SlideShare a Scribd company logo
1 of 40
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-1
Chapter 2 Motion and Recombination
of Electrons and Holes
2.1 Thermal Motion
Average electron or hole kinetic energy 2
2
1
2
3
thmvkT 
kg101.926.0
K300JK1038.133
31
123





eff
th
m
kT
v
cm/s103.2m/s103.2 75

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-2
2.1 Thermal Motion
• Zig-zag motion is due to collisions or scattering
with imperfections in the crystal.
• Net thermal velocity is zero.
• Mean time between collisions is m ~ 0.1ps
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-3
Hot-point Probe can determine sample doing type
Thermoelectric Generator
(from heat to electricity )
and Cooler (from
electricity to refrigeration)
Hot-point Probe
distinguishes N
and P type
semiconductors.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-4
2.2 Drift
2.2.1 Electron and Hole Mobilities
• Drift is the motion caused by an electric field.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-5
2.2.1 Electron and Hole Mobilities
• p is the hole mobility and n is the electron mobility
mpp
qvm E
p
mp
m
q
v
E

p
mp
p
m
q
 
n
mn
n
m
q
 
Epv  Env 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-6
Electron and hole mobilities of selected
semiconductors
2.2.1 Electron and Hole Mobilities
Si Ge GaAs InAs
 n (cm2
/V∙s) 1400 3900 8500 30000
 p (cm2
/V∙s) 470 1900 400 500
.
sV
cm
V/cm
cm/s 2








v = E ;  has the dimensions of v/E
Based on the above table alone, which semiconductor and which carriers
(electrons or holes) are attractive for applications in high-speed devices?
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-7
EXAMPLE: Given p = 470 cm2/V·s, what is the hole drift velocity at
E = 103 V/cm? What is mp and what is the distance traveled between
collisions (called the mean free path)? Hint: When in doubt, use the
MKS system of units.
Solution: n = pE = 470 cm2/V·s  103 V/cm = 4.7 105 cm/s
mp = pmp/q =470 cm2/V ·s  0.39  9.110-31 kg/1.610-19 C
= 0.047 m2/V ·s  2.210-12 kg/C = 110-13s = 0.1 ps
mean free path = mhnth ~ 1 10-13 s  2.2107 cm/s
= 2.210-6 cm = 220 Å = 22 nm
This is smaller than the typical dimensions of devices, but getting close.
Drift Velocity, Mean Free Time, Mean Free Path
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-8
There are two main causes of carrier scattering:
1. Phonon Scattering
2. Ionized-Impurity (Coulombic) Scattering
2/3
2/1
11 




 T
TTvelocitythermalcarrierdensityphonon
phononphonon 
Phonon scattering mobility decreases when temperature rises:
 = q/m
vth  T1/2
2.2.2 Mechanisms of Carrier Scattering
 T
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-9
_
+
- -
Electron
Boron Ion Electron
Arsenic
Ion
Impurity (Dopant)-Ion Scattering or Coulombic Scattering
dada
th
impurity
NN
T
NN
v




2/33

There is less change in the direction of travel if the electron zips by
the ion at a higher speed.
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Slide 2-10
Total Mobility
1E14 1E15 1E16 1E17 1E18 1E19 1E20
0
200
400
600
800
1000
1200
1400
1600
Holes
Electrons
Mobility(cm
2
V
-1
s
-1
)
Total Impurity Concenration (atoms cm
-3
)Na + Nd (cm-3)
impurityphonon
impurityphonon


111
111


Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-11
Temperature Effect on Mobility
1015
Question:
What Nd will make
dn/dT = 0 at room
temperature?
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-12
Velocity Saturation
• When the kinetic energy of a carrier exceeds a critical value, it
generates an optical phonon and loses the kinetic energy.
• Therefore, the kinetic energy is capped at large E, and the
velocity does not rise above a saturation velocity, vsat .
• Velocity saturation has a deleterious effect on device speed as
shown in Ch. 6.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-13
2.2.3 Drift Current and Conductivity
Jp
n
E
unit
area
+
+
Jp = qpv A/cm2 or C/cm2·sec
If p = 1015cm-3 and v = 104 cm/s, then
Jp= 1.610-19C  1015cm-3  104cm/s
= 22
A/cm1.6cmC/s6.1 
EXAMPLE:
Hole current density
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-14
Jp,drift = qpv = qppE
Jn,drift = –qnv = qnnE
Jdrift = Jn,drift + Jp,drift =  E =(qnn+qpp)E
conductivity (1/ohm-cm) of a semiconductor is
 = qnn + qpp

