SlideShare a Scribd company logo
1 of 59
LECTURE PRESENTATIONS
For CAMPBELL BIOLOGY, NINTH EDITION
Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson
© 2011 Pearson Education, Inc.
Lectures by
Erin Barley
Kathleen Fitzpatrick
The Chromosomal Basis of
Inheritance
Chapter 15
Overview: Locating Genes Along
Chromosomes
• Mendel’s “hereditary factors” were genes
• Today we can show that genes are located on
chromosomes
© 2011 Pearson Education, Inc.
Mendelian inheritance has its physical basis in
the behavior of chromosomes
• Mitosis and meiosis were first described in the
late 1800s
• The chromosome theory of inheritance states:
– Mendelian genes have specific loci (positions)
on chromosomes
– Chromosomes undergo segregation and
independent assortment
• The behavior of chromosomes during meiosis
can account for Mendel’s laws of segregation
and independent assortment
© 2011 Pearson Education, Inc.
Figure 15.2
P Generation
F1 Generation
Yellow-round
seeds (YYRR)
Green-wrinkled
seeds (yyrr)
×
Meiosis
Fertilization
Gametes
Y
Y
R R
YR
y
y
r
y r
All F1 plants produce
yellow-round seeds (YyRr).
Meiosis
Metaphase I
Anaphase I
Metaphase II
R R
R R
R R
R R
R R R R
r r
r r
r r
r r
r r r r
Y Y
Y Y
Y Y
Y Y
Y Y Y Y
y y
y y
y y
y y
y
y y y
Gametes
LAW OF SEGREGATION
The two alleles for each
gene separate during
gamete formation.
LAW OF INDEPENDENT
ASSORTMENT Alleles of genes
on nonhomologous chromosomes
assort independently during
gamete formation.
1
2 2
1
1
/4
1
/4
1
/4
1
/4YR yr Yr yR
F2 Generation
3 3Fertilization recombines
the R and r alleles at
random.
Fertilization results in the
9:3:3:1 phenotypic ratio
in the F2 generation.
An F1 × F1 cross-fertilization
9 : 3 : 3 : 1
r
Morgan’s Experimental Evidence:
Scientific Inquiry
• The first solid evidence associating a specific
gene with a specific chromosome came from
Thomas Hunt Morgan, an embryologist
• Morgan’s experiments with fruit flies provided
convincing evidence that chromosomes are the
location of Mendel’s heritable factors
© 2011 Pearson Education, Inc.
Morgan’s Choice of Experimental Organism
• Several characteristics make fruit flies a
convenient organism for genetic studies
– They produce many offspring
– A generation can be bred every two weeks
– They have only four pairs of chromosomes
© 2011 Pearson Education, Inc.
• Morgan noted wild type, or normal, phenotypes
that were common in the fly populations
• Traits alternative to the wild type are called
mutant phenotypes
© 2011 Pearson Education, Inc.
Figure 15.3
Correlating Behavior of a Gene’s Alleles
with Behavior of a Chromosome Pair
• In one experiment, Morgan mated male flies with
white eyes (mutant) with female flies with red
eyes (wild type)
– The F1 generation all had red eyes
– The F2 generation showed the 3:1 red:white eye
ratio, but only males had white eyes
• Morgan determined that the white-eyed mutant
allele must be located on the X chromosome
• Morgan’s finding supported the chromosome
theory of inheritance
© 2011 Pearson Education, Inc.
Figure 15.4
All offspring
had red eyes.
P
Generation
F1
Generation
F2
Generation
F2
Generation
F1
Generation
P
Generation
Eggs
Eggs
Sperm
Sperm
X
X
X
Y
w+
w+
w+
w+
w+
w+
w+
w+ w+
w+
w+
w
w
w
w
w w
RESULTS
EXPERIMENT
CONCLUSION
Sex-linked genes exhibit unique patterns
of inheritance
• In humans and some other animals, there is a
chromosomal basis of sex determination
© 2011 Pearson Education, Inc.
The Chromosomal Basis of Sex
• In humans and other mammals, there are two
varieties of sex chromosomes: a larger X
chromosome and a smaller Y chromosome
• Only the ends of the Y chromosome have
regions that are homologous with corresponding
regions of the X chromosome
• The SRY gene on the Y chromosome codes for
a protein that directs the development of male
anatomical features
© 2011 Pearson Education, Inc.
Figure 15.5
X
Y
• Females are XX, and males are XY
• Each ovum contains an X chromosome, while
a sperm may contain either an X or a Y
chromosome
• Other animals have different methods of sex
determination
© 2011 Pearson Education, Inc.
Figure 15.6
Parents
or
Sperm
or
Egg
Zygotes (offspring)
44 +
XY
44 +
XX
22 +
X
22 +
Y
22 +
X
44 +
XX
44 +
XY
22 +
XX
22 +
X
76 +
ZW
76 +
ZZ
32
(Diploid)
16
(Haploid)
(a) The X-Y system
(b) The X-0 system
(c) The Z-W system
(d) The haplo-diploid system
• A gene that is located on either sex chromosome
is called a sex-linked gene
• Genes on the Y chromosome are called Y-linked
genes; there are few of these
• Genes on the X chromosome are called X-linked
genes
© 2011 Pearson Education, Inc.
Inheritance of X-Linked Genes
• X chromosome have genes for many
characters unrelated to sex, whereas the Y
chromosome mainly encodes genes related
to sex determination
© 2011 Pearson Education, Inc.
• X-linked genes follow specific patterns of
inheritance
• For a recessive X-linked trait to be expressed
– A female needs two copies of the allele
(homozygous)
– A male needs only one copy of the allele
(hemizygous)
• X-linked recessive disorders are much more
common in males than in females
© 2011 Pearson Education, Inc.
Figure 15.7
Eggs Eggs Eggs
Sperm Sperm Sperm
(a) (b) (c)
XN
XN Xn
Y XN
Xn
XN
Y XN
Xn
Xn
Y
Xn
Y XN
Y YXn
Xn
Xn
XN
XN
XN
XNXN
Xn
XN
Y
XN
Y
XN
Y XN
Y
Xn
Y Xn
YXN
Xn
XN
Xn
XN
Xn
XN
XN
Xn
Xn
• Some disorders caused by recessive alleles on
the X chromosome in humans
– Color blindness (mostly X-linked)
– Duchenne muscular dystrophy
– Hemophilia
© 2011 Pearson Education, Inc.
X Inactivation in Female Mammals
• In mammalian females, one of the two X
chromosomes in each cell is randomly
inactivated during embryonic development
• The inactive X condenses into a Barr body
• If a female is heterozygous for a particular gene
located on the X chromosome, she will be a
mosaic for that character
© 2011 Pearson Education, Inc.
