SlideShare a Scribd company logo
1 of 56
LIVING IN THE ENVIRONMENT 17TH
MILLER/SPOOLMAN
CHAPTER 2
Science, Matter, Energy,
and Systems
Core Case Study: A Story About a
Forest
• Hubbard Brook Experimental Forest in New Hampshire
• Compared the loss of water and nutrients from an uncut
forest (control site) with one that had been stripped
(experimental site)
• Stripped site:
• 30-40% more runoff
• More dissolved nutrients
• More soil erosion
The Effects of Deforestation on the Loss
of Water and Soil Nutrients
Fig. 2-1, p. 31
Science Is a Search for Order
in Nature (1)
• Identify a problem
• Find out what is known about the problem
• Ask a question to be investigated
• Gather data through experiments
• Propose a scientific hypothesis
Science Is a Search for Order
in Nature (2)
• Make testable predictions
• Keep testing and making observations
• Accept or reject the hypothesis
• Scientific theory: well-tested and widely
accepted hypothesis
The Scientific Process
Fig. 2-2, p. 33
Testing a Hypothesis
Fig. 2-3, p. 33
Characteristics of Science…and
Scientists
• Curiosity
• Skepticism
• Reproducibility
• Peer review
• Openness to new ideas
• Critical thinking
• Creativity
Science Focus: Easter Island: Revisions to
a Popular Environmental Story
• Some revisions to a popular environmental story
• Polynesians arrived about 800 years ago
• Population may have reached 3000
• Used trees in an unsustainable manner, but rats
may have multiplied and eaten the seeds of the
trees
Stone Statues on Easter Island
Fig. 2-A, p. 35
Scientific Theories and Laws Are the
Most Important Results of Science
• Scientific theory
• Widely tested
• Supported by extensive evidence
• Accepted by most scientists in a particular area
• Scientific law, law of nature
The Results of Science Can Be
Tentative, Reliable, or Unreliable
• Tentative science, frontier science
• Reliable science
• Unreliable science
Science Has Some Limitations
1. Particular hypotheses, theories, or laws have a high
probability of being true while not being absolute
2. Bias can be minimized by scientists
3. Environmental phenomena involve interacting variables
and complex interactions
4. Statistical methods may be used to estimate very large
or very small numbers
5. Scientific process is limited to the natural world
Science Focus: Statistics and
Probability
• Statistics
• Collect, organize, and interpret numerical data
• Probability
• The chance that something will happen or be
valid
• Need large enough sample size
Matter Consists of Elements and
Compounds
• Matter
• Has mass and takes up space
• Elements
• Unique properties
• Cannot be broken down chemically into other
substances
• Compounds
• Two or more different elements bonded together
in fixed proportions
Gold and Mercury Are Chemical Elements
Fig. 2-4a, p. 38
Chemical Elements Used in The Book
Table 2-1, p. 38
Atoms, Ions, and Molecules Are the
Building Blocks of Matter (1)
• Atomic theory
• All elements are made of atoms
• Subatomic particles
• Protons with positive charge and neutrons with no charge
in nucleus
• Negatively charged electrons orbit the nucleus
• Atomic number
• Number of protons in nucleus
• Mass number
• Number of protons plus neutrons in nucleus
Model of a Carbon-12 Atom
Fig. 2-5, p. 39
Atoms, Ions, and Molecules Are the
Building Blocks of Matter (2)
• Isotopes
• Same element, different number of neutrons
• Ions
• Gain or lose electrons
• Form ionic compounds
• pH
• Measure of acidity
• H+
and OH-
Chemical Ions Used in This Book
Table 2-2, p. 40
pH Scale
Supplement 5, Figure 4
Loss of NO3− from a Deforested Watershed
Fig. 2-6, p. 40
Atoms, Ions, and Molecules Are the
Building Blocks of Matter (3)
• Molecule
• Two or more atoms of the same or different
elements held together by chemical bonds
• Compounds
• Two or more atoms of different elements come
together
• Chemical formula
• H20, CO2
Compounds Used in This Book
Table 2-3, p. 40
Organic Compounds Are the
Chemicals of Life
• Organic compounds
• Hydrocarbons and chlorinated hydrocarbons
• Simple carbohydrates
• Macromolecules: complex organic molecules
• Complex carbohydrates
• Proteins
• Nucleic acids
• Lipids
