SlideShare a Scribd company logo
1 of 11
Download to read offline
Biopharma PEG https://www.biochempeg.com
Several Types of PROTACs Based On Nucleic
Acids
In recent years, nucleic acid drugs have been developing vigorously with increasing
market demand and rapid marketing approval, covering many fields such as
cardiovascular and metabolic diseases, liver diseases and tumors. So far, more than 10
nucleic acid drugs have been approved for marketing worldwide, and many nucleic acid
drugs are in the stage of clinical trials. Nucleic acid drugs are expected to become the
third type of drugs after small molecule drugs and antibody drugs (Figure 1).
Figure 1. Marketed nucleic acid drugs (data source: pharmSnap Global Competitive
Intelligence Database for New Drugs)
A growing number of approved nucleic acid therapeutics demonstrate the potential to
treat disease by targeting disease-causing genes in vivo. Usually, conventional
treatments only produce short-term therapeutic effects because they target proteins rather
than the root cause of disease, while nucleic acid drugs directly act on disease-causing
target genes or target mRNAs, and play a role in treating diseases at the gene level.
Biopharma PEG https://www.biochempeg.com
Nucleic acid drugs include ASO, siRNA, Aptamer, miRNA, mRNA, saRNA, sgRNA, U1
snRNA, etc. Nucleic acid drugs have the advantages of high therapeutic efficiency, low
toxicity, strong specificity and wide application fields, showing their important value in
medicine, biological science and other fields.
PROTACs (proteolysis-targeting chimeras) is a drug development technology that
utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins.
Structurally, PROTACs consist of three parts: an E3 ubiquitin ligase ligand and a target
protein ligand, and two active ligands are linked together by a specially designed "Linker"
structure to form a ternary complex. The target protein ligand of PROTAC binds to the
target protein, and the E3 ubiquitin ligase ligand binds to the substrate-binding region of
the intracellular E3 ubiquitin ligase, thereby "pulling" the target protein to the E3 ubiquitin
ligase by ubiquitinating the target protein, enabling the UPS system to degrade the target
protein (Figure 2).
​
Figure 2. Protein degradation mechanism mediated by PROTACs
Biopharma PEG https://www.biochempeg.com
Over the past 20 years, researchers have designed various forms of PROTACs based on
peptides and small molecules. However, peptide-based PROTACs have problems such
as low activity and immunogenicity, which greatly limit their clinical medical applications.
Compared with polypeptide PROTACs, small-molecule PROTACs are smaller, more
easily absorbed by the body, and have better druggability, so small-molecule PROTACs
are still the mainstream. With the development and progress of science and technology,
some new types of PROTACs continue to emerge, and nucleic acid-based PROTACs
emerge as the times require.
RNA-PROTACs
Functional defects in RNA binding proteins (RBPs) are at the root of many diseases, and
targeting RBPs with conventional drugs has proved difficult. RBPs bind to RNA in a
dynamic, coordinated, and sequence-selective manner to form ribonucleoprotein (RNP)
complexes that play a key role in RNA dependence. Certain diseases are caused by
genetic changes in RBP that affect their binding to RNA. In 2021, Jonathan Hall's
research group first proposed the design concept of RNA-based PROTACs, and the
author successfully constructed RNA-PROTACs targeting RBPs (RNA binding proteins).
Using small RNA mimics as targeting groups, they can specifically bind to RBPs RNA
binding sites. PROTACs ubiquitinated RBPs and then degraded them by ubiquitin
proteasome system. The authors performed a proof-of-concept demonstration of
degradation of two RBPs (stem cell factor LIN28 and splicing factor RBFOX1) and
demonstrated their use in cancer cell lines.
Oligonucleotide PROTACs
Transcription factors (TFs) represent an important class of therapeutic targets for the
treatment of diseases including cancer. Since TFS lack the active or allosteric sites
commonly found in kinases or other enzymes, it is difficult for traditional small-molecule
Biopharma PEG https://www.biochempeg.com
inhibitors to bind to them. Therefore, transcription factors were once considered as
"undruggable" targets, presenting an unsurmountable technical bottleneck. Professor
Wenyi Wei, Harvard University, and Professor Jian Jin, Icahn School of Medicine, Mount
Sinai, reported an oligonucleotide chain-based "TF-PROTAC", which is composed of
DNA oligonucleotides and E3 ligand linked by click reaction (Figure 3), and can selectively
degradate pathogenic TFs. The selectivity of TF-PROTAC depends on the DNA
oligonucleotides used.
Figure 3. Design strategy of TF-PROTAC
The authors successfully developed two series of VHL-based TF-PROTACs:
NF-κB-PROTAC (dNF-κB) and E2F-PROTAC (dE2F), which efficiently degrade
endogenous p65 and E2F1 proteins in cells, respectively, and showed excellent anti-cell
proliferation effect (Figure 4).
Biopharma PEG https://www.biochempeg.com
Figure 4. TF-PROTACs structure and protein degradation experiments
In 2021, Crews' group also reported oligonucleotide PROTACs targeting transcription
factors (TFs): oligoTRAFTACs (Figure 5). OligoTRAFTACs consist of oligonucleotide
chains that bind to TFs and E3 ubiquitin ligase ligands.
Figure 5. Design ideas of oligoTRAFTACs
Western blot experiments showed that oligoTRAFTACs successfully degraded two
oncogenic transcription factors: c-Myc and brachyury. In addition, the authors found that
