SlideShare a Scribd company logo
1 of 32
Chapter 6
Work and Energy
6.1 Work Done by a Constant Force
FsW
or
FdW
=
=
( )Jjoule1mN1 =⋅
6.1 Work Done by a Constant Force
( )sFW θcos=
1180cos
090cos
10cos
−=
=
=



6.1 Work Done by a Constant Force
Example 1 Pulling a Suitcase-on-Wheels
Find the work done if the force is 45.0-N, the angle is 50.0
degrees, and the displacement is 75.0 m.
( ) ( )[ ]( )
J2170
m0.750.50cosN0.45cos
=
== 
sFW θ
6.1 Work Done by a Constant Force
( ) FssFW == 0cos
( ) FssFW −== 180cos
6.1 Work Done by a Constant Force
Example 3 Accelerating a Crate
The truck is accelerating at
a rate of +1.50 m/s2
. The mass
of the crate is 120-kg and it
does not slip. The magnitude of
the displacement is 65 m.
What is the total work done on
the crate by all of the forces
acting on it?
6.1 Work Done by a Constant Force
The angle between the displacement
and the friction force is 0 degrees.
( )[ ]( ) J102.1m650cosN180 4
×==W
( )( ) N180sm5.1kg120 2
=== mafs
6.2 The Work-Energy Theorem and Kinetic Energy
DEFINITION OF KINETIC ENERGY
The kinetic energy KE of and object with mass
m and speed v is given by
2
2
1
KE mv=
6.2 The Work-Energy Theorem and Kinetic Energy
THE WORK-ENERGY THEOREM
When a net external force does work on and object, the kinetic
energy of the object changes according to
2
2
12
f2
1
of KEKE omvmvW −=−=
6.2 The Work-Energy Theorem and Kinetic Energy
Example 4 Deep Space 1
The mass of the space probe is 474-kg and its initial velocity
is 275 m/s. If the .056 N force acts on the probe through a
displacement of 2.42×109
m, what is its final speed?
6.2 The Work-Energy Theorem and Kinetic Energy
2
2
12
f2
1
W omvmv −=
( )[ ]sF θcosW ∑=
6.2 The Work-Energy Theorem and Kinetic Energy
( ) ( ) ( ) ( )( )2
2
12
f2
19
sm275kg474kg474m1042.20cosN056. −=× v
( )[ ] 2
2
12
f2
1
cosF omvmvs −=∑ θ
sm805=fv
6.2 The Work-Energy Theorem and Kinetic Energy
In this case the net force is kfmgF −=∑ 
25sin
6.3 Gravitational Potential Energy
( )sFW θcos=
( )fo hhmgW −=gravity
6.3 Gravitational Potential Energy
( )fo hhmgW −=gravity
6.3 Gravitational Potential Energy
Example 7 A Gymnast on a Trampoline
The gymnast leaves the trampoline at an initial height of 1.20 m
and reaches a maximum height of 4.80 m before falling back
down. What was the initial speed of the gymnast?
6.3 Gravitational Potential Energy
2
2
12
f2
1
W omvmv −=
( )fo hhmgW −=gravity
( ) 2
2
1
ofo mvhhmg −=−
( )foo hhgv −−= 2
( )( ) sm40.8m80.4m20.1sm80.92 2
=−−=ov
6.3 Gravitational Potential Energy
fo mghmghW −=gravity
DEFINITION OF GRAVITATIONAL POTENTIAL ENERGY
The gravitational potential energy PE is the energy that an
object of mass m has because of its position relative to the
surface of the earth.
mgh=PE
( )Jjoule1mN1 =⋅
6.4 Conservative Versus Nonconservative Forces
THE WORK-ENERGY THEOREM
PEKE ∆+∆=ncW
6.5 The Conservation of Mechanical Energy
( ) ( )ofof PEPEKEKEPEKE −+−=∆+∆=ncW
( ) ( )ooff PEKEPEKE +++=ncW
of EE −=ncW
If the net work on an object by nonconservative forces
is zero, then its energy does not change:
of EE =
6.5 The Conservation of Mechanical Energy
THE PRINCIPLE OF CONSERVATION OF
MECHANICAL ENERGY
The total mechanical energy (E = KE + PE) of an object
remains constant as the object moves.
6.5 The Conservation of Mechanical Energy
6.5 The Conservation of Mechanical Energy
Example 8 A Daredevil Motorcyclist
A motorcyclist is trying to leap across the canyon by driving
horizontally off a cliff 38.0 m/s. Ignoring air resistance, find
the speed with which the cycle strikes the ground on the other
side.
6.5 The Conservation of Mechanical Energy
of EE =
2
2
12
2
1
ooff mvmghmvmgh +=+
2
2
12
2
1
ooff vghvgh +=+
6.5 The Conservation of Mechanical Energy
2
2
12
2
1
ooff vghvgh +=+
( ) 2
2 ofof vhhgv +−=
( )( ) ( ) sm2.46sm0.38m0.35sm8.92
22
=+=fv
6.6 Nonconservative Forces and the Work-Energy Theorem
THE WORK-ENERGY THEOREM
of EE −=ncW
( ) ( )2
2
12
2
1
ooffnc mvmghmvmghW +−+=
6.6 Nonconservative Forces and the Work-Energy Theorem
Example 11 Fireworks
Assuming that the nonconservative force
generated by the burning propellant does
425 J of work, what is the final speed
of the rocket. Ignore air resistance.
( )
( )2
2
1
2
2
1
oo
ffnc
mvmgh
mvmghW
+
−+=
6.6 Nonconservative Forces and the Work-Energy Theorem
2
2
12
2
1
ofofnc mvmvmghmghW −+−=
( )( )( )
( ) 2
2
1
2
kg20.0
m0.29sm80.9kg20.0J425
fv+
=
( ) 2
2
1
fofnc mvhhmgW +−=
sm61=fv
6.7 Power
DEFINITION OF AVERAGE POWER
Average power is the rate at which work is done, and it
is obtained by dividing the work by the time required to
perform the work.
t
W
P ==
Time
Work
(W)wattsjoule =
6.7 Power
Time
energyinChange
=P
watts745.7secondpoundsfoot550horsepower1 =⋅=
vFP =
6.7 Power
6.8 Other Forms of Energy and the Conservation of Energy
THE PRINCIPLE OF CONSERVATION OF ENERGY
Energy can neither be created not destroyed, but can
only be converted from one form to another.