• Inorganic compounds
• Compounds that do not contain carbon
Glucose Structure
Supplement 4, Fig. 4
Amino Acids and Proteins
Supplement 4, Fig. 8
Nucleotide Structure in DNA and RNA
Supplement 4, Fig. 9
DNA Double Helix Structure and Bonding
Supplement 4, Fig. 10
Fatty Acid Structure and Trigyceride
Supplement 4, Fig. 11
Matter Comes to Life through
Genes, Chromosomes, and Cells
• Cells: fundamental units of life; all organisms
are composed of one or more cells
• Genes
• Sequences of nucleotides within DNA
• Instructions for proteins
• Create inheritable traits
• Chromosomes: composed of many genes
Cells, Nuclei, Chromosomes, DNA, and Genes
Fig. 2-7, p. 42
Some Forms of Matter Are More
Useful than Others
• High-quality matter
• Highly concentrated
• Near earth’s surface
• High potential as a resource
• Low-quality matter
• Not highly concentrated
• Deep underground or widely dispersed
• Low potential as a resource
Examples of Differences in Matter Quality
Fig. 2-8, p. 42
Matter Undergoes Physical,
Chemical, and Nuclear Changes
• Physical change
• No change in chemical composition
• Chemical change, chemical reaction
• Change in chemical composition
• Reactants and products
• Nuclear change
• Natural radioactive decay
• Radioisotopes: unstable
• Nuclear fission
• Nuclear fusion
Types of Nuclear Changes
Fig. 2-9, p. 43
We Cannot Create or Destroy
Matter
• Law of conservation of matter
• Whenever matter undergoes a physical or
chemical change, no atoms are created or
destroyed
Energy Comes in Many Forms (1)
• Kinetic energy
• Flowing water
• Wind
• Heat
• Transferred by radiation, conduction, or convection
• Electromagnetic radiation
• Energy moves in waves, X rays, UV rays
• Potential energy
• Stored energy
• Can be changed into kinetic energy
Wind’s Kinetic Energy Moves This Turbine
Fig. 2-10, p. 44
The Electromagnetic Spectrum
Fig. 2-11, p. 45
Potential Energy
Fig. 2-12, p. 45
Energy Comes in Many Forms (2)
• Sun provides 99% of earth’s energy
• Warms earth to comfortable temperature
• Plant photosynthesis
• Winds
• Hydropower
• Biomass
• Fossil fuels: oil, coal, natural gas
Fossil fuels
Fig. 2-14a, p. 46
Some Types of Energy Are More
Useful Than Others
• High-quality energy
• High capacity to do work
• Concentrated
• High-temperature heat
• Strong winds
• Fossil fuels
• Low-quality energy
• Low capacity to do work
• Dispersed
Ocean Heat Is Low-Quality Energy
Fig. 2-15, p. 47
Energy Changes Are Governed by
Two Scientific Laws
• First Law of Thermodynamics
• Law of conservation of energy
• Energy is neither created nor destroyed in
physical and chemical changes
• Second Law of Thermodynamics
• Energy always goes from a more useful to a less
useful form when it changes from one form to
another
• Light bulbs and combustion engines are very
inefficient: produce wasted heat
Energy-Wasting Technologies
Fig. 2-16a, p. 48
Systems Have Inputs, Flows,
and Outputs
• System
• Set of components that interact in a regular way
• Human body, earth, the economy
• Inputs from the environment
• Flows, throughputs of matter and energy
• Outputs to the environment
Inputs, Throughput, and Outputs of
an Economic System
Fig. 2-17, p. 48
Systems Respond to Change
through Feedback Loops
• Positive feedback loop
• Causes system to change further in the same
direction
• Can cause major environmental problems
• Negative, or corrective, feedback loop
• Causes system to change in opposite direction
Positive Feedback Loop
Fig. 2-18, p. 49
Negative Feedback Loop
Fig. 2-19, p. 50
Time Delays Can Allow a System
to Reach a Tipping Point
• Time delays vary
• Between the input of a feedback stimulus and the
response to it
• Tipping point, threshold level
• Causes a shift in the behavior of a system
• Melting of polar ice
• Population growth
System Effects Can Be Amplified
through Synergy
• Synergistic interaction, synergy
• Two or more processes combine in such a way
that combined effect is greater than the two
separate effects
• Helpful
• Studying with a partner
• Harmful
• E.g., Smoking and inhaling asbestos particles
Three Big Ideas
1. There is no away.
2. You cannot get something for nothing.
3. You cannot break even.