oligoTRAFTACs could successfully degrade the brachyury of chordoma cell lines, and
also showed good degradation activity in the subsequent in vivo zebrafish model
experiments (Figure 6).
Biopharma PEG https://www.biochempeg.com
Figure 6. Degradation experiments of oligoTRAFTACs in a zebrafish model
PROTACs based on Aptamer
An Aptamer is a sequence of oligonucleotides (DNA or RNA). Oligonucleotide fragments
are usually obtained from nucleic acid libraries using Systematic evolutionof ligands by
exponential enrichment (SELEX) in vitro screening. Nucleic acid adaptors are widely
used because they can combine with a variety of target substances with high specificity
and selectivity. In 2021, Tan Weihong's research group first designed a PROTAC based
on the nucleic acid aptamer AS1411: ZL216 (Figure 7).
Biopharma PEG https://www.biochempeg.com
Figure 7. Design and synthesis of ZL216
AS1411 can specifically target nucleolin receptors that are highly expressed in tumor cells,
and the nucleolin receptors are internalized after binding to their ligands. The authors
proved that the PROTAC has high water solubility and serum stability through in vitro
experiments. Furthermore, the authors found that ZL216 promoted the formation of the
nucleolin receptor-ZL216-VHL ternary complex in breast cancer cells and efficiently
induced nucleolin receptor degradation in vitro and in vivo. Subsequent cell proliferation
and migration experiments showed that ZL216 also inhibited the proliferation and
migration of breast cancer cells (Figure 8).
Figure 8. Results of IP experiments, cell proliferation and migration experiments
Aptamer-PROTAC Conjugates (APCs)
PROTAC is a promising targeted protein degradation strategy. As an effective method
for targeted protein degradation, PROTACs significantly outperform traditional
small-molecule drugs in terms of catalytic properties, high selectivity, overcoming drug
resistance, and effective blocking of non-druggable targets. But PROTACs generally have
high molecular weight and high hydrophobicity, and their physicochemical properties
Biopharma PEG https://www.biochempeg.com
largely exceed the "rule of five" (RO5). Therefore, the development of conventional
PROTACs into drugs is often limited by their poor cell membrane permeability, poor
pharmacokinetic (PK) properties, and lack of tumor-specific targeting.
To this end, Chunquan Sheng's research group proposed the design concept
of Aptamer-PROTAC Conjugates (APCs). APC is obtained by coupling the PROTAC
targeting BET protein with the Aptamer AS1411 (AS) by a cleavable linker chain ( Figure
9). Among them, the nucleic acid aptamer AS1411 can selectively target the highly
expressed nucleolin receptor on the surface of tumor cells. AS itself has good inhibitory
activity against nucleolin receptor-overexpressing tumors and is currently being evaluated
in a phase II clinical trial. Glutathione is abundant in tumor cells, so the linker chain selects
a disulfide bond that can be cleaved by glutathione (GSH), which can selectively respond
to the tumor microenvironment and release the active BET degrader after cleavage of the
linker chain.
Biopharma PEG https://www.biochempeg.com
Figure 9. Design strategy for APC
Compared with unmodified BET PROTAC (PRO), the APC conjugate (APR) showed
improved tumor-targeting ability in a mouse xenograft model of McF-7 cells, thereby
enhancing BET protein degradation in vivo and antitumor potency. Therefore, the APC
strategy provides a new design idea for the development of tumor-specific targeting
PROTACs.
Biopharma PEG https://www.biochempeg.com
Figure 10. Protein degradation experiments and in vivo imaging, anti-tumor experiments
The development of Aptamer PROTACs Conjugates (APCs) can be described as
"earth-shaking" since it was proposed. Compared with traditional PROTACs, nucleic
acid-based PROTACs improve the targeting of traditional small molecule PROTACs, and
play an important role in improving water solubility, membrane permeability, and tumor
targeting. Since nucleic acid drugs are easily hydrolyzed by nucleases in vivo, the half-life
is short, which greatly limits their application in biomedicine. Future research directions
should focus on improving the stability of nucleic acid drugs, prolonging half-life,
improving pharmacokinetic properties, and solving nucleic acid drug delivery problems.
As a professional PEG derivatives supplier, Biopharma PEG offers our clients with high
purity PEG linkers for PROTAC development. We have over 3000 high purity PEG linkers
in stock to empower your PEGylation, bioconjugation, crosslinking, ADC drug
development, biolabeling for pharmaceutical and biotech R&D.
Biopharma PEG https://www.biochempeg.com
References:
[1]. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope
[2]. Aptamer-PROTAC Conjugates (APCs) for Tumor-specific Targeting in Breast
Cancer.
[3]. Development of a Novel PROTAC using the Nucleic Acid Aptamer as a Targeting
Ligand for Tumor Selective Degradation of Nucleolin.
[4]. OligoTRAFTACs: A Generalizable Method for Transcription Factor Degradation.
[5]. RNA-PROTACs: Degraders of RNA-Binding Proteins.
[6]. TF-PROTACs Enable Targeted Degradation of Transcription Factors.
Related articles:
[1]. Future Perspective of PROTAC Combined With CRISPR In Anti-ancer Area
[2]. Four Major Trends In The Development of PROTAC
[3]. PROTAC And Other Protein Degradation Technology
[4]. PROTACs VS. Tranditional Small Molecule Inhibitors
[5]. Focus On PROTAC: Summary Of Targets From 2001 To 2019