Figure 15.8
Early embryo:
X chromosomes
Allele for
orange fur
Allele for
black fur
Two cell
populations
in adult cat:
Cell division and
X chromosome
inactivation
Active X
Inactive X
Active X
Black fur Orange fur
• Each chromosome has hundreds or thousands
of genes (except the Y chromosome)
• Genes located on the same chromosome that
tend to be inherited together are called linked
genes
Linked genes tend to be inherited together
because they are located near each other on
the same chromosome
© 2011 Pearson Education, Inc.
How Linkage Affects Inheritance
• Morgan did other experiments with fruit flies to
see how linkage affects inheritance of two
characters
• Morgan crossed flies that differed in traits of
body color and wing size
© 2011 Pearson Education, Inc.
Figure 15.9-4
P Generation (homozygous)
Wild type
(gray body, normal wings)
F1 dihybrid
(wild type)
Testcross
offspring
TESTCROSS
b+
b+
vg+
vg+
b+
b vg+
vg
b b vg vg
b b vg vg
Double mutant
(black body,
vestigial wings)
Double mutant
Eggs
Sperm
EXPERIMENT
RESULTS
PREDICTED RATIOS
Wild type
(gray-normal)
Black-
vestigial
Gray-
vestigial
Black-
normal
b+
vg+ bvg b+
vg b vg+
b+
b vg+
vg bb vg vg b+
bvgvg bb vg+
vg
965 944 206 185
1
1
1
1
1
0
1
0
If genes are located on different chromosomes:
If genes are located on the same chromosome and
parental alleles are always inherited together:
:
:
:
:
:
:
:
:
:
bvg
• Morgan found that body color and wing size are
usually inherited together in specific
combinations (parental phenotypes)
• He noted that these genes do not assort
independently, and reasoned that they were on
the same chromosome
© 2011 Pearson Education, Inc.
Figure 15.UN01
Most offspring
F1 dihybrid female
and homozygous
recessive male
in testcross
or
b+
vg+
b vg
b+
vg+
b vg
b vg
b vg
b vg
b vg
• However, nonparental phenotypes were also
produced
• Understanding this result involves exploring
genetic recombination, the production of
offspring with combinations of traits differing from
either parent
© 2011 Pearson Education, Inc.
Genetic Recombination and Linkage
• The genetic findings of Mendel and Morgan
relate to the chromosomal basis of
recombination
© 2011 Pearson Education, Inc.
Recombination of Unlinked Genes:
Independent Assortment of Chromosomes
• Mendel observed that combinations of traits in
some offspring differ from either parent
• Offspring with a phenotype matching one of the
parental phenotypes are called parental types
• Offspring with nonparental phenotypes (new
combinations of traits) are called recombinant
types, or recombinants
• A 50% frequency of recombination is observed
for any two genes on different chromosomes
© 2011 Pearson Education, Inc.
Figure 15.UN02
Gametes from green-
wrinkled homozygous
recessive parent (yyrr)
Gametes from yellow-round
dihybrid parent (YyRr)
Recombinant
offspring
Parental-
type
offspring
YR yr Yr yR
yr
YyRr yyrr Yyrr yyRr
Recombination of Linked Genes: Crossing
Over
• Morgan discovered that genes can be linked,
but the linkage was incomplete, because some
recombinant phenotypes were observed
• He proposed that some process must
occasionally break the physical connection
between genes on the same chromosome
• That mechanism was the crossing over of
homologous chromosomes
© 2011 Pearson Education, Inc.
Figure 15.10 Testcross
parents
Replication
of chromosomes
Gray body, normal wings
(F1 dihybrid)
Black body, vestigial wings
(double mutant)
Replication
of chromosomes
Meiosis I
Meiosis II
Meiosis I and II
Recombinant
chromosomes
Eggs
b+
vg+
b vg
b+
vg+
b+
vg+
b+
vg+
b+
vg
b vg+
b vg
b vg
b vg
b vg
b vg
b vg
b vg
b vg
b vg
b+
vg+ b+
vgb vg b vg+
Testcross
offspring
965
Wild type
(gray-normal)
944
Black-
vestigial
206
Gray-
vestigial
185
Black-
normal
Sperm
Parental-type offspring Recombinant offspring
Recombination
frequency
391 recombinants
2,300 total offspring
× 100 = 17%=
b+
vg+
b vg+b+
vgb vg
b vg b vg b vg b vg
b vg
New Combinations of Alleles: Variation for
Normal Selection
• Recombinant chromosomes bring alleles
together in new combinations in gametes
• Random fertilization increases even further the
number of variant combinations that can be
produced
• This abundance of genetic variation is the raw
material upon which natural selection works
© 2011 Pearson Education, Inc.
Mapping the Distance Between Genes Using
Recombination Data: Scientific Inquiry
• Alfred Sturtevant, one of Morgan’s students,
constructed a genetic map, an ordered list of
the genetic loci along a particular chromosome
• Sturtevant predicted that the farther apart two
genes are, the higher the probability that a
crossover will occur between them and
therefore the higher the recombination
frequency
© 2011 Pearson Education, Inc.
• A linkage map is a genetic map of a
chromosome based on recombination
frequencies
• Distances between genes can be expressed
as map units; one map unit, or centimorgan,
represents a 1% recombination frequency
• Map units indicate relative distance and order,
not precise locations of genes
© 2011 Pearson Education, Inc.
Figure 15.11
Chromosome
Recombination
frequencies
9% 9.5%
17%
b cn vg
RESULTS
• Genes that are far apart on the same
chromosome can have a recombination
frequency near 50%
• Such genes are physically linked, but
genetically unlinked, and behave as if
found on different chromosomes
© 2011 Pearson Education, Inc.
Alterations of chromosome number or
structure cause some genetic disorders
• Large-scale chromosomal alterations in
humans and other mammals often lead to
spontaneous abortions (miscarriages) or
cause a variety of developmental disorders
• Plants tolerate such genetic changes better
than animals do
© 2011 Pearson Education, Inc.
Abnormal Chromosome Number
• In nondisjunction, pairs of homologous
chromosomes do not separate normally
during meiosis