More Related Content

Similar to Chapter2 120822131145-phpapp01

1. ch01_1Fundamental Concepts and Units of Measurement.ppt
1. ch01_1Fundamental Concepts and Units of Measurement.ppt1. ch01_1Fundamental Concepts and Units of Measurement.ppt
1. ch01_1Fundamental Concepts and Units of Measurement.pptadhidwih
 
Blueprint curriculum maps v2.0
Blueprint curriculum maps v2.0Blueprint curriculum maps v2.0
Blueprint curriculum maps v2.0Tony Sherborne
 
Chapter 3 _interrelated_scientific_prin
Chapter 3 _interrelated_scientific_prinChapter 3 _interrelated_scientific_prin
Chapter 3 _interrelated_scientific_prinMalcolm Harrison
 
Chapter3novideo 120823231232-phpapp01
Chapter3novideo 120823231232-phpapp01Chapter3novideo 120823231232-phpapp01
Chapter3novideo 120823231232-phpapp01Cleophas Rwemera
 
Ch 1 and 2 ppt
Ch 1 and 2 pptCh 1 and 2 ppt
Ch 1 and 2 pptslabaugh98
 
Hannah Chemistry - Matter and Periodic Table.ppt
Hannah Chemistry - Matter and Periodic Table.pptHannah Chemistry - Matter and Periodic Table.ppt
Hannah Chemistry - Matter and Periodic Table.pptAndrewPruett3
 
1406 ch 4 energy and enzymes blank sp 2018
1406 ch 4 energy and enzymes blank sp 20181406 ch 4 energy and enzymes blank sp 2018
1406 ch 4 energy and enzymes blank sp 2018C Ebeling
 
الجوانب الأساسية لدراسة موضوعات الكيمياء
الجوانب الأساسية لدراسة موضوعات الكيمياءالجوانب الأساسية لدراسة موضوعات الكيمياء
الجوانب الأساسية لدراسة موضوعات الكيمياءDoaa Abdo
 
Ch1.12.matter measurement ppt
Ch1.12.matter measurement pptCh1.12.matter measurement ppt
Ch1.12.matter measurement pptn_bean1973
 
Unit b matter and chemical change notes
Unit b matter and chemical change notesUnit b matter and chemical change notes
Unit b matter and chemical change notesRileyAntler
 
Unit b matter and chemical change notes
Unit b matter and chemical change notesUnit b matter and chemical change notes
Unit b matter and chemical change notesRileyAntler
 
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptx
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptxSTRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptx
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptxkimdan468
 
4 Natural Science and Technology Textbooks with Videos, Grades 4-6
4 Natural Science and Technology Textbooks with Videos, Grades 4-64 Natural Science and Technology Textbooks with Videos, Grades 4-6
4 Natural Science and Technology Textbooks with Videos, Grades 4-6sdturton
 
Bio 105 Chapter 3
Bio 105 Chapter 3Bio 105 Chapter 3
Bio 105 Chapter 3wmk423
 

Similar to Chapter2 120822131145-phpapp01 (20)