More Related Content

Similar to Several Types of PROTACs Based On Nucleic Acids

PROTAC Delivery System Recent Research Advances.pdf
PROTAC Delivery System Recent Research Advances.pdfPROTAC Delivery System Recent Research Advances.pdf
PROTAC Delivery System Recent Research Advances.pdfDoriaFang
 
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdf
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdfAptamer-Drug Conjugate (ApDC) Current Research Progress.pdf
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdfDoriaFang
 
Antisense rna
Antisense rnaAntisense rna
Antisense rnaBABU P
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfDoriaFang
 
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...CrimsonpublishersCancer
 
Nucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentNucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentDoriaFang
 
PROTAC Technology in Tumor Targeted Therapy - Creative Biolabs
PROTAC Technology in Tumor Targeted Therapy - Creative BiolabsPROTAC Technology in Tumor Targeted Therapy - Creative Biolabs
PROTAC Technology in Tumor Targeted Therapy - Creative BiolabsCreative-Biolabs
 
A new generation of cancer immunotherapy called isac can achieve complete tum...
A new generation of cancer immunotherapy called isac can achieve complete tum...A new generation of cancer immunotherapy called isac can achieve complete tum...
A new generation of cancer immunotherapy called isac can achieve complete tum...DoriaFang
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfDoriaFang
 
New Progress of Targeted Degradation Based On Nucleic Acid.pdf
New Progress of Targeted Degradation Based On Nucleic Acid.pdfNew Progress of Targeted Degradation Based On Nucleic Acid.pdf
New Progress of Targeted Degradation Based On Nucleic Acid.pdfDoriaFang
 
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...EduConnections
 
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfPeptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfDoriaFang
 
Claudin18.2 Targeted Therapies In Cancer.pdf
Claudin18.2 Targeted Therapies In Cancer.pdfClaudin18.2 Targeted Therapies In Cancer.pdf
Claudin18.2 Targeted Therapies In Cancer.pdfDoriaFang
 
