collection report_korrektur_arlatest_ wasit  rp data collection report_korrektur_ar
latest_ wasit rp data collection report_korrektur_arbsv-bup
Β 
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄ Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄ Yasmine Bannoura
Β 
01 f25 introduction
01 f25 introduction01 f25 introduction
01 f25 introductionc3uo
Β 
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©Teaching Skills
Β 

Similar to 1.design of dam [mfsa] (20)

100 Weight Loss Tips
100 Weight Loss Tips100 Weight Loss Tips
100 Weight Loss Tips
Β 
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒ
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒ
ΰΉ‚ΰΈ„ΰΈ£ΰΈ‡ΰΈ‡ΰΈ²ΰΈ™ΰΈ„ΰΈ­ΰΈ‘ΰΈžΰΈ΄ΰΈ§ΰΉ€ΰΈ•ΰΈ­ΰΈ£ΰΉŒ
Β 
Understanding Trinity ISE results (international)
Understanding Trinity ISE results (international)Understanding Trinity ISE results (international)
Understanding Trinity ISE results (international)
Β 
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆεŠ ε·₯η·¨οΌ‰mt02
Β 
Guidebook 4
Guidebook 4Guidebook 4
Guidebook 4
Β 
Usb2817 h(v6.027) nopw
Usb2817 h(v6.027) nopwUsb2817 h(v6.027) nopw
Usb2817 h(v6.027) nopw
Β 
Second Revision Syria Regional Response Plan
Second Revision Syria Regional Response PlanSecond Revision Syria Regional Response Plan
Second Revision Syria Regional Response Plan
Β 
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03
Pmma ζŠ€θ‘“θ³‡ζ–™οΌˆθ¨­θ¨ˆγƒ»ζ–½ε·₯η·¨οΌ‰mt03
Β 
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”
Χ™Χ“Χ™Χ’Χ•ΧŸ Χ”ΧžΧ›ΧœΧœΧ”
Β 
Accounting Monthly closing check list.pdf
Accounting Monthly closing check list.pdfAccounting Monthly closing check list.pdf
Accounting Monthly closing check list.pdf
Β 
latest_ wasit rp data collection report_korrektur_ar
latest_ wasit  rp data collection report_korrektur_arlatest_ wasit  rp data collection report_korrektur_ar
latest_ wasit rp data collection report_korrektur_ar
Β 
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄ Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄
Ψ§Ω„Ψ₯Ψ³ΩƒΨ§Ω† Ψ§Ω„ΨΉΨ΄ΩˆΨ§Ψ¦ΩŠ في Ω…Ψ΅Ψ± و ΨͺΨ¬Ψ±Ψ¨Ψ© Ψͺطوير Ω…Ψ³Ψ§ΩƒΩ† Ψ§Ω„ΨΉΨ΄Ψ΄
Β 
01 f25 introduction
01 f25 introduction01 f25 introduction
01 f25 introduction
Β 
Sheep images
Sheep imagesSheep images
Sheep images
Β 
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©
Ψ§Ω„Ψ―Ψ±Ψ§Ψ³Ψ§Ψͺ Ψ§Ω„Ψ§Ψ¬ΨͺΩ…Ψ§ΨΉΩŠΨ©
Β 
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2016
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2016Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2016
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2016
Β 
Cover
CoverCover
Cover
Β 
Hen images
Hen imagesHen images
Hen images
Β 
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2015
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2015Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2015
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ2 Mayo 2015
Β 
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ1 Mayo 2015
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ1 Mayo 2015Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ1 Mayo 2015
Examen MatemΓ‘ticas Nivel Medio Prueba 2 TZ1 Mayo 2015
Β 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
Β 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Β 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
Β 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Β 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Β 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Β 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Β 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Β 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
Β 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
Β 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Β 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Β 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Β 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
Β 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Β 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
Β 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Β 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Β 

1.design of dam [mfsa]