1. ch01_1Fundamental Concepts and Units of Measurement.ppt
1. ch01_1Fundamental Concepts and Units of Measurement.ppt1. ch01_1Fundamental Concepts and Units of Measurement.ppt
1. ch01_1Fundamental Concepts and Units of Measurement.ppt
 
Blueprint curriculum maps v2.0
Blueprint curriculum maps v2.0Blueprint curriculum maps v2.0
Blueprint curriculum maps v2.0
 
Exam unit 1 review
Exam unit 1 reviewExam unit 1 review
Exam unit 1 review
 
Chapter 3 _interrelated_scientific_prin
Chapter 3 _interrelated_scientific_prinChapter 3 _interrelated_scientific_prin
Chapter 3 _interrelated_scientific_prin
 
Chapter3novideo 120823231232-phpapp01
Chapter3novideo 120823231232-phpapp01Chapter3novideo 120823231232-phpapp01
Chapter3novideo 120823231232-phpapp01
 
Ch 1 and 2 ppt
Ch 1 and 2 pptCh 1 and 2 ppt
Ch 1 and 2 ppt
 
Introduction
IntroductionIntroduction
Introduction
 
Hannah Chemistry - Matter and Periodic Table.ppt
Hannah Chemistry - Matter and Periodic Table.pptHannah Chemistry - Matter and Periodic Table.ppt
Hannah Chemistry - Matter and Periodic Table.ppt
 
1406 ch 4 energy and enzymes blank sp 2018
1406 ch 4 energy and enzymes blank sp 20181406 ch 4 energy and enzymes blank sp 2018
1406 ch 4 energy and enzymes blank sp 2018
 
الجوانب الأساسية لدراسة موضوعات الكيمياء
الجوانب الأساسية لدراسة موضوعات الكيمياءالجوانب الأساسية لدراسة موضوعات الكيمياء
الجوانب الأساسية لدراسة موضوعات الكيمياء
 
Mod2
Mod2Mod2
Mod2
 
Ch1.12.matter measurement ppt
Ch1.12.matter measurement pptCh1.12.matter measurement ppt
Ch1.12.matter measurement ppt
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactions
 
Unit b matter and chemical change notes
Unit b matter and chemical change notesUnit b matter and chemical change notes
Unit b matter and chemical change notes
 
Unit b matter and chemical change notes
Unit b matter and chemical change notesUnit b matter and chemical change notes
Unit b matter and chemical change notes
 
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptx
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptxSTRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptx
STRAND 1 MIXTURES ELEMENTS AND COMPOUNDS.pptx
 
TES# Chapter 4
TES# Chapter 4TES# Chapter 4
TES# Chapter 4
 
4 Natural Science and Technology Textbooks with Videos, Grades 4-6
4 Natural Science and Technology Textbooks with Videos, Grades 4-64 Natural Science and Technology Textbooks with Videos, Grades 4-6
4 Natural Science and Technology Textbooks with Videos, Grades 4-6
 
Bio 105 Chapter 3
Bio 105 Chapter 3Bio 105 Chapter 3
Bio 105 Chapter 3
 
2_Chemical_Basis.ppt
2_Chemical_Basis.ppt2_Chemical_Basis.ppt
2_Chemical_Basis.ppt
 

More from Cleophas Rwemera

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Cleophas Rwemera
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Cleophas Rwemera
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Cleophas Rwemera
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Cleophas Rwemera
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Cleophas Rwemera
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Cleophas Rwemera
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Cleophas Rwemera
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Cleophas Rwemera
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Cleophas Rwemera
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Cleophas Rwemera
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Cleophas Rwemera
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Cleophas Rwemera
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Cleophas Rwemera
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Cleophas Rwemera
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Cleophas Rwemera
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Cleophas Rwemera
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Cleophas Rwemera
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Cleophas Rwemera
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Cleophas Rwemera
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Cleophas Rwemera
 

More from Cleophas Rwemera (20)