More Related Content

What's hot

What's hot (17)

Lecture13
Lecture13Lecture13
Lecture13
 
Dynamics13lecture
Dynamics13lectureDynamics13lecture
Dynamics13lecture
 
Lecture11
Lecture11Lecture11
Lecture11
 
Lecture12
Lecture12Lecture12
Lecture12
 
Lecture10
Lecture10Lecture10
Lecture10
 
Lecture15
Lecture15Lecture15
Lecture15
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
vibration of machines and structures
vibration of machines and structuresvibration of machines and structures
vibration of machines and structures
 
9789810682446 slides chapter 11
9789810682446 slides chapter 119789810682446 slides chapter 11
9789810682446 slides chapter 11
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProject
 
Chapter 8 principle of virtual work
Chapter 8 principle of virtual workChapter 8 principle of virtual work
Chapter 8 principle of virtual work
 
PHYSICS KSSM FORM 4 (2.6 Force)
PHYSICS KSSM FORM 4 (2.6 Force)PHYSICS KSSM FORM 4 (2.6 Force)
PHYSICS KSSM FORM 4 (2.6 Force)
 
Capitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro EstaticaCapitulo 2 SOlucionario libro Estatica
Capitulo 2 SOlucionario libro Estatica
 
Lecture14
Lecture14Lecture14
Lecture14
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Actuation and Control Design for Safe Wearable Robotic Arms
Actuation and Control Design for Safe Wearable Robotic ArmsActuation and Control Design for Safe Wearable Robotic Arms
Actuation and Control Design for Safe Wearable Robotic Arms
 

Similar to Chapter 6-powerpoint-1224302877703008-9

AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 Powerpoint
Mrreynon
 
Work and energy
Work and energyWork and energy
Work and energy
Pratiksha
 
Ch10 simple harmonic motion 25 02 2013
Ch10 simple harmonic motion  25 02 2013Ch10 simple harmonic motion  25 02 2013
Ch10 simple harmonic motion 25 02 2013
Majoro
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
rro7560
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
DannyCoronel5
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
andreslahe
 

Similar to Chapter 6-powerpoint-1224302877703008-9 (20)