• As a result, one gamete receives two of
the same type of chromosome, and
another gamete receives no copy
© 2011 Pearson Education, Inc.
Meiosis I
Meiosis II
Nondisjunction
Non-
disjunction
Gametes
Number of chromosomes
Nondisjunction of homo-
logous chromosomes in
meiosis I
(a) Nondisjunction of sister
chromatids in meiosis II
(b)
n + 1 n − 1n + 1 n − 1 n − 1n + 1 n n
Figure 15.13-3
• Aneuploidy results from the fertilization of
gametes in which nondisjunction occurred
• Offspring with this condition have an
abnormal number of a particular
chromosome
© 2011 Pearson Education, Inc.
• A monosomic zygote has only one copy of a
particular chromosome
• A trisomic zygote has three copies of a
particular chromosome
© 2011 Pearson Education, Inc.
• Polyploidy is a condition in which an organism
has more than two complete sets of
chromosomes
– Triploidy (3n) is three sets of chromosomes
– Tetraploidy (4n) is four sets of chromosomes
• Polyploidy is common in plants, but not
animals
• Polyploids are more normal in appearance
than aneuploids
© 2011 Pearson Education, Inc.
Alterations of Chromosome Structure
• Breakage of a chromosome can lead to four
types of changes in chromosome structure
– Deletion removes a chromosomal segment
– Duplication repeats a segment
– Inversion reverses orientation of a segment
within a chromosome
– Translocation moves a segment from one
chromosome to another
© 2011 Pearson Education, Inc.
Figure 15.14
(a) Deletion
(b) Duplication
(c) Inversion
(d) Translocation
A deletion removes a chromosomal segment.
A duplication repeats a segment.
An inversion reverses a segment within a
chromosome.
A translocation moves a segment from one
chromosome to a nonhomologous chromosome.
A B C D E F G H
A B C E F G H
A B C D E F G H
A B C D E F G HB C
A B C D E F G H
A D C B E F G H
A B C D E F G H M N O P Q R
GM N O C HFED A B P Q R
Human Disorders Due to Chromosomal
Alterations
• Alterations of chromosome number and
structure are associated with some serious
disorders
• Some types of aneuploidy appear to upset the
genetic balance less than others, resulting in
individuals surviving to birth and beyond
• These surviving individuals have a set of
symptoms, or syndrome, characteristic of the
type of aneuploidy
© 2011 Pearson Education, Inc.
Down Syndrome (Trisomy 21)
• Down syndrome is an aneuploid condition that
results from three copies of chromosome 21
• It affects about one out of every 700 children
born in the United States
• The frequency of Down syndrome increases
with the age of the mother, a correlation that
has not been explained
© 2011 Pearson Education, Inc.
Figure 15.15
Aneuploidy of Sex Chromosomes
• Nondisjunction of sex chromosomes produces
a variety of aneuploid conditions
• Klinefelter syndrome is the result of an extra
chromosome in a male, producing XXY
individuals
• Monosomy X, called Turner syndrome,
produces X0 females, who are sterile; it is the
only known viable monosomy in humans
© 2011 Pearson Education, Inc.
Disorders Caused by Structurally Altered
Chromosomes
• The syndrome cri du chat (“cry of the cat”),
results from a specific deletion in
chromosome 5
• A child born with this syndrome is mentally
retarded and has a catlike cry; individuals
usually die in infancy or early childhood
• Certain cancers, including chronic
myelogenous leukemia (CML), are caused
by translocations of chromosomes
© 2011 Pearson Education, Inc.
Figure 15.16
Normal chromosome 9
Normal chromosome 22
Reciprocal translocation
Translocated chromosome 9
Translocated chromosome 22
(Philadelphia chromosome)
Some inheritance patterns are exceptions to
standard Mendelian inheritance
• There are two normal exceptions to Mendelian
genetics
• One exception involves genes located in the
nucleus, and the other exception involves
genes located outside the nucleus
• In both cases, the sex of the parent
contributing an allele is a factor in the pattern
of inheritance
© 2011 Pearson Education, Inc.
Genomic Imprinting
• For a few mammalian traits, the phenotype
depends on which parent passed along the
alleles for those traits
• Such variation in phenotype is called genomic
imprinting
• Genomic imprinting involves the silencing of
certain genes that are “stamped” with an
imprint during gamete production
© 2011 Pearson Education, Inc.
Figure 15.17
(a) Homozygote
Paternal
chromosome
Maternal
chromosome
Normal Igf2 allele
is expressed.
Normal Igf2 allele
is not expressed.
Normal-sized mouse
(wild type)
Mutant Igf2 allele
inherited from mother
Mutant Igf2 allele
inherited from father
Normal-sized mouse (wild type) Dwarf mouse (mutant)
Normal Igf2 allele
is expressed.
Mutant Igf2 allele
is expressed.
Mutant Igf2 allele
is not expressed.
Normal Igf2 allele
is not expressed.
(b) Heterozygotes
• It appears that imprinting is the result of the
methylation (addition of –CH3) of cysteine
nucleotides
• Genomic imprinting is thought to affect only a
small fraction of mammalian genes
• Most imprinted genes are critical for embryonic
development
© 2011 Pearson Education, Inc.
Inheritance of Organelle Genes
• Extranuclear genes (or cytoplasmic genes) are
found in organelles in the cytoplasm
• Mitochondria, chloroplasts, and other plant
plastids carry small circular DNA molecules
• Extranuclear genes are inherited maternally
because the zygote’s cytoplasm comes from
the egg
• The first evidence of extranuclear genes came
from studies on the inheritance of yellow or
white patches on leaves of an otherwise green
plant
© 2011 Pearson Education, Inc.
Figure 15.18
• Some defects in mitochondrial genes prevent
cells from making enough ATP and result in
diseases that affect the muscular and nervous
systems
– For example, mitochondrial myopathy and
Leber’s hereditary optic neuropathy
© 2011 Pearson Education, Inc.