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
 

Recently uploaded

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 

Recently uploaded (20)

Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 

Chapter2 120822131145-phpapp01

  • 1. LIVING IN THE ENVIRONMENT 17TH MILLER/SPOOLMAN CHAPTER 2 Science, Matter, Energy, and Systems
  • 2. Core Case Study: A Story About a Forest • Hubbard Brook Experimental Forest in New Hampshire • Compared the loss of water and nutrients from an uncut forest (control site) with one that had been stripped (experimental site) • Stripped site: • 30-40% more runoff • More dissolved nutrients • More soil erosion
  • 3. The Effects of Deforestation on the Loss of Water and Soil Nutrients Fig. 2-1, p. 31
  • 4. Science Is a Search for Order in Nature (1) • Identify a problem • Find out what is known about the problem • Ask a question to be investigated • Gather data through experiments • Propose a scientific hypothesis
  • 5. Science Is a Search for Order in Nature (2) • Make testable predictions • Keep testing and making observations • Accept or reject the hypothesis • Scientific theory: well-tested and widely accepted hypothesis
  • 8. Characteristics of Science…and Scientists • Curiosity • Skepticism • Reproducibility • Peer review • Openness to new ideas • Critical thinking • Creativity
  • 9. Science Focus: Easter Island: Revisions to a Popular Environmental Story • Some revisions to a popular environmental story • Polynesians arrived about 800 years ago • Population may have reached 3000 • Used trees in an unsustainable manner, but rats may have multiplied and eaten the seeds of the trees
  • 10. Stone Statues on Easter Island Fig. 2-A, p. 35
  • 11. Scientific Theories and Laws Are the Most Important Results of Science • Scientific theory • Widely tested • Supported by extensive evidence • Accepted by most scientists in a particular area • Scientific law, law of nature
  • 12. The Results of Science Can Be Tentative, Reliable, or Unreliable • Tentative science, frontier science • Reliable science • Unreliable science
  • 13. Science Has Some Limitations 1. Particular hypotheses, theories, or laws have a high probability of being true while not being absolute 2. Bias can be minimized by scientists 3. Environmental phenomena involve interacting variables and complex interactions 4. Statistical methods may be used to estimate very large or very small numbers 5. Scientific process is limited to the natural world
  • 14. Science Focus: Statistics and Probability • Statistics • Collect, organize, and interpret numerical data • Probability • The chance that something will happen or be valid • Need large enough sample size
  • 15. Matter Consists of Elements and Compounds • Matter • Has mass and takes up space • Elements • Unique properties • Cannot be broken down chemically into other substances • Compounds • Two or more different elements bonded together in fixed proportions
  • 16. Gold and Mercury Are Chemical Elements Fig. 2-4a, p. 38
  • 17. Chemical Elements Used in The Book Table 2-1, p. 38
  • 18. Atoms, Ions, and Molecules Are the Building Blocks of Matter (1) • Atomic theory • All elements are made of atoms • Subatomic particles • Protons with positive charge and neutrons with no charge in nucleus • Negatively charged electrons orbit the nucleus • Atomic number • Number of protons in nucleus • Mass number • Number of protons plus neutrons in nucleus
  • 19. Model of a Carbon-12 Atom Fig. 2-5, p. 39
  • 20. Atoms, Ions, and Molecules Are the Building Blocks of Matter (2) • Isotopes • Same element, different number of neutrons • Ions • Gain or lose electrons • Form ionic compounds • pH • Measure of acidity • H+ and OH-
  • 21. Chemical Ions Used in This Book Table 2-2, p. 40
  • 23. Loss of NO3− from a Deforested Watershed Fig. 2-6, p. 40
  • 24. Atoms, Ions, and Molecules Are the Building Blocks of Matter (3) • Molecule • Two or more atoms of the same or different elements held together by chemical bonds • Compounds • Two or more atoms of different elements come together • Chemical formula • H20, CO2
  • 25. Compounds Used in This Book Table 2-3, p. 40