Work and Energy
Work and EnergyWork and Energy
Work and Energy
 
Chapter 06
Chapter 06Chapter 06
Chapter 06
 
Chapter 7-powerpoint-1225339266570076-9
Chapter 7-powerpoint-1225339266570076-9Chapter 7-powerpoint-1225339266570076-9
Chapter 7-powerpoint-1225339266570076-9
 
AP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 PowerpointAP Physics - Chapter 6 Powerpoint
AP Physics - Chapter 6 Powerpoint
 
Ch2 2011 s
Ch2 2011 sCh2 2011 s
Ch2 2011 s
 
Chapter 4 work, energy and power
Chapter 4 work, energy and powerChapter 4 work, energy and power
Chapter 4 work, energy and power
 
Work and energy
Work and energyWork and energy
Work and energy
 
Gravity Dam (numerical problem ) BY SITARAM SAINI
Gravity Dam (numerical problem ) BY SITARAM SAINIGravity Dam (numerical problem ) BY SITARAM SAINI
Gravity Dam (numerical problem ) BY SITARAM SAINI
 
Ejercicio viga
Ejercicio vigaEjercicio viga
Ejercicio viga
 
Ch10 simple harmonic motion 25 02 2013
Ch10 simple harmonic motion  25 02 2013Ch10 simple harmonic motion  25 02 2013
Ch10 simple harmonic motion 25 02 2013
 
Scalars in mechanics
Scalars in mechanicsScalars in mechanics
Scalars in mechanics
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
work energy theorem and kinetic energy
work energy theorem and kinetic energywork energy theorem and kinetic energy
work energy theorem and kinetic energy
 
Lecture10
Lecture10Lecture10
Lecture10
 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
 
ClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdfClassExamples_LinearMomentum.pdf
ClassExamples_LinearMomentum.pdf
 
Capítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerwwCapítulo 11 (5th edition)rewrweerww
Capítulo 11 (5th edition)rewrweerww
 
Every Equation
Every EquationEvery Equation
Every Equation
 
Perfect method for Frames
Perfect method for FramesPerfect method for Frames
Perfect method for Frames
 

More from Cleophas Rwemera

More from Cleophas Rwemera (20)

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
 

Recently uploaded

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 

Recently uploaded (20)

Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Plant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptxPlant propagation: Sexual and Asexual propapagation.pptx
Plant propagation: Sexual and Asexual propapagation.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 