2.2.3 Drift Current and Conductivity
1/ = is resistivity (ohm-cm)
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-15
N-type
P-type
Relationship between Resistivity and Dopant Density
 = 1/
DOPANTDENSITYcm-3
RESISTIVITY (cm)
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-16
EXAMPLE: Temperature Dependence of Resistance
(a) What is the resistivity () of silicon doped
with 1017cm-3 of arsenic?
Solution:
(a) Using the N-type curve in the previous
figure, we find that  = 0.084 -cm.
(b) What is the resistance (R) of a piece of this
silicon material 1m long and 0.1 m2 in cross-
sectional area?
(b) R = L/A = 0.084 -cm  1 m / 0.1 m2
= 0.084 -cm  10-4 cm/ 10-10 cm2
= 8.4  10-4 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-17
EXAMPLE: Temperature Dependence of Resistance
By what factor will R increase or decrease from
T=300 K to T=400 K?
Solution: The temperature dependent factor in  (and
therefore ) is n. From the mobility vs. temperature
curve for 1017cm-3, we find that n decreases from 770
at 300K to 400 at 400K. As a result, R increases by
93.1
400
770

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-18
2.3 Diffusion Current
Particles diffuse from a higher-concentration location
to a lower-concentration location.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-19
2.3 Diffusion Current
dx
dn
qDJ ndiffusionn ,
dx
dp
qDJ pdiffusionp ,
D is called the diffusion constant. Signs explained:
n p
x x
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-20
Total Current – Review of Four Current Components
Jn = Jn,drift + Jn,diffusion = qnnE +
dx
dn
qDn
Jp = Jp,drift + Jp,diffusion = qppE –
dx
dp
qDp
JTOTAL = Jn + Jp
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-21
2.4 Relation Between the Energy
Diagram and V, E
E(x)=
dx
dE
q
1
dx
dE
q
1
dx
dV vc

Ec and Ev vary in the opposite
direction from the voltage. That
is, Ec and Ev are higher where
the voltage is lower.
+ –
Si
E
x
Ec(x)
Ef(x)
Ev(x)
E
0.7V
-
+
V(x)
0.7V
x
0
(a)
(b)
(c)x
Ef (x)
E
0.7V
-
+
Ec(x)
Ev(x)
N-+ –
0.7eV
N type Si
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-22
2.5 Einstein Relationship between D and 
dx
dE
e
kT
N
dx
dn ckT/)EE(c fc 

dx
dE
kT
n c

kT/)EE(
c
fc
eNn


Consider a piece of non-uniformly doped semiconductor.
Ev(x)
Ec(x)
Ef
n-type semiconductor
Decreasing donor concentration
Ec(x)
Ef
N-type semiconductor
Eq
kT
n

Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-23
2.5 Einstein Relationship between D and 
Eq
kT
n
dx
dn

0
dx
dn
qDqnJ nnn E at equilibrium.
EE
kT
qD
qnqn n
n
 0
nn
q
kT
D 
These are known as the Einstein relationship.
pp
q
kT
D Similarly,
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-24
EXAMPLE: Diffusion Constant
What is the hole diffusion constant in a piece of
silicon with p = 410 cm2 V-1s-1 ?
Solution:
Remember: kT/q = 26 mV at room temperature.
/scm11sVcm410)mV26( 2112