  • 26. Organic Compounds Are the Chemicals of Life • Organic compounds • Hydrocarbons and chlorinated hydrocarbons • Simple carbohydrates • Macromolecules: complex organic molecules • Complex carbohydrates • Proteins • Nucleic acids • Lipids • Inorganic compounds • Compounds that do not contain carbon
  • 28. Amino Acids and Proteins Supplement 4, Fig. 8
  • 29. Nucleotide Structure in DNA and RNA Supplement 4, Fig. 9
  • 30. DNA Double Helix Structure and Bonding Supplement 4, Fig. 10
  • 31. Fatty Acid Structure and Trigyceride Supplement 4, Fig. 11
  • 32. Matter Comes to Life through Genes, Chromosomes, and Cells • Cells: fundamental units of life; all organisms are composed of one or more cells • Genes • Sequences of nucleotides within DNA • Instructions for proteins • Create inheritable traits • Chromosomes: composed of many genes
  • 33. Cells, Nuclei, Chromosomes, DNA, and Genes Fig. 2-7, p. 42
  • 34. Some Forms of Matter Are More Useful than Others • High-quality matter • Highly concentrated • Near earth’s surface • High potential as a resource • Low-quality matter • Not highly concentrated • Deep underground or widely dispersed • Low potential as a resource
  • 35. Examples of Differences in Matter Quality Fig. 2-8, p. 42
  • 36. Matter Undergoes Physical, Chemical, and Nuclear Changes • Physical change • No change in chemical composition • Chemical change, chemical reaction • Change in chemical composition • Reactants and products • Nuclear change • Natural radioactive decay • Radioisotopes: unstable • Nuclear fission • Nuclear fusion
  • 37. Types of Nuclear Changes Fig. 2-9, p. 43
  • 38. We Cannot Create or Destroy Matter • Law of conservation of matter • Whenever matter undergoes a physical or chemical change, no atoms are created or destroyed
  • 39. Energy Comes in Many Forms (1) • Kinetic energy • Flowing water • Wind • Heat • Transferred by radiation, conduction, or convection • Electromagnetic radiation • Energy moves in waves, X rays, UV rays • Potential energy • Stored energy • Can be changed into kinetic energy
  • 40. Wind’s Kinetic Energy Moves This Turbine Fig. 2-10, p. 44
  • 43. Energy Comes in Many Forms (2) • Sun provides 99% of earth’s energy • Warms earth to comfortable temperature • Plant photosynthesis • Winds • Hydropower • Biomass • Fossil fuels: oil, coal, natural gas
  • 45. Some Types of Energy Are More Useful Than Others • High-quality energy • High capacity to do work • Concentrated • High-temperature heat • Strong winds • Fossil fuels • Low-quality energy • Low capacity to do work • Dispersed
  • 46. Ocean Heat Is Low-Quality Energy Fig. 2-15, p. 47
  • 47. Energy Changes Are Governed by Two Scientific Laws • First Law of Thermodynamics • Law of conservation of energy • Energy is neither created nor destroyed in physical and chemical changes • Second Law of Thermodynamics • Energy always goes from a more useful to a less useful form when it changes from one form to another • Light bulbs and combustion engines are very inefficient: produce wasted heat
  • 49. Systems Have Inputs, Flows, and Outputs • System • Set of components that interact in a regular way • Human body, earth, the economy • Inputs from the environment • Flows, throughputs of matter and energy • Outputs to the environment
  • 50. Inputs, Throughput, and Outputs of an Economic System Fig. 2-17, p. 48
  • 51. Systems Respond to Change through Feedback Loops • Positive feedback loop • Causes system to change further in the same direction • Can cause major environmental problems • Negative, or corrective, feedback loop • Causes system to change in opposite direction
  • 54. Time Delays Can Allow a System to Reach a Tipping Point • Time delays vary • Between the input of a feedback stimulus and the response to it • Tipping point, threshold level • Causes a shift in the behavior of a system • Melting of polar ice • Population growth
  • 55. System Effects Can Be Amplified through Synergy • Synergistic interaction, synergy • Two or more processes combine in such a way that combined effect is greater than the two separate effects • Helpful • Studying with a partner • Harmful • E.g., Smoking and inhaling asbestos particles
  • 56. Three Big Ideas 1. There is no away. 2. You cannot get something for nothing. 3. You cannot break even.