Chapter 6-powerpoint-1224302877703008-9

  • 2. 6.1 Work Done by a Constant Force FsW or FdW = = ( )Jjoule1mN1 =⋅
  • 3. 6.1 Work Done by a Constant Force ( )sFW θcos= 1180cos 090cos 10cos −= = =   
  • 4. 6.1 Work Done by a Constant Force Example 1 Pulling a Suitcase-on-Wheels Find the work done if the force is 45.0-N, the angle is 50.0 degrees, and the displacement is 75.0 m. ( ) ( )[ ]( ) J2170 m0.750.50cosN0.45cos = ==  sFW θ
  • 5. 6.1 Work Done by a Constant Force ( ) FssFW == 0cos ( ) FssFW −== 180cos
  • 6. 6.1 Work Done by a Constant Force Example 3 Accelerating a Crate The truck is accelerating at a rate of +1.50 m/s2 . The mass of the crate is 120-kg and it does not slip. The magnitude of the displacement is 65 m. What is the total work done on the crate by all of the forces acting on it?
  • 7. 6.1 Work Done by a Constant Force The angle between the displacement and the friction force is 0 degrees. ( )[ ]( ) J102.1m650cosN180 4 ×==W ( )( ) N180sm5.1kg120 2 === mafs
  • 8. 6.2 The Work-Energy Theorem and Kinetic Energy DEFINITION OF KINETIC ENERGY The kinetic energy KE of and object with mass m and speed v is given by 2 2 1 KE mv=
  • 9. 6.2 The Work-Energy Theorem and Kinetic Energy THE WORK-ENERGY THEOREM When a net external force does work on and object, the kinetic energy of the object changes according to 2 2 12 f2 1 of KEKE omvmvW −=−=
  • 10. 6.2 The Work-Energy Theorem and Kinetic Energy Example 4 Deep Space 1 The mass of the space probe is 474-kg and its initial velocity is 275 m/s. If the .056 N force acts on the probe through a displacement of 2.42×109 m, what is its final speed?
  • 11. 6.2 The Work-Energy Theorem and Kinetic Energy 2 2 12 f2 1 W omvmv −= ( )[ ]sF θcosW ∑=
  • 12. 6.2 The Work-Energy Theorem and Kinetic Energy ( ) ( ) ( ) ( )( )2 2 12 f2 19 sm275kg474kg474m1042.20cosN056. −=× v ( )[ ] 2 2 12 f2 1 cosF omvmvs −=∑ θ sm805=fv
  • 13. 6.2 The Work-Energy Theorem and Kinetic Energy In this case the net force is kfmgF −=∑  25sin
  • 14. 6.3 Gravitational Potential Energy ( )sFW θcos= ( )fo hhmgW −=gravity
  • 15. 6.3 Gravitational Potential Energy ( )fo hhmgW −=gravity
  • 16. 6.3 Gravitational Potential Energy Example 7 A Gymnast on a Trampoline The gymnast leaves the trampoline at an initial height of 1.20 m and reaches a maximum height of 4.80 m before falling back down. What was the initial speed of the gymnast?
  • 17. 6.3 Gravitational Potential Energy 2 2 12 f2 1 W omvmv −= ( )fo hhmgW −=gravity ( ) 2 2 1 ofo mvhhmg −=− ( )foo hhgv −−= 2 ( )( ) sm40.8m80.4m20.1sm80.92 2 =−−=ov
  • 18. 6.3 Gravitational Potential Energy fo mghmghW −=gravity DEFINITION OF GRAVITATIONAL POTENTIAL ENERGY The gravitational potential energy PE is the energy that an object of mass m has because of its position relative to the surface of the earth. mgh=PE ( )Jjoule1mN1 =⋅
  • 19. 6.4 Conservative Versus Nonconservative Forces THE WORK-ENERGY THEOREM PEKE ∆+∆=ncW
  • 20. 6.5 The Conservation of Mechanical Energy ( ) ( )ofof PEPEKEKEPEKE −+−=∆+∆=ncW ( ) ( )ooff PEKEPEKE +++=ncW of EE −=ncW If the net work on an object by nonconservative forces is zero, then its energy does not change: of EE =
  • 21. 6.5 The Conservation of Mechanical Energy THE PRINCIPLE OF CONSERVATION OF MECHANICAL ENERGY The total mechanical energy (E = KE + PE) of an object remains constant as the object moves.
  • 22. 6.5 The Conservation of Mechanical Energy
  • 23. 6.5 The Conservation of Mechanical Energy Example 8 A Daredevil Motorcyclist A motorcyclist is trying to leap across the canyon by driving horizontally off a cliff 38.0 m/s. Ignoring air resistance, find the speed with which the cycle strikes the ground on the other side.
  • 24. 6.5 The Conservation of Mechanical Energy of EE = 2 2 12 2 1 ooff mvmghmvmgh +=+ 2 2 12 2 1 ooff vghvgh +=+
  • 25. 6.5 The Conservation of Mechanical Energy 2 2 12 2 1 ooff vghvgh +=+ ( ) 2 2 ofof vhhgv +−= ( )( ) ( ) sm2.46sm0.38m0.35sm8.92 22 =+=fv
  • 26. 6.6 Nonconservative Forces and the Work-Energy Theorem THE WORK-ENERGY THEOREM of EE −=ncW ( ) ( )2 2 12 2 1 ooffnc mvmghmvmghW +−+=
  • 27. 6.6 Nonconservative Forces and the Work-Energy Theorem Example 11 Fireworks Assuming that the nonconservative force generated by the burning propellant does 425 J of work, what is the final speed of the rocket. Ignore air resistance. ( ) ( )2 2 1 2 2 1 oo ffnc mvmgh mvmghW + −+=
  • 28. 6.6 Nonconservative Forces and the Work-Energy Theorem 2 2 12 2 1 ofofnc mvmvmghmghW −+−= ( )( )( ) ( ) 2 2 1 2 kg20.0 m0.29sm80.9kg20.0J425 fv+ = ( ) 2 2 1 fofnc mvhhmgW +−= sm61=fv
  • 29. 6.7 Power DEFINITION OF AVERAGE POWER Average power is the rate at which work is done, and it is obtained by dividing the work by the time required to perform the work. t W P == Time Work (W)wattsjoule =
  • 32. 6.8 Other Forms of Energy and the Conservation of Energy THE PRINCIPLE OF CONSERVATION OF ENERGY Energy can neither be created not destroyed, but can only be converted from one form to another.