More Related Content

What's hot

Chapter 15(2)
Chapter 15(2)Chapter 15(2)
Chapter 15(2)
ktanaka2
 
Non mendelian genetics(roel)
Non mendelian genetics(roel)Non mendelian genetics(roel)
Non mendelian genetics(roel)
roel maraya
 

What's hot (16)

Sex linked and quantitative inheritance
Sex linked and quantitative inheritanceSex linked and quantitative inheritance
Sex linked and quantitative inheritance
 
Chapter 15(2)
Chapter 15(2)Chapter 15(2)
Chapter 15(2)
 
Chapter 15: Chromosomal Basis of Inheritance
Chapter 15: Chromosomal Basis of InheritanceChapter 15: Chromosomal Basis of Inheritance
Chapter 15: Chromosomal Basis of Inheritance
 
Non mendelian genetics(roel)
Non mendelian genetics(roel)Non mendelian genetics(roel)
Non mendelian genetics(roel)
 
chromosomal basis of inheritance
chromosomal basis of inheritancechromosomal basis of inheritance
chromosomal basis of inheritance
 
Criss cross inheritance
Criss cross inheritanceCriss cross inheritance
Criss cross inheritance
 
Heredity
HeredityHeredity
Heredity
 
sex linked inheritance, Sex Influence inheritance and sex limited characters
sex linked inheritance, Sex Influence inheritance and sex limited characterssex linked inheritance, Sex Influence inheritance and sex limited characters
sex linked inheritance, Sex Influence inheritance and sex limited characters
 
Chapter 3 chromosomal basis of inheritance
Chapter 3 chromosomal basis of inheritanceChapter 3 chromosomal basis of inheritance
Chapter 3 chromosomal basis of inheritance
 
Heredity - Genes, Chromosomes, Solving a Punnett Square and Non-Mendelian Inh...
Heredity - Genes, Chromosomes, Solving a Punnett Square and Non-Mendelian Inh...Heredity - Genes, Chromosomes, Solving a Punnett Square and Non-Mendelian Inh...
Heredity - Genes, Chromosomes, Solving a Punnett Square and Non-Mendelian Inh...
 
Science (2. Inheritance and Variation)
Science (2. Inheritance and Variation)Science (2. Inheritance and Variation)
Science (2. Inheritance and Variation)
 
Biology in Focus - Chapter 12
Biology in Focus - Chapter 12Biology in Focus - Chapter 12
Biology in Focus - Chapter 12
 
Chromosome theory of inheritance
Chromosome theory of inheritanceChromosome theory of inheritance
Chromosome theory of inheritance
 
NonMendelian Genetics Part2
NonMendelian Genetics Part2NonMendelian Genetics Part2
NonMendelian Genetics Part2
 
Chromosomes and Heredity
Chromosomes and HeredityChromosomes and Heredity
Chromosomes and Heredity
 
Non-Mendellian genetics
Non-Mendellian geneticsNon-Mendellian genetics
Non-Mendellian genetics
 

Similar to 15thechromosomalbasisofinheritance 130311053453-phpapp01

Meiosis and sexual life cycle
Meiosis and sexual life cycleMeiosis and sexual life cycle
Meiosis and sexual life cycle
Eman Abdallah
 
Chapter 15 chromosomes
Chapter 15 chromosomesChapter 15 chromosomes
Chapter 15 chromosomes
Heather Fogell
 
Chapter 5 principles of inheritance and variation
Chapter 5 principles of inheritance and variationChapter 5 principles of inheritance and variation
Chapter 5 principles of inheritance and variation
mohan bio
 
13 lecture presentation revised
13 lecture presentation revised13 lecture presentation revised
13 lecture presentation revised
Jill Creswell
 
14 lecture presentation revised
14 lecture presentation revised14 lecture presentation revised
14 lecture presentation revised
Jill Creswell
 
Mendelian genetics by mohanbio
Mendelian genetics by mohanbioMendelian genetics by mohanbio
Mendelian genetics by mohanbio
mohan bio
 
09 lecture presentation
09 lecture presentation09 lecture presentation
09 lecture presentation
Uconn Stamford
 
Genetics..............................ppt
Genetics..............................pptGenetics..............................ppt
Genetics..............................ppt
rheapalmaortego
 

Similar to 15thechromosomalbasisofinheritance 130311053453-phpapp01 (20)

15 Lecture BIOL 1030-30 Gillette College
15 Lecture BIOL 1030-30 Gillette College15 Lecture BIOL 1030-30 Gillette College
15 Lecture BIOL 1030-30 Gillette College
 
13meiosisandsexuallifecycles 130311053433-phpapp02
13meiosisandsexuallifecycles 130311053433-phpapp0213meiosisandsexuallifecycles 130311053433-phpapp02
13meiosisandsexuallifecycles 130311053433-phpapp02
 
Chapter 15 Chromosomal Inheritance.ppt
Chapter 15 Chromosomal Inheritance.pptChapter 15 Chromosomal Inheritance.ppt
Chapter 15 Chromosomal Inheritance.ppt
 
Meiosis and sexual life cycle
Meiosis and sexual life cycleMeiosis and sexual life cycle
Meiosis and sexual life cycle
 