Editor's Notes

  1. Figure 2.1: This controlled field experiment measured the effects of deforestation on the loss of water and soil nutrients from a forest. V–notched dams were built at the bottoms of two forested valleys so that all water and nutrients flowing from each valley could be collected and measured for volume and mineral content. These measurements were recorded for the forested valley (left), which acted as the control site, and for the other valley, which acted as the experimental site (right). Then all the trees in the experimental valley were cut and, for 3 years, the flows of water and soil nutrients from both valleys were measured and compared.
  2. Figure 2.2: This diagram illustrates what scientists do. Scientists use this overall process for testing ideas about how the natural world works. However, they do not necessarily follow the order of steps shown here. For example, sometimes a scientist might start by coming up with a hypothesis to answer the initial question and then run experiments to test the hypothesis.
  3. Figure 2.3: We can use the scientific process to understand and deal with an everyday problem.
  4. Figure 2.A: These and many other massive stone figures once lined the coasts of Easter Island and are the remains of the technology created on the island by an ancient civilization of Polynesians. Some of these statues are taller than an average five-story building and can weigh as much as 89 metric tons (98 tons).
  5. Figure 2.4: Gold (left) and mercury (right) are chemical elements; each has a unique set of properties and it cannot be broken down into simpler substances.
  6. Figure 2.5: This is a greatly simplified model of a carbon-12 atom. It consists of a nucleus containing six protons, each with a positive electrical charge, and six neutrons with no electrical charge. Six negatively charged electrons are found outside its nucleus. We cannot determine the exact locations of the electrons. Instead, we can estimate the probability that they will be found at various locations outside the nucleus—sometimes called an electron probability cloud. This is somewhat like saying that there are six airplanes flying around inside a cloud. We do not know their exact location, but the cloud represents an area in which we can probably find them.
  7. TABLE 2-2
  8. Figure 5 The pH scale, representing the concentration of hydrogen ions (H+) in one liter of solution is shown on the right-hand side. On the left side, are the approximate pH values for solutions of some common substances. A solution with a pH less than 7 is acidic, one with a pH of 7 is neutral, and one with a pH greater than 7 is basic. A change of 1 on the pH scale means a tenfold increase or decrease in H+ concentration. (Modified from Cecie Starr, Biology: Today and Tomorrow. Pacific Grove, CA: Brooks/Cole, © 2005)
  9. Figure 2.6: This graph shows the loss of nitrate ions (NO3–) from a deforested watershed in the Hubbard Brook Experimental Forest (Figure 2-1, right). The average concentration of nitrate ions in runoff from the experimental deforested watershed was about 60 times greater than in a nearby unlogged watershed used as a control (Figure 2-1, left). (Data from F. H. Bormann and Gene Likens)
  10. Figure 7 Straight-chain and ring structural formulas of glucose, a simple sugar that can be used to build long chains of complex carbohydrates such as starch and cellulose.
  11. Figure 8 This model illustrates both the general structural formula of amino acids and a specific structural formula of one of the 20 different amino acid molecules that can be linked together in chains to form proteins that fold up into more complex shapes.
  12. Figure 9 This diagram shows the generalized structures of the nucleotide molecules linked in various numbers and sequences to form large nucleic acid molecules such as various types of DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). In DNA, the five-carbon sugar in each nucleotide is deoxyribose; in RNA it is ribose. The four basic nucleotides used to make various forms of DNA molecules differ in the types of nucleotide bases they contain—guanine (G), cytosine (C), adenine (A), and thymine (T). (Uracil, labeled U, occurs instead of thymine in RNA.)