 
pp
q
kT
D 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-25
2.6 Electron-Hole Recombination
•The equilibrium carrier concentrations are denoted with
n0 and p0.
•The total electron and hole concentrations can be different
from n0 and p0 .
•The differences are called the excess carrier
concentrations n’ and p’.
'0 nnn 
'0 ppp 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-26
Charge Neutrality
•Charge neutrality is satisfied at equilibrium (n’=
p’= 0).
• When a non-zero n’is present, an equal p’may
be assumed to be present to maintain charge
equality and vice-versa.
•If charge neutrality is not satisfied, the net charge
will attract or repel the (majority) carriers through
the drift current until neutrality is restored.
'p'n 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-27
Recombination Lifetime
•Assume light generates n’and p’. If the light is
suddenly turned off, n’and p’decay with time
until they become zero.
•The process of decay is called recombination.
•The time constant of decay is the recombination
time or carrier lifetime,  .
•Recombination is nature’s way of restoring
equilibrium (n’= p’= 0).
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-28
• ranges from 1ns to 1ms in Si and depends on
the density of metal impurities (contaminants)
such as Au and Pt.
•These deep traps capture electrons and holes to
facilitate recombination and are called
recombination centers.
Recombination Lifetime
Ec
Ev
Direct
Recombination
is unfavorable in
silicon
Recombination
centers
Direct and Indirect Band Gap
Direct band gap
Example: GaAs
Direct recombination is efficient
as k conservation is satisfied.
Indirect band gap
Example: Si
Direct recombination is rare as k
conservation is not satisfied
Trap
Modern Semiconductor Devices for Integrated Circuits (C. Hu)
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-30

n
dt
nd 


dt
pdpn
dt
nd 







Rate of recombination (s-1cm-3)
pn 
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-31
EXAMPLE: Photoconductors
A bar of Si is doped with boron at 1015cm-3. It is
exposed to light such that electron-hole pairs are
generated throughout the volume of the bar at the
rate of 1020/s·cm3. The recombination lifetime is
10s. What are (a) p0 , (b) n0 , (c) p’, (d) n’, (e) p ,
(f) n, and (g) the np product?
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-32
EXAMPLE: Photoconductors
Solution:
(a) What is p0?
p0 = Na = 1015 cm-3
(b) What is n0 ?
n0 = ni
2/p0 = 105 cm-3
(c) What is p’?
In steady-state, the rate of generation is equal to the
rate of recombination.
1020/s-cm3 = p’/
 p’= 1020/s-cm3 · 10-5s = 1015 cm-3
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-33
EXAMPLE: Photoconductors
(d) What is n’?
n’= p’= 1015 cm-3
(e) What is p?
p = p0 + p’= 1015cm-3 + 1015cm-3 = 2×1015cm-3
(f) What is n?
n = n0 + n’= 105cm-3 + 1015cm-3 ~ 1015cm-3 since n0 << n’
(g) What is np?
np ~ 21015cm-3 ·1015cm-3 = 21030 cm-6 >> ni
2 = 1020 cm-6.
The np product can be very different from ni
2.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-34
2.7 Thermal Generation
If n’is negative, there are fewer
electrons than the equilibrium value.
As a result, there is a net rate of
thermal generation at the rate of |n|/ .
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-35
2.8 Quasi-equilibrium and Quasi-Fermi Levels
• Whenever n’= p’ 0, np  ni
2. We would like to preserve
and use the simple relations:
• But these equations lead to np = ni
2. The solution is to introduce
two quasi-Fermi levels Efn and Efp such that
kTEE
c
fc
eNn
/)( 