Ch 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life CyclesCh 13: Meiosis and Sexual Life Cycles
Ch 13: Meiosis and Sexual Life Cycles
 
Chapter 15 chromosomes
Chapter 15 chromosomesChapter 15 chromosomes
Chapter 15 chromosomes
 
12lecturepresentation 151130021152-lva1-app6891
12lecturepresentation 151130021152-lva1-app689112lecturepresentation 151130021152-lva1-app6891
12lecturepresentation 151130021152-lva1-app6891
 
Chapter 5 principles of inheritance and variation
Chapter 5 principles of inheritance and variationChapter 5 principles of inheritance and variation
Chapter 5 principles of inheritance and variation
 
Chapter 9 part 1
Chapter 9 part 1 Chapter 9 part 1
Chapter 9 part 1
 
13 lecture presentation revised
13 lecture presentation revised13 lecture presentation revised
13 lecture presentation revised
 
12 biology notes_ch05_principals_of_inheritance_and_variation
12 biology notes_ch05_principals_of_inheritance_and_variation12 biology notes_ch05_principals_of_inheritance_and_variation
12 biology notes_ch05_principals_of_inheritance_and_variation
 
2014 sex-linkage
2014 sex-linkage2014 sex-linkage
2014 sex-linkage
 
14 lecture presentation revised
14 lecture presentation revised14 lecture presentation revised
14 lecture presentation revised
 
BL 100 L6.ppt
BL 100   L6.pptBL 100   L6.ppt
BL 100 L6.ppt
 
14mendelandthegeneidea 130311053443-phpapp01
14mendelandthegeneidea 130311053443-phpapp0114mendelandthegeneidea 130311053443-phpapp01
14mendelandthegeneidea 130311053443-phpapp01
 
AS102_Genetics-Lecture_2_Lyimo.pptx
AS102_Genetics-Lecture_2_Lyimo.pptxAS102_Genetics-Lecture_2_Lyimo.pptx
AS102_Genetics-Lecture_2_Lyimo.pptx
 
Mendelian genetics by mohanbio
Mendelian genetics by mohanbioMendelian genetics by mohanbio
Mendelian genetics by mohanbio
 
B.tech biotech i bls u 4 mendal's genetics
B.tech biotech i bls u 4 mendal's geneticsB.tech biotech i bls u 4 mendal's genetics
B.tech biotech i bls u 4 mendal's genetics
 
09 lecture presentation
09 lecture presentation09 lecture presentation
09 lecture presentation
 
Genetics..............................ppt
Genetics..............................pptGenetics..............................ppt
Genetics..............................ppt
 

More from Cleophas Rwemera

More from Cleophas Rwemera (20)

Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891Chapter003 150907175411-lva1-app6891
Chapter003 150907175411-lva1-app6891
 
Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892Chapter002 150831173907-lva1-app6892
Chapter002 150831173907-lva1-app6892
 
Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892Chapter001 150823230128-lva1-app6892
Chapter001 150823230128-lva1-app6892
 
Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01Chapter25 cancer-140105085413-phpapp01
Chapter25 cancer-140105085413-phpapp01
 
Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02Chapter24 immunology-140105101108-phpapp02
Chapter24 immunology-140105101108-phpapp02
 
Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02Chapter23 nervecells-140105100942-phpapp02
Chapter23 nervecells-140105100942-phpapp02
 
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
Chapter22 themolecularcellbiologyofdevelopment-140105100412-phpapp02
 
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
Chapter21 cellbirthlineageanddeath-140105095914-phpapp02
 
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
Chapter20 regulatingtheeukaryoticcellcycle-140105095738-phpapp01
 
Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02Chapter19 integratingcellsintotissues-140105095535-phpapp02
Chapter19 integratingcellsintotissues-140105095535-phpapp02
 
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
Chapter18 cellorganizationandmovementiimicrotubulesandintermediatefilaments-1...
 
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
Chapter17 cellorganizationandmovementimicrofilaments-140105094810-phpapp02
 
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
Chapter16 cellsignalingiisignalingpathwaysthatcontrolgeneactivity-14010509451...
 
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
Chapter15 cellsignalingisignaltransductionandshort-termcellularresponses-1401...
 
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
Chapter14 vesiculartrafficsecretionandendocytosis-140105094215-phpapp01
 
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
Chapter13 movingproteinsintomembranesandorganelles-140105094005-phpapp01
 
Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01Chapter12 cellularenergetics-140105093734-phpapp01
Chapter12 cellularenergetics-140105093734-phpapp01
 
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
Chapter11 transmembranetransportofionsandsmallmolecules-140105092904-phpapp02
 
Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02Chapter10 biomembranestructure-140105093829-phpapp02
Chapter10 biomembranestructure-140105093829-phpapp02
 
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
Chapter9 visualizingfractionatingandculturingcells-140105092245-phpapp01
 

Recently uploaded

Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
ssuserdda66b
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Recently uploaded (20)

ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdfVishram Singh - Textbook of Anatomy  Upper Limb and Thorax.. Volume 1 (1).pdf
Vishram Singh - Textbook of Anatomy Upper Limb and Thorax.. Volume 1 (1).pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 