Seminario biología molecular
Seminario biología molecular Seminario biología molecular
Seminario biología molecular MarianaRestrepo13
 
The promise of mRNA vaccines
The promise of mRNA vaccinesThe promise of mRNA vaccines
The promise of mRNA vaccinesZeena Nackerdien
 
Bioinformatics published article
Bioinformatics published articleBioinformatics published article
Bioinformatics published articlePulak Kumar
 

Similar to Several Types of PROTACs Based On Nucleic Acids (20)

PROTAC Delivery System Recent Research Advances.pdf
PROTAC Delivery System Recent Research Advances.pdfPROTAC Delivery System Recent Research Advances.pdf
PROTAC Delivery System Recent Research Advances.pdf
 
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdf
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdfAptamer-Drug Conjugate (ApDC) Current Research Progress.pdf
Aptamer-Drug Conjugate (ApDC) Current Research Progress.pdf
 
Antisense rna
Antisense rnaAntisense rna
Antisense rna
 
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdfTrophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
Trophoblast Glycoprotein (TPGB5T4) A New Target For ADC Drugs.pdf
 
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...
Hitting the Bullseye: Are Cell Penetrating Peptides (CPP) the Future of Targe...
 
Nihms 582242
Nihms 582242Nihms 582242
Nihms 582242
 
Nihms 582242
Nihms 582242Nihms 582242
Nihms 582242
 
Nucleic acid therapeutics recent development
Nucleic acid therapeutics recent developmentNucleic acid therapeutics recent development
Nucleic acid therapeutics recent development
 
PROTAC Technology in Tumor Targeted Therapy - Creative Biolabs
PROTAC Technology in Tumor Targeted Therapy - Creative BiolabsPROTAC Technology in Tumor Targeted Therapy - Creative Biolabs
PROTAC Technology in Tumor Targeted Therapy - Creative Biolabs
 
Oligonucleotide
OligonucleotideOligonucleotide
Oligonucleotide
 
A new generation of cancer immunotherapy called isac can achieve complete tum...
A new generation of cancer immunotherapy called isac can achieve complete tum...A new generation of cancer immunotherapy called isac can achieve complete tum...
A new generation of cancer immunotherapy called isac can achieve complete tum...
 
nanomedicine and nanotechnology
nanomedicine and nanotechnologynanomedicine and nanotechnology
nanomedicine and nanotechnology
 
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdfAntibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
Antibody–Oligonucleotide Conjugates (AOCs) in Clinical Trials.pdf
 
New Progress of Targeted Degradation Based On Nucleic Acid.pdf
New Progress of Targeted Degradation Based On Nucleic Acid.pdfNew Progress of Targeted Degradation Based On Nucleic Acid.pdf
New Progress of Targeted Degradation Based On Nucleic Acid.pdf
 
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
Antisense Oligonucleotides, Aptamers & Triple Helix: Speech by Michael L Rior...
 
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdfPeptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
Peptide Drug Conjugates (PDCs) Novel Targeted Therapeutics For Cancer.pdf
 
Claudin18.2 Targeted Therapies In Cancer.pdf
Claudin18.2 Targeted Therapies In Cancer.pdfClaudin18.2 Targeted Therapies In Cancer.pdf
Claudin18.2 Targeted Therapies In Cancer.pdf
 
Seminario biología molecular
Seminario biología molecular Seminario biología molecular
Seminario biología molecular
 
The promise of mRNA vaccines
The promise of mRNA vaccinesThe promise of mRNA vaccines
The promise of mRNA vaccines
 
Bioinformatics published article
Bioinformatics published articleBioinformatics published article
Bioinformatics published article
 

More from DoriaFang

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfDoriaFang
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfDoriaFang
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfDoriaFang
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfDoriaFang
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfDoriaFang
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfDoriaFang
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfDoriaFang
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfDoriaFang
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDoriaFang
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfDoriaFang
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfDoriaFang
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfDoriaFang
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfDoriaFang
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfDoriaFang
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfDoriaFang
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfDoriaFang
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfDoriaFang
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfDoriaFang
 
Summary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfSummary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfDoriaFang
 
FRα Targeting ADCs for Ovarian cancer.pdf
FRα Targeting ADCs for Ovarian cancer.pdfFRα Targeting ADCs for Ovarian cancer.pdf
FRα Targeting ADCs for Ovarian cancer.pdfDoriaFang
 