kTEE
v
vf
eNp
/)( 

kTEE
c
fnc
eNn
/)( 

kTEE
v
vfp
eNp
/)( 

Even when electrons and holes are not at equilibrium, within
each group the carriers can be at equilibrium. Electrons are
closely linked to other electrons but only loosely to holes.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-36
EXAMPLE: Quasi-Fermi Levels and Low-Level Injection
Consider a Si sample with Nd=1017cm-3 and n’=p’=1015cm-3.
(a) Find Ef .
n = Nd = 1017 cm-3 = Ncexp[–(Ec– Ef)/kT]
 Ec– Ef = 0.15 eV. (Ef is below Ec by 0.15 eV.)
Note: n’and p’are much less than the majority carrier
concentration. This condition is called low-level
injection.
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-37
Now assume n = p = 1015 cm-3.
(b) Find Efn and Efp .
n = 1.011017cm-3 =
 Ec–Efn = kT  ln(Nc/1.011017cm-3)
= 26 meV  ln(2.81019cm-3/1.011017cm-3)
= 0.15 eV
Efn is nearly identical to Ef because n  n0 .
kTEE
c
fnc
eN
/)( 
EXAMPLE: Quasi-Fermi Levels and Low-Level Injection
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-38
EXAMPLE: Quasi-Fermi Levels
p = 1015 cm-3 =
 Efp–Ev = kT  ln(Nv/1015cm-3)
= 26 meV  ln(1.041019cm-3/1015cm-3)
= 0.24 eV
kTEE
v
vfp
eN
/)( 
Ec
Ev
Efp
Ef Efn
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-39
2.9 Chapter Summary
dx
dn
qDJ ndiffusionn ,
dx
dp
qDJ pdiffusionp ,
nn
q
kT
D 
pp
q
kT
D 
Eppv 
Ennv 
Epdriftp qpJ ,
Endriftn qnJ ,
-
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-40
2.9 Chapter Summary
 is the recombination lifetime.
n’and p’are the excess carrier concentrations.
n = n0+ n’
p = p0+ p’
Charge neutrality requires n’= p’.
rate of recombination = n’/ = p’/
Efn and Efp are the quasi-Fermi levels of electrons and
holes.
kTEE
v
vfp
eNp
/)( 

kTEE
c
fnc
eNn
/)( 


More Related Content

What's hot

Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumK. M.
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartSimen Li
 
7.2. dopant diffusion 3,2013 microtech
7.2. dopant diffusion 3,2013 microtech7.2. dopant diffusion 3,2013 microtech
7.2. dopant diffusion 3,2013 microtechBhargav Veepuri
 

What's hot (20)

Gain parameters of BJT
Gain parameters of BJTGain parameters of BJT
Gain parameters of BJT
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Foundation of MOS Capacitor
Foundation of MOS CapacitorFoundation of MOS Capacitor
Foundation of MOS Capacitor
 
Quantum Electronics Lecture 2
Quantum Electronics Lecture 2Quantum Electronics Lecture 2
Quantum Electronics Lecture 2
 
Carrier transport processes
Carrier transport processesCarrier transport processes
Carrier transport processes
 
Lecture9 1
Lecture9 1Lecture9 1
Lecture9 1
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Solar cell
Solar cellSolar cell
Solar cell
 
Built-in potential and extrinsic Fermi level in p-n junction diode
Built-in potential and extrinsic Fermi level in p-n junction diodeBuilt-in potential and extrinsic Fermi level in p-n junction diode
Built-in potential and extrinsic Fermi level in p-n junction diode
 
Ch2 slides-1
Ch2 slides-1Ch2 slides-1
Ch2 slides-1
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Foundation of Optoelectronics
Foundation of OptoelectronicsFoundation of Optoelectronics
Foundation of Optoelectronics
 
RF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith ChartRF Circuit Design - [Ch2-2] Smith Chart
RF Circuit Design - [Ch2-2] Smith Chart
 
Metal-Semiconductor Contact
Metal-Semiconductor ContactMetal-Semiconductor Contact
Metal-Semiconductor Contact
 
Electrical properties of p-n junction
Electrical properties of p-n junctionElectrical properties of p-n junction
Electrical properties of p-n junction
 
7.2. dopant diffusion 3,2013 microtech
7.2. dopant diffusion 3,2013 microtech7.2. dopant diffusion 3,2013 microtech
7.2. dopant diffusion 3,2013 microtech
 
I-V characteristics of p-n junction diode
I-V characteristics of p-n junction diodeI-V characteristics of p-n junction diode
I-V characteristics of p-n junction diode
 
Varactor diode
Varactor diodeVaractor diode
Varactor diode
 
JFET
JFETJFET
JFET
 
High electron mobility transistor
High electron mobility transistorHigh electron mobility transistor
High electron mobility transistor
 

Similar to Ch2 lecture slides Chenming Hu Device for IC

Chenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptChenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptAkash510271
 
Chenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptChenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptAumBuddhadev
 
Boukhriss Compeng Italy 2022.pdf
Boukhriss Compeng Italy 2022.pdfBoukhriss Compeng Italy 2022.pdf
Boukhriss Compeng Italy 2022.pdfALIBOUKHRISS
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3vandna123
 