15thechromosomalbasisofinheritance 130311053453-phpapp01

  • 1. LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson © 2011 Pearson Education, Inc. Lectures by Erin Barley Kathleen Fitzpatrick The Chromosomal Basis of Inheritance Chapter 15
  • 2. Overview: Locating Genes Along Chromosomes • Mendel’s “hereditary factors” were genes • Today we can show that genes are located on chromosomes © 2011 Pearson Education, Inc.
  • 3. Mendelian inheritance has its physical basis in the behavior of chromosomes • Mitosis and meiosis were first described in the late 1800s • The chromosome theory of inheritance states: – Mendelian genes have specific loci (positions) on chromosomes – Chromosomes undergo segregation and independent assortment • The behavior of chromosomes during meiosis can account for Mendel’s laws of segregation and independent assortment © 2011 Pearson Education, Inc.
  • 4. Figure 15.2 P Generation F1 Generation Yellow-round seeds (YYRR) Green-wrinkled seeds (yyrr) × Meiosis Fertilization Gametes Y Y R R YR y y r y r All F1 plants produce yellow-round seeds (YyRr). Meiosis Metaphase I Anaphase I Metaphase II R R R R R R R R R R R R r r r r r r r r r r r r Y Y Y Y Y Y Y Y Y Y Y Y y y y y y y y y y y y y Gametes LAW OF SEGREGATION The two alleles for each gene separate during gamete formation. LAW OF INDEPENDENT ASSORTMENT Alleles of genes on nonhomologous chromosomes assort independently during gamete formation. 1 2 2 1 1 /4 1 /4 1 /4 1 /4YR yr Yr yR F2 Generation 3 3Fertilization recombines the R and r alleles at random. Fertilization results in the 9:3:3:1 phenotypic ratio in the F2 generation. An F1 × F1 cross-fertilization 9 : 3 : 3 : 1 r
  • 5. Morgan’s Experimental Evidence: Scientific Inquiry • The first solid evidence associating a specific gene with a specific chromosome came from Thomas Hunt Morgan, an embryologist • Morgan’s experiments with fruit flies provided convincing evidence that chromosomes are the location of Mendel’s heritable factors © 2011 Pearson Education, Inc.
  • 6. Morgan’s Choice of Experimental Organism • Several characteristics make fruit flies a convenient organism for genetic studies – They produce many offspring – A generation can be bred every two weeks – They have only four pairs of chromosomes © 2011 Pearson Education, Inc.
  • 7. • Morgan noted wild type, or normal, phenotypes that were common in the fly populations • Traits alternative to the wild type are called mutant phenotypes © 2011 Pearson Education, Inc.
  • 9. Correlating Behavior of a Gene’s Alleles with Behavior of a Chromosome Pair • In one experiment, Morgan mated male flies with white eyes (mutant) with female flies with red eyes (wild type) – The F1 generation all had red eyes – The F2 generation showed the 3:1 red:white eye ratio, but only males had white eyes • Morgan determined that the white-eyed mutant allele must be located on the X chromosome • Morgan’s finding supported the chromosome theory of inheritance © 2011 Pearson Education, Inc.
  • 10. Figure 15.4 All offspring had red eyes. P Generation F1 Generation F2 Generation F2 Generation F1 Generation P Generation Eggs Eggs Sperm Sperm X X X Y w+ w+ w+ w+ w+ w+ w+ w+ w+ w+ w+ w w w w w w RESULTS EXPERIMENT CONCLUSION
  • 11. Sex-linked genes exhibit unique patterns of inheritance • In humans and some other animals, there is a chromosomal basis of sex determination © 2011 Pearson Education, Inc.
  • 12. The Chromosomal Basis of Sex • In humans and other mammals, there are two varieties of sex chromosomes: a larger X chromosome and a smaller Y chromosome • Only the ends of the Y chromosome have regions that are homologous with corresponding regions of the X chromosome • The SRY gene on the Y chromosome codes for a protein that directs the development of male anatomical features © 2011 Pearson Education, Inc.
  • 14. • Females are XX, and males are XY • Each ovum contains an X chromosome, while a sperm may contain either an X or a Y chromosome • Other animals have different methods of sex determination © 2011 Pearson Education, Inc.
  • 15. Figure 15.6 Parents or Sperm or Egg Zygotes (offspring) 44 + XY 44 + XX 22 + X 22 + Y 22 + X 44 + XX 44 + XY 22 + XX 22 + X 76 + ZW 76 + ZZ 32 (Diploid) 16 (Haploid) (a) The X-Y system (b) The X-0 system (c) The Z-W system (d) The haplo-diploid system
  • 16. • A gene that is located on either sex chromosome is called a sex-linked gene • Genes on the Y chromosome are called Y-linked genes; there are few of these • Genes on the X chromosome are called X-linked genes © 2011 Pearson Education, Inc.
  • 17. Inheritance of X-Linked Genes • X chromosome have genes for many characters unrelated to sex, whereas the Y chromosome mainly encodes genes related to sex determination © 2011 Pearson Education, Inc.
  • 18. • X-linked genes follow specific patterns of inheritance • For a recessive X-linked trait to be expressed – A female needs two copies of the allele (homozygous) – A male needs only one copy of the allele (hemizygous) • X-linked recessive disorders are much more common in males than in females © 2011 Pearson Education, Inc.
  • 19. Figure 15.7 Eggs Eggs Eggs Sperm Sperm Sperm (a) (b) (c) XN XN Xn Y XN Xn XN Y XN Xn Xn Y Xn Y XN Y YXn Xn Xn XN XN XN XNXN Xn XN Y XN Y XN Y XN Y Xn Y Xn YXN Xn XN Xn XN Xn XN XN Xn Xn
  • 20. • Some disorders caused by recessive alleles on the X chromosome in humans – Color blindness (mostly X-linked) – Duchenne muscular dystrophy – Hemophilia © 2011 Pearson Education, Inc.
  • 21. X Inactivation in Female Mammals • In mammalian females, one of the two X chromosomes in each cell is randomly inactivated during embryonic development • The inactive X condenses into a Barr body • If a female is heterozygous for a particular gene located on the X chromosome, she will be a mosaic for that character © 2011 Pearson Education, Inc.
  • 22. Figure 15.8 Early embryo: X chromosomes Allele for orange fur Allele for black fur Two cell populations in adult cat: Cell division and X chromosome inactivation Active X Inactive X Active X Black fur Orange fur
  • 23. • Each chromosome has hundreds or thousands of genes (except the Y chromosome) • Genes located on the same chromosome that tend to be inherited together are called linked genes Linked genes tend to be inherited together because they are located near each other on the same chromosome © 2011 Pearson Education, Inc.
  • 24. How Linkage Affects Inheritance • Morgan did other experiments with fruit flies to see how linkage affects inheritance of two characters • Morgan crossed flies that differed in traits of body color and wing size © 2011 Pearson Education, Inc.
  • 25. Figure 15.9-4 P Generation (homozygous) Wild type (gray body, normal wings) F1 dihybrid (wild type) Testcross offspring TESTCROSS b+ b+ vg+ vg+ b+ b vg+ vg b b vg vg b b vg vg Double mutant (black body, vestigial wings) Double mutant Eggs Sperm EXPERIMENT RESULTS PREDICTED RATIOS Wild type (gray-normal) Black- vestigial Gray- vestigial Black- normal b+ vg+ bvg b+ vg b vg+ b+ b vg+ vg bb vg vg b+ bvgvg bb vg+ vg 965 944 206 185 1 1 1 1 1 0 1 0 If genes are located on different chromosomes: If genes are located on the same chromosome and parental alleles are always inherited together: : : : : : : : : : bvg
  • 26. • Morgan found that body color and wing size are usually inherited together in specific combinations (parental phenotypes) • He noted that these genes do not assort independently, and reasoned that they were on the same chromosome © 2011 Pearson Education, Inc.
  • 27. Figure 15.UN01 Most offspring F1 dihybrid female and homozygous recessive male in testcross or b+ vg+ b vg b+ vg+ b vg b vg b vg b vg b vg
  • 28. • However, nonparental phenotypes were also produced • Understanding this result involves exploring genetic recombination, the production of offspring with combinations of traits differing from either parent © 2011 Pearson Education, Inc.
  • 29. Genetic Recombination and Linkage • The genetic findings of Mendel and Morgan relate to the chromosomal basis of recombination © 2011 Pearson Education, Inc.
  • 30. Recombination of Unlinked Genes: Independent Assortment of Chromosomes • Mendel observed that combinations of traits in some offspring differ from either parent • Offspring with a phenotype matching one of the parental phenotypes are called parental types • Offspring with nonparental phenotypes (new combinations of traits) are called recombinant types, or recombinants • A 50% frequency of recombination is observed for any two genes on different chromosomes © 2011 Pearson Education, Inc.
  • 31. Figure 15.UN02 Gametes from green- wrinkled homozygous recessive parent (yyrr) Gametes from yellow-round dihybrid parent (YyRr) Recombinant offspring Parental- type offspring YR yr Yr yR yr YyRr yyrr Yyrr yyRr