More from DoriaFang (20)

Cyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdfCyclic Peptides Current Status & Future Prospects.pdf
Cyclic Peptides Current Status & Future Prospects.pdf
 
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdfAlzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
Alzheimer's Disease Drug Development Aducanumab, Lecanemab & Donanemab.pdf
 
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdfClaudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
Claudin6 (CLDN6) A Emerging Target For Solid Tumor.pdf
 
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdfROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
ROR1 ADCs in Clinical Trials MK-2140, NBE-002 & CS5001.pdf
 
Overview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdfOverview of New Targets For Anti-tumor Drugs.pdf
Overview of New Targets For Anti-tumor Drugs.pdf
 
Cleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdfCleavable Linkers Used In ADC Development.pdf
Cleavable Linkers Used In ADC Development.pdf
 
The Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdfThe Role of Four Lipid Components Of LNPs.pdf
The Role of Four Lipid Components Of LNPs.pdf
 
Advances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdfAdvances in TROP-2 Directed ADCs.pdf
Advances in TROP-2 Directed ADCs.pdf
 
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdfDS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
DS-8201 (Enhertu) A Potential ADC Drug Targeting HER2.pdf
 
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdfList of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
List of New Anti-cancer Drugs Approved By FDA In The First Half of 2023.pdf
 
Overview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdfOverview of Oral Delivery Strategies for Peptides.pdf
Overview of Oral Delivery Strategies for Peptides.pdf
 
The Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdfThe Future Development of ADC For Cancer.pdf
The Future Development of ADC For Cancer.pdf
 
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdfSummary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
Summary of ADC Targets For Solid Tumors & Hematological Tumors.pdf
 
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdfNew Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
New Oncology Trends ADCs, Bispecific Antibodies & CAR-T Cell.pdf
 
Summary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdfSummary of Treatments for Multiple Myeloma.pdf
Summary of Treatments for Multiple Myeloma.pdf
 
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdfBispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
Bispecific Antibody-drug Conjugate Drugs In Clinical or Preclinical.pdf
 
ADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdfADCs Targeting the HER Family.pdf
ADCs Targeting the HER Family.pdf
 
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdfNectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
Nectin-4 New Antibody-Drug Conjugate (ADC) Target.pdf
 
Summary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdfSummary of Molecular Glues Approved or in Clinical Trial.pdf
Summary of Molecular Glues Approved or in Clinical Trial.pdf
 
FRα Targeting ADCs for Ovarian cancer.pdf
FRα Targeting ADCs for Ovarian cancer.pdfFRα Targeting ADCs for Ovarian cancer.pdf
FRα Targeting ADCs for Ovarian cancer.pdf
 

Recently uploaded

Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewasmakika9823
 
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...lizamodels9
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,noida100girls
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurSuhani Kapoor
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst SummitHolger Mueller
 
A.I. Bot Summit 3 Opening Keynote - Perry Belcher
A.I. Bot Summit 3 Opening Keynote - Perry BelcherA.I. Bot Summit 3 Opening Keynote - Perry Belcher
A.I. Bot Summit 3 Opening Keynote - Perry BelcherPerry Belcher
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailAriel592675
 
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxBanana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxgeorgebrinton95
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...lizamodels9
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiMalviyaNagarCallGirl
 
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...Khaled Al Awadi
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Timedelhimodelshub1
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfpollardmorgan
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...lizamodels9
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis UsageNeil Kimberley
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdfOrient Homes
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCRsoniya singh
 

Recently uploaded (20)

Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service DewasVip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
Vip Dewas Call Girls #9907093804 Contact Number Escorts Service Dewas
 
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...
Call Girls In Kishangarh Delhi ❤️8860477959 Good Looking Escorts In 24/7 Delh...
 