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...Andrii Sofiienko
 
High energy astrophysics
High energy astrophysicsHigh energy astrophysics
High energy astrophysicsSpringer
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorSimen Li
 
Basics of semiconductor, current equation, continuity equation, injected mino...
Basics of semiconductor, current equation, continuity equation, injected mino...Basics of semiconductor, current equation, continuity equation, injected mino...
Basics of semiconductor, current equation, continuity equation, injected mino...Nidhee Bhuwal
 
power factor controller
power factor controllerpower factor controller
power factor controllerusic123
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27Carlo Magno
 
EC8252 NOTES 3rd to 5th unit_compressed.pdf
EC8252 NOTES 3rd to 5th unit_compressed.pdfEC8252 NOTES 3rd to 5th unit_compressed.pdf
EC8252 NOTES 3rd to 5th unit_compressed.pdfkabileshsk2
 

Similar to Ch2 lecture slides Chenming Hu Device for IC (20)

Presentation.docx.ppt
Presentation.docx.pptPresentation.docx.ppt
Presentation.docx.ppt
 
Chenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptChenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.ppt
 
Chenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.pptChenming-Hu-ch2-slides.ppt
Chenming-Hu-ch2-slides.ppt
 
5649.ppt
5649.ppt5649.ppt
5649.ppt
 
Boukhriss Compeng Italy 2022.pdf
Boukhriss Compeng Italy 2022.pdfBoukhriss Compeng Italy 2022.pdf
Boukhriss Compeng Italy 2022.pdf
 
Mobility
MobilityMobility
Mobility
 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
12th physics-solution set 3
12th physics-solution set 312th physics-solution set 3
12th physics-solution set 3
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...
Kinetics of X-ray conductivity for an ideal wide-gap semiconductor irradiated...
 
High energy astrophysics
High energy astrophysicsHigh energy astrophysics
High energy astrophysics
 
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled OscillatorRF Module Design - [Chapter 7] Voltage-Controlled Oscillator
RF Module Design - [Chapter 7] Voltage-Controlled Oscillator
 
Basics of semiconductor, current equation, continuity equation, injected mino...
Basics of semiconductor, current equation, continuity equation, injected mino...Basics of semiconductor, current equation, continuity equation, injected mino...
Basics of semiconductor, current equation, continuity equation, injected mino...
 
wep153
wep153wep153
wep153
 
power factor controller
power factor controllerpower factor controller
power factor controller
 
Solucionario serway cap 27
Solucionario serway cap 27Solucionario serway cap 27
Solucionario serway cap 27
 
Sm chapter27
Sm chapter27Sm chapter27
Sm chapter27
 
EC8252 NOTES 3rd to 5th unit_compressed.pdf
EC8252 NOTES 3rd to 5th unit_compressed.pdfEC8252 NOTES 3rd to 5th unit_compressed.pdf
EC8252 NOTES 3rd to 5th unit_compressed.pdf
 
Linear integrated circuit
Linear integrated circuitLinear integrated circuit
Linear integrated circuit
 

Recently uploaded

如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一ga6c6bdl
 
威廉玛丽学院毕业证学位证成绩单-安全学历认证
威廉玛丽学院毕业证学位证成绩单-安全学历认证威廉玛丽学院毕业证学位证成绩单-安全学历认证
威廉玛丽学院毕业证学位证成绩单-安全学历认证kbdhl05e
 
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证gwhohjj
 
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一(办理学位证)韩国汉阳大学毕业证成绩单原版一比一
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一C SSS
 
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...ur8mqw8e
 
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)861c7ca49a02
 
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一ga6c6bdl
 
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...srsj9000
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gayasrsj9000
 
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一ga6c6bdl
 
Hifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightHifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightKomal Khan
 
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfchapmanellie27
 
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一ga6c6bdl
 
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一diploma 1
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degreeyuu sss
 
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberCall Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberMs Riya
 
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一ss ss
 

Recently uploaded (20)

如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
如何办理(UCLA毕业证书)加州大学洛杉矶分校毕业证成绩单留信学历认证原版一比一
 
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
young call girls in  Khanpur,🔝 9953056974 🔝 escort Serviceyoung call girls in  Khanpur,🔝 9953056974 🔝 escort Service
young call girls in Khanpur,🔝 9953056974 🔝 escort Service
 