  • 32. Recombination of Linked Genes: Crossing Over • Morgan discovered that genes can be linked, but the linkage was incomplete, because some recombinant phenotypes were observed • He proposed that some process must occasionally break the physical connection between genes on the same chromosome • That mechanism was the crossing over of homologous chromosomes © 2011 Pearson Education, Inc.
  • 33. Figure 15.10 Testcross parents Replication of chromosomes Gray body, normal wings (F1 dihybrid) Black body, vestigial wings (double mutant) Replication of chromosomes Meiosis I Meiosis II Meiosis I and II Recombinant chromosomes Eggs b+ vg+ b vg b+ vg+ b+ vg+ b+ vg+ b+ vg b vg+ b vg b vg b vg b vg b vg b vg b vg b vg b vg b+ vg+ b+ vgb vg b vg+ Testcross offspring 965 Wild type (gray-normal) 944 Black- vestigial 206 Gray- vestigial 185 Black- normal Sperm Parental-type offspring Recombinant offspring Recombination frequency 391 recombinants 2,300 total offspring × 100 = 17%= b+ vg+ b vg+b+ vgb vg b vg b vg b vg b vg b vg
  • 34. New Combinations of Alleles: Variation for Normal Selection • Recombinant chromosomes bring alleles together in new combinations in gametes • Random fertilization increases even further the number of variant combinations that can be produced • This abundance of genetic variation is the raw material upon which natural selection works © 2011 Pearson Education, Inc.
  • 35. Mapping the Distance Between Genes Using Recombination Data: Scientific Inquiry • Alfred Sturtevant, one of Morgan’s students, constructed a genetic map, an ordered list of the genetic loci along a particular chromosome • Sturtevant predicted that the farther apart two genes are, the higher the probability that a crossover will occur between them and therefore the higher the recombination frequency © 2011 Pearson Education, Inc.
  • 36. • A linkage map is a genetic map of a chromosome based on recombination frequencies • Distances between genes can be expressed as map units; one map unit, or centimorgan, represents a 1% recombination frequency • Map units indicate relative distance and order, not precise locations of genes © 2011 Pearson Education, Inc.
  • 38. • Genes that are far apart on the same chromosome can have a recombination frequency near 50% • Such genes are physically linked, but genetically unlinked, and behave as if found on different chromosomes © 2011 Pearson Education, Inc.
  • 39. Alterations of chromosome number or structure cause some genetic disorders • Large-scale chromosomal alterations in humans and other mammals often lead to spontaneous abortions (miscarriages) or cause a variety of developmental disorders • Plants tolerate such genetic changes better than animals do © 2011 Pearson Education, Inc.
  • 40. Abnormal Chromosome Number • In nondisjunction, pairs of homologous chromosomes do not separate normally during meiosis • As a result, one gamete receives two of the same type of chromosome, and another gamete receives no copy © 2011 Pearson Education, Inc.
  • 41. Meiosis I Meiosis II Nondisjunction Non- disjunction Gametes Number of chromosomes Nondisjunction of homo- logous chromosomes in meiosis I (a) Nondisjunction of sister chromatids in meiosis II (b) n + 1 n − 1n + 1 n − 1 n − 1n + 1 n n Figure 15.13-3
  • 42. • Aneuploidy results from the fertilization of gametes in which nondisjunction occurred • Offspring with this condition have an abnormal number of a particular chromosome © 2011 Pearson Education, Inc.
  • 43. • A monosomic zygote has only one copy of a particular chromosome • A trisomic zygote has three copies of a particular chromosome © 2011 Pearson Education, Inc.
  • 44. • Polyploidy is a condition in which an organism has more than two complete sets of chromosomes – Triploidy (3n) is three sets of chromosomes – Tetraploidy (4n) is four sets of chromosomes • Polyploidy is common in plants, but not animals • Polyploids are more normal in appearance than aneuploids © 2011 Pearson Education, Inc.
  • 45. Alterations of Chromosome Structure • Breakage of a chromosome can lead to four types of changes in chromosome structure – Deletion removes a chromosomal segment – Duplication repeats a segment – Inversion reverses orientation of a segment within a chromosome – Translocation moves a segment from one chromosome to another © 2011 Pearson Education, Inc.
  • 46. Figure 15.14 (a) Deletion (b) Duplication (c) Inversion (d) Translocation A deletion removes a chromosomal segment. A duplication repeats a segment. An inversion reverses a segment within a chromosome. A translocation moves a segment from one chromosome to a nonhomologous chromosome. A B C D E F G H A B C E F G H A B C D E F G H A B C D E F G HB C A B C D E F G H A D C B E F G H A B C D E F G H M N O P Q R GM N O C HFED A B P Q R
  • 47. Human Disorders Due to Chromosomal Alterations • Alterations of chromosome number and structure are associated with some serious disorders • Some types of aneuploidy appear to upset the genetic balance less than others, resulting in individuals surviving to birth and beyond • These surviving individuals have a set of symptoms, or syndrome, characteristic of the type of aneuploidy © 2011 Pearson Education, Inc.
  • 48. Down Syndrome (Trisomy 21) • Down syndrome is an aneuploid condition that results from three copies of chromosome 21 • It affects about one out of every 700 children born in the United States • The frequency of Down syndrome increases with the age of the mother, a correlation that has not been explained © 2011 Pearson Education, Inc.
  • 50. Aneuploidy of Sex Chromosomes • Nondisjunction of sex chromosomes produces a variety of aneuploid conditions • Klinefelter syndrome is the result of an extra chromosome in a male, producing XXY individuals • Monosomy X, called Turner syndrome, produces X0 females, who are sterile; it is the only known viable monosomy in humans © 2011 Pearson Education, Inc.
  • 51. Disorders Caused by Structurally Altered Chromosomes • The syndrome cri du chat (“cry of the cat”), results from a specific deletion in chromosome 5 • A child born with this syndrome is mentally retarded and has a catlike cry; individuals usually die in infancy or early childhood • Certain cancers, including chronic myelogenous leukemia (CML), are caused by translocations of chromosomes © 2011 Pearson Education, Inc.
  • 52. Figure 15.16 Normal chromosome 9 Normal chromosome 22 Reciprocal translocation Translocated chromosome 9 Translocated chromosome 22 (Philadelphia chromosome)
  • 53. Some inheritance patterns are exceptions to standard Mendelian inheritance • There are two normal exceptions to Mendelian genetics • One exception involves genes located in the nucleus, and the other exception involves genes located outside the nucleus • In both cases, the sex of the parent contributing an allele is a factor in the pattern of inheritance © 2011 Pearson Education, Inc.
  • 54. Genomic Imprinting • For a few mammalian traits, the phenotype depends on which parent passed along the alleles for those traits • Such variation in phenotype is called genomic imprinting • Genomic imprinting involves the silencing of certain genes that are “stamped” with an imprint during gamete production © 2011 Pearson Education, Inc.
  • 55. Figure 15.17 (a) Homozygote Paternal chromosome Maternal chromosome Normal Igf2 allele is expressed. Normal Igf2 allele is not expressed. Normal-sized mouse (wild type) Mutant Igf2 allele inherited from mother Mutant Igf2 allele inherited from father Normal-sized mouse (wild type) Dwarf mouse (mutant) Normal Igf2 allele is expressed. Mutant Igf2 allele is expressed. Mutant Igf2 allele is not expressed. Normal Igf2 allele is not expressed. (b) Heterozygotes
  • 56. • It appears that imprinting is the result of the methylation (addition of –CH3) of cysteine nucleotides • Genomic imprinting is thought to affect only a small fraction of mammalian genes • Most imprinted genes are critical for embryonic development © 2011 Pearson Education, Inc.
  • 57. Inheritance of Organelle Genes • Extranuclear genes (or cytoplasmic genes) are found in organelles in the cytoplasm • Mitochondria, chloroplasts, and other plant plastids carry small circular DNA molecules • Extranuclear genes are inherited maternally because the zygote’s cytoplasm comes from the egg • The first evidence of extranuclear genes came from studies on the inheritance of yellow or white patches on leaves of an otherwise green plant © 2011 Pearson Education, Inc.
  • 59. • Some defects in mitochondrial genes prevent cells from making enough ATP and result in diseases that affect the muscular and nervous systems – For example, mitochondrial myopathy and Leber’s hereditary optic neuropathy © 2011 Pearson Education, Inc.