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
BEST Call Girls In Old Faridabad ✨ 9773824855 ✨ Escorts Service In Delhi Ncr,
 
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Mehrauli Delhi 💯Call Us 🔝8264348440🔝
 
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service JamshedpurVIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
VIP Call Girl Jamshedpur Aashi 8250192130 Independent Escort Service Jamshedpur
 
Progress Report - Oracle Database Analyst Summit
Progress  Report - Oracle Database Analyst SummitProgress  Report - Oracle Database Analyst Summit
Progress Report - Oracle Database Analyst Summit
 
A.I. Bot Summit 3 Opening Keynote - Perry Belcher
A.I. Bot Summit 3 Opening Keynote - Perry BelcherA.I. Bot Summit 3 Opening Keynote - Perry Belcher
A.I. Bot Summit 3 Opening Keynote - Perry Belcher
 
Case study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detailCase study on tata clothing brand zudio in detail
Case study on tata clothing brand zudio in detail
 
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptxBanana Powder Manufacturing Plant Project Report 2024 Edition.pptx
Banana Powder Manufacturing Plant Project Report 2024 Edition.pptx
 
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
Call Girls In Radisson Blu Hotel New Delhi Paschim Vihar ❤️8860477959 Escorts...
 
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | DelhiFULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Chhatarpur | Delhi
 
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...NewBase  22 April  2024  Energy News issue - 1718 by Khaled Al Awadi  (AutoRe...
NewBase 22 April 2024 Energy News issue - 1718 by Khaled Al Awadi (AutoRe...
 
Call Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any TimeCall Girls Miyapur 7001305949 all area service COD available Any Time
Call Girls Miyapur 7001305949 all area service COD available Any Time
 
Best Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting PartnershipBest Practices for Implementing an External Recruiting Partnership
Best Practices for Implementing an External Recruiting Partnership
 
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdfIntro to BCG's Carbon Emissions Benchmark_vF.pdf
Intro to BCG's Carbon Emissions Benchmark_vF.pdf
 
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
Call Girls In Sikandarpur Gurgaon ❤️8860477959_Russian 100% Genuine Escorts I...
 
2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage2024 Numerator Consumer Study of Cannabis Usage
2024 Numerator Consumer Study of Cannabis Usage
 
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCREnjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
Enjoy ➥8448380779▻ Call Girls In Sector 18 Noida Escorts Delhi NCR
 
Catalogue ONG NUOC PPR DE NHAT .pdf
Catalogue ONG NUOC PPR DE NHAT      .pdfCatalogue ONG NUOC PPR DE NHAT      .pdf
Catalogue ONG NUOC PPR DE NHAT .pdf
 
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
(8264348440) 🔝 Call Girls In Keshav Puram 🔝 Delhi NCR
 