威廉玛丽学院毕业证学位证成绩单-安全学历认证
威廉玛丽学院毕业证学位证成绩单-安全学历认证威廉玛丽学院毕业证学位证成绩单-安全学历认证
威廉玛丽学院毕业证学位证成绩单-安全学历认证
 
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证
原版1:1复刻斯坦福大学毕业证Stanford毕业证留信学历认证
 
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一(办理学位证)韩国汉阳大学毕业证成绩单原版一比一
(办理学位证)韩国汉阳大学毕业证成绩单原版一比一
 
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
《伯明翰城市大学毕业证成绩单购买》学历证书学位证书区别《复刻原版1:1伯明翰城市大学毕业证书|修改BCU成绩单PDF版》Q微信741003700《BCU学...
 
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)
5S - House keeping (Seiri, Seiton, Seiso, Seiketsu, Shitsuke)
 
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
如何办理(NUS毕业证书)新加坡国立大学毕业证成绩单留信学历认证原版一比一
 
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...
Hifi Defence Colony Call Girls Service WhatsApp -> 9999965857 Available 24x7 ...
 
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service GayaGaya Call Girls #9907093804 Contact Number Escorts Service Gaya
Gaya Call Girls #9907093804 Contact Number Escorts Service Gaya
 
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一
定制宾州州立大学毕业证(PSU毕业证) 成绩单留信学历认证原版一比一
 
Hifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun TonightHifi Babe North Delhi Call Girl Service Fun Tonight
Hifi Babe North Delhi Call Girl Service Fun Tonight
 
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvfPresentation.pptxjnfoigneoifnvoeifnvklfnvf
Presentation.pptxjnfoigneoifnvoeifnvklfnvf
 
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
如何办理萨省大学毕业证(UofS毕业证)成绩单留信学历认证原版一比一
 
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
办理(CSU毕业证书)澳洲查理斯特大学毕业证成绩单原版一比一
 
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
专业一比一美国加州州立大学东湾分校毕业证成绩单pdf电子版制作修改#真实工艺展示#真实防伪#diploma#degree
 
Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565Low rate Call girls in Delhi Justdial | 9953330565
Low rate Call girls in Delhi Justdial | 9953330565
 
9953330565 Low Rate Call Girls In Jahangirpuri Delhi NCR
9953330565 Low Rate Call Girls In Jahangirpuri  Delhi NCR9953330565 Low Rate Call Girls In Jahangirpuri  Delhi NCR
9953330565 Low Rate Call Girls In Jahangirpuri Delhi NCR
 
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up NumberCall Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
Call Girls Delhi {Rs-10000 Laxmi Nagar] 9711199012 Whats Up Number
 
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一
定制(Salford学位证)索尔福德大学毕业证成绩单原版一比一
 