Editor's Notes

  1. Figure 15.2 The chromosomal basis of Mendel’s laws.
  2. Figure 15.3 Morgan’s first mutant.
  3. Figure 15.4 Inquiry: In a cross between a wild-type female fruit fly and a mutant white-eyed male, what color eyes will the F1 and F2 offspring have?
  4. Figure 15.5 Human sex chromosomes.
  5. Figure 15.6 Some chromosomal systems of sex determination.
  6. Figure 15.7 The transmission of X-linked recessive traits.
  7. Figure 15.8 X inactivation and the tortoiseshell cat.
  8. Figure 15.9 Inquiry: How does linkage between two genes affect inheritance of characters?
  9. Figure 15.UN01 In-text figure, p. 294
  10. Figure 15.UN02 In-text figure, p. 294
  11. Figure 15.10 Chromosomal basis for recombination of linked genes.
  12. Figure 15.11 Research Method: Constructing a Linkage Map
  13. Figure 15.13 Meiotic nondisjunction.
  14. Figure 15.14 Alterations of chromosome structure.
  15. Figure 15.15 Down syndrome.
  16. Figure 15.16 Translocation associated with chronic myelogenous leukemia (CML).
  17. Figure 15.17 Genomic imprinting of the mouse Igf2 gene.
  18. Figure 15.18 Variegated leaves from English holly (Ilex aquifolium).