Several Types of PROTACs Based On Nucleic Acids

  • 1. Biopharma PEG https://www.biochempeg.com Several Types of PROTACs Based On Nucleic Acids In recent years, nucleic acid drugs have been developing vigorously with increasing market demand and rapid marketing approval, covering many fields such as cardiovascular and metabolic diseases, liver diseases and tumors. So far, more than 10 nucleic acid drugs have been approved for marketing worldwide, and many nucleic acid drugs are in the stage of clinical trials. Nucleic acid drugs are expected to become the third type of drugs after small molecule drugs and antibody drugs (Figure 1). Figure 1. Marketed nucleic acid drugs (data source: pharmSnap Global Competitive Intelligence Database for New Drugs) A growing number of approved nucleic acid therapeutics demonstrate the potential to treat disease by targeting disease-causing genes in vivo. Usually, conventional treatments only produce short-term therapeutic effects because they target proteins rather than the root cause of disease, while nucleic acid drugs directly act on disease-causing target genes or target mRNAs, and play a role in treating diseases at the gene level.
  • 2. Biopharma PEG https://www.biochempeg.com Nucleic acid drugs include ASO, siRNA, Aptamer, miRNA, mRNA, saRNA, sgRNA, U1 snRNA, etc. Nucleic acid drugs have the advantages of high therapeutic efficiency, low toxicity, strong specificity and wide application fields, showing their important value in medicine, biological science and other fields. PROTACs (proteolysis-targeting chimeras) is a drug development technology that utilizes the ubiquitin-proteasome system (UPS) to degrade target proteins. Structurally, PROTACs consist of three parts: an E3 ubiquitin ligase ligand and a target protein ligand, and two active ligands are linked together by a specially designed "Linker" structure to form a ternary complex. The target protein ligand of PROTAC binds to the target protein, and the E3 ubiquitin ligase ligand binds to the substrate-binding region of the intracellular E3 ubiquitin ligase, thereby "pulling" the target protein to the E3 ubiquitin ligase by ubiquitinating the target protein, enabling the UPS system to degrade the target protein (Figure 2). ​ Figure 2. Protein degradation mechanism mediated by PROTACs
  • 3. Biopharma PEG https://www.biochempeg.com Over the past 20 years, researchers have designed various forms of PROTACs based on peptides and small molecules. However, peptide-based PROTACs have problems such as low activity and immunogenicity, which greatly limit their clinical medical applications. Compared with polypeptide PROTACs, small-molecule PROTACs are smaller, more easily absorbed by the body, and have better druggability, so small-molecule PROTACs are still the mainstream. With the development and progress of science and technology, some new types of PROTACs continue to emerge, and nucleic acid-based PROTACs emerge as the times require. RNA-PROTACs Functional defects in RNA binding proteins (RBPs) are at the root of many diseases, and targeting RBPs with conventional drugs has proved difficult. RBPs bind to RNA in a dynamic, coordinated, and sequence-selective manner to form ribonucleoprotein (RNP) complexes that play a key role in RNA dependence. Certain diseases are caused by genetic changes in RBP that affect their binding to RNA. In 2021, Jonathan Hall's research group first proposed the design concept of RNA-based PROTACs, and the author successfully constructed RNA-PROTACs targeting RBPs (RNA binding proteins). Using small RNA mimics as targeting groups, they can specifically bind to RBPs RNA binding sites. PROTACs ubiquitinated RBPs and then degraded them by ubiquitin proteasome system. The authors performed a proof-of-concept demonstration of degradation of two RBPs (stem cell factor LIN28 and splicing factor RBFOX1) and demonstrated their use in cancer cell lines. Oligonucleotide PROTACs Transcription factors (TFs) represent an important class of therapeutic targets for the treatment of diseases including cancer. Since TFS lack the active or allosteric sites commonly found in kinases or other enzymes, it is difficult for traditional small-molecule
  • 4. Biopharma PEG https://www.biochempeg.com inhibitors to bind to them. Therefore, transcription factors were once considered as "undruggable" targets, presenting an unsurmountable technical bottleneck. Professor Wenyi Wei, Harvard University, and Professor Jian Jin, Icahn School of Medicine, Mount Sinai, reported an oligonucleotide chain-based "TF-PROTAC", which is composed of DNA oligonucleotides and E3 ligand linked by click reaction (Figure 3), and can selectively degradate pathogenic TFs. The selectivity of TF-PROTAC depends on the DNA oligonucleotides used. Figure 3. Design strategy of TF-PROTAC The authors successfully developed two series of VHL-based TF-PROTACs: NF-κB-PROTAC (dNF-κB) and E2F-PROTAC (dE2F), which efficiently degrade endogenous p65 and E2F1 proteins in cells, respectively, and showed excellent anti-cell proliferation effect (Figure 4).
  • 5. Biopharma PEG https://www.biochempeg.com Figure 4. TF-PROTACs structure and protein degradation experiments In 2021, Crews' group also reported oligonucleotide PROTACs targeting transcription factors (TFs): oligoTRAFTACs (Figure 5). OligoTRAFTACs consist of oligonucleotide chains that bind to TFs and E3 ubiquitin ligase ligands. Figure 5. Design ideas of oligoTRAFTACs Western blot experiments showed that oligoTRAFTACs successfully degraded two oncogenic transcription factors: c-Myc and brachyury. In addition, the authors found that oligoTRAFTACs could successfully degrade the brachyury of chordoma cell lines, and also showed good degradation activity in the subsequent in vivo zebrafish model experiments (Figure 6).