  13. Figure 10 Portion of the double helix of a DNA molecule. The double helix is composed of two spiral (helical) strands of nucleotides. Each nucleotide contains a unit of phosphate (P), deoxyribose (S), and one of four nucleotide bases: guanine (G), cytosine (C), adenine (A), and thymine (T). The two strands are held together by hydrogen bonds formed between various pairs of the nucleotide bases. Guanine (G) bonds with cytosine (C), and adenine (A) with thymine (T).
  14. Figure 11 The structural formula of fatty acid that is one form of lipid (left) is shown here. Fatty acids are converted into more complex fat molecules (center) that are stored in adipose cells (right).
  15. Figure 2.7: This diagram shows the relationships among cells, nuclei, chromosomes, DNA, and genes.
  16. Figure 2.8: These examples illustrate the differences in matter quality. High-quality matter (left column) is fairly easy to extract and is highly concentrated; low-quality matter (right column) is not highly concentrated and is more difficult to extract than high-quality matter.
  17. Figure 2.9: There are three types of nuclear changes: natural radioactive decay (top), nuclear fission (middle), and nuclear fusion (bottom).
  18. Figure 2.10: Kinetic energy, created by the gaseous molecules in a mass of moving air, turns the blades of this wind turbine. The turbine then converts this kinetic energy to electrical energy, which is another form of kinetic energy.
  19. Figure 2.11: The electromagnetic spectrum consists of a range of electromagnetic waves, which differ in wavelength (the distance between successive peaks or troughs) and energy content.
  20. Figure 2.12: The water stored in this reservoir behind a dam in the U.S. state of Tennessee has potential energy, which becomes kinetic energy when the water flows through channels built into the dam where it spins a turbine and produces electricity—another form of kinetic energy.
  21. Figure 2.14: Fossil fuels: Oil, coal, and natural gas (left, center, and right, respectively) supply most of the commercial energy that we use to supplement energy from the sun. Burning fossil fuels provides us with many benefits such as heat, electricity, air conditioning, manufacturing, and mobility. But when we burn these fuels, we automatically add carbon dioxide and various other pollutants to the atmosphere.
  22. Figure 2.15: A huge amount of the sun’s energy is stored as heat in the world’s oceans. But the temperature of this widely dispersed energy is so low that we cannot use it to heat matter to a high temperature. Thus, the ocean’s stored heat is low-quality energy. Question: Why is direct solar energy a higher-quality form of energy than the ocean’s heat is?
  23. Figure 2.16: Two widely used technologies waste enormous amounts of energy. In an incandescent lightbulb (right), about 95% of the electrical energy flowing into it becomes heat; just 5% becomes light. By comparison, in a compact fluorescent bulb (left) with the same brightness, about 20% of the energy input becomes light. In the internal combustion engine (right photo) found in most motor vehicles, about 87% of the chemical energy provided in its gasoline fuel flows into the environment as low-quality heat. (Data from U.S. Department of Energy and Amory Lovins; see his Guest Essay at CengageNOW.)
  24. Figure 2.17: This diagram illustrates a greatly simplified model of a system. Most systems depend on inputs of matter and energy resources, and outputs of wastes, pollutants, and heat to the environment. A system can become unsustainable if the throughputs of matter and energy resources exceed the abilities of the system’s environment to provide the required resource inputs and to absorb or dilute the resulting wastes, pollutants, and heat.
  25. Figure 2.18: This diagram represents a positive feedback loop. Decreasing vegetation in a valley causes increasing erosion and nutrient losses that in turn cause more vegetation to die, resulting in more erosion and nutrient losses. Question: Can you think of another positive feedback loop in nature?
  26. Figure 2.19: This diagram illustrates a negative feedback loop. When a house being heated by a furnace gets to a certain temperature, its thermostat is set to turn off the furnace, and the house begins to cool instead of continuing to get warmer. When the house temperature drops below the set point, this information is fed back to turn the furnace on until the desired temperature is reached again.