  • 6. Biopharma PEG https://www.biochempeg.com Figure 6. Degradation experiments of oligoTRAFTACs in a zebrafish model PROTACs based on Aptamer An Aptamer is a sequence of oligonucleotides (DNA or RNA). Oligonucleotide fragments are usually obtained from nucleic acid libraries using Systematic evolutionof ligands by exponential enrichment (SELEX) in vitro screening. Nucleic acid adaptors are widely used because they can combine with a variety of target substances with high specificity and selectivity. In 2021, Tan Weihong's research group first designed a PROTAC based on the nucleic acid aptamer AS1411: ZL216 (Figure 7).
  • 7. Biopharma PEG https://www.biochempeg.com Figure 7. Design and synthesis of ZL216 AS1411 can specifically target nucleolin receptors that are highly expressed in tumor cells, and the nucleolin receptors are internalized after binding to their ligands. The authors proved that the PROTAC has high water solubility and serum stability through in vitro experiments. Furthermore, the authors found that ZL216 promoted the formation of the nucleolin receptor-ZL216-VHL ternary complex in breast cancer cells and efficiently induced nucleolin receptor degradation in vitro and in vivo. Subsequent cell proliferation and migration experiments showed that ZL216 also inhibited the proliferation and migration of breast cancer cells (Figure 8). Figure 8. Results of IP experiments, cell proliferation and migration experiments Aptamer-PROTAC Conjugates (APCs) PROTAC is a promising targeted protein degradation strategy. As an effective method for targeted protein degradation, PROTACs significantly outperform traditional small-molecule drugs in terms of catalytic properties, high selectivity, overcoming drug resistance, and effective blocking of non-druggable targets. But PROTACs generally have high molecular weight and high hydrophobicity, and their physicochemical properties
  • 8. Biopharma PEG https://www.biochempeg.com largely exceed the "rule of five" (RO5). Therefore, the development of conventional PROTACs into drugs is often limited by their poor cell membrane permeability, poor pharmacokinetic (PK) properties, and lack of tumor-specific targeting. To this end, Chunquan Sheng's research group proposed the design concept of Aptamer-PROTAC Conjugates (APCs). APC is obtained by coupling the PROTAC targeting BET protein with the Aptamer AS1411 (AS) by a cleavable linker chain ( Figure 9). Among them, the nucleic acid aptamer AS1411 can selectively target the highly expressed nucleolin receptor on the surface of tumor cells. AS itself has good inhibitory activity against nucleolin receptor-overexpressing tumors and is currently being evaluated in a phase II clinical trial. Glutathione is abundant in tumor cells, so the linker chain selects a disulfide bond that can be cleaved by glutathione (GSH), which can selectively respond to the tumor microenvironment and release the active BET degrader after cleavage of the linker chain.
  • 9. Biopharma PEG https://www.biochempeg.com Figure 9. Design strategy for APC Compared with unmodified BET PROTAC (PRO), the APC conjugate (APR) showed improved tumor-targeting ability in a mouse xenograft model of McF-7 cells, thereby enhancing BET protein degradation in vivo and antitumor potency. Therefore, the APC strategy provides a new design idea for the development of tumor-specific targeting PROTACs.
  • 10. Biopharma PEG https://www.biochempeg.com Figure 10. Protein degradation experiments and in vivo imaging, anti-tumor experiments The development of Aptamer PROTACs Conjugates (APCs) can be described as "earth-shaking" since it was proposed. Compared with traditional PROTACs, nucleic acid-based PROTACs improve the targeting of traditional small molecule PROTACs, and play an important role in improving water solubility, membrane permeability, and tumor targeting. Since nucleic acid drugs are easily hydrolyzed by nucleases in vivo, the half-life is short, which greatly limits their application in biomedicine. Future research directions should focus on improving the stability of nucleic acid drugs, prolonging half-life, improving pharmacokinetic properties, and solving nucleic acid drug delivery problems. As a professional PEG derivatives supplier, Biopharma PEG offers our clients with high purity PEG linkers for PROTAC development. We have over 3000 high purity PEG linkers in stock to empower your PEGylation, bioconjugation, crosslinking, ADC drug development, biolabeling for pharmaceutical and biotech R&D.
  • 11. Biopharma PEG https://www.biochempeg.com References: [1]. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope [2]. Aptamer-PROTAC Conjugates (APCs) for Tumor-specific Targeting in Breast Cancer. [3]. Development of a Novel PROTAC using the Nucleic Acid Aptamer as a Targeting Ligand for Tumor Selective Degradation of Nucleolin. [4]. OligoTRAFTACs: A Generalizable Method for Transcription Factor Degradation. [5]. RNA-PROTACs: Degraders of RNA-Binding Proteins. [6]. TF-PROTACs Enable Targeted Degradation of Transcription Factors. Related articles: [1]. Future Perspective of PROTAC Combined With CRISPR In Anti-ancer Area [2]. Four Major Trends In The Development of PROTAC [3]. PROTAC And Other Protein Degradation Technology [4]. PROTACs VS. Tranditional Small Molecule Inhibitors [5]. Focus On PROTAC: Summary Of Targets From 2001 To 2019