Ch2 lecture slides Chenming Hu Device for IC

  • 1. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-1 Chapter 2 Motion and Recombination of Electrons and Holes 2.1 Thermal Motion Average electron or hole kinetic energy 2 2 1 2 3 thmvkT  kg101.926.0 K300JK1038.133 31 123      eff th m kT v cm/s103.2m/s103.2 75 
  • 2. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-2 2.1 Thermal Motion • Zig-zag motion is due to collisions or scattering with imperfections in the crystal. • Net thermal velocity is zero. • Mean time between collisions is m ~ 0.1ps
  • 3. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-3 Hot-point Probe can determine sample doing type Thermoelectric Generator (from heat to electricity ) and Cooler (from electricity to refrigeration) Hot-point Probe distinguishes N and P type semiconductors.
  • 4. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-4 2.2 Drift 2.2.1 Electron and Hole Mobilities • Drift is the motion caused by an electric field.
  • 5. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-5 2.2.1 Electron and Hole Mobilities • p is the hole mobility and n is the electron mobility mpp qvm E p mp m q v E  p mp p m q   n mn n m q   Epv  Env 
  • 6. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-6 Electron and hole mobilities of selected semiconductors 2.2.1 Electron and Hole Mobilities Si Ge GaAs InAs  n (cm2 /V∙s) 1400 3900 8500 30000  p (cm2 /V∙s) 470 1900 400 500 . sV cm V/cm cm/s 2         v = E ;  has the dimensions of v/E Based on the above table alone, which semiconductor and which carriers (electrons or holes) are attractive for applications in high-speed devices?
  • 7. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-7 EXAMPLE: Given p = 470 cm2/V·s, what is the hole drift velocity at E = 103 V/cm? What is mp and what is the distance traveled between collisions (called the mean free path)? Hint: When in doubt, use the MKS system of units. Solution: n = pE = 470 cm2/V·s  103 V/cm = 4.7 105 cm/s mp = pmp/q =470 cm2/V ·s  0.39  9.110-31 kg/1.610-19 C = 0.047 m2/V ·s  2.210-12 kg/C = 110-13s = 0.1 ps mean free path = mhnth ~ 1 10-13 s  2.2107 cm/s = 2.210-6 cm = 220 Å = 22 nm This is smaller than the typical dimensions of devices, but getting close. Drift Velocity, Mean Free Time, Mean Free Path
  • 8. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-8 There are two main causes of carrier scattering: 1. Phonon Scattering 2. Ionized-Impurity (Coulombic) Scattering 2/3 2/1 11       T TTvelocitythermalcarrierdensityphonon phononphonon  Phonon scattering mobility decreases when temperature rises:  = q/m vth  T1/2 2.2.2 Mechanisms of Carrier Scattering  T
  • 9. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-9 _ + - - Electron Boron Ion Electron Arsenic Ion Impurity (Dopant)-Ion Scattering or Coulombic Scattering dada th impurity NN T NN v     2/33  There is less change in the direction of travel if the electron zips by the ion at a higher speed.
  • 10. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-10 Total Mobility 1E14 1E15 1E16 1E17 1E18 1E19 1E20 0 200 400 600 800 1000 1200 1400 1600 Holes Electrons Mobility(cm 2 V -1 s -1 ) Total Impurity Concenration (atoms cm -3 )Na + Nd (cm-3) impurityphonon impurityphonon   111 111  
  • 11. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-11 Temperature Effect on Mobility 1015 Question: What Nd will make dn/dT = 0 at room temperature?
  • 12. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-12 Velocity Saturation • When the kinetic energy of a carrier exceeds a critical value, it generates an optical phonon and loses the kinetic energy. • Therefore, the kinetic energy is capped at large E, and the velocity does not rise above a saturation velocity, vsat . • Velocity saturation has a deleterious effect on device speed as shown in Ch. 6.
  • 13. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-13 2.2.3 Drift Current and Conductivity Jp n E unit area + + Jp = qpv A/cm2 or C/cm2·sec If p = 1015cm-3 and v = 104 cm/s, then Jp= 1.610-19C  1015cm-3  104cm/s = 22 A/cm1.6cmC/s6.1  EXAMPLE: Hole current density
  • 14. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-14 Jp,drift = qpv = qppE Jn,drift = –qnv = qnnE Jdrift = Jn,drift + Jp,drift =  E =(qnn+qpp)E conductivity (1/ohm-cm) of a semiconductor is  = qnn + qpp  2.2.3 Drift Current and Conductivity 1/ = is resistivity (ohm-cm)
  • 15. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-15 N-type P-type Relationship between Resistivity and Dopant Density  = 1/ DOPANTDENSITYcm-3 RESISTIVITY (cm)
  • 16. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-16 EXAMPLE: Temperature Dependence of Resistance (a) What is the resistivity () of silicon doped with 1017cm-3 of arsenic? Solution: (a) Using the N-type curve in the previous figure, we find that  = 0.084 -cm. (b) What is the resistance (R) of a piece of this silicon material 1m long and 0.1 m2 in cross- sectional area? (b) R = L/A = 0.084 -cm  1 m / 0.1 m2 = 0.084 -cm  10-4 cm/ 10-10 cm2 = 8.4  10-4 
  • 17. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-17 EXAMPLE: Temperature Dependence of Resistance By what factor will R increase or decrease from T=300 K to T=400 K? Solution: The temperature dependent factor in  (and therefore ) is n. From the mobility vs. temperature curve for 1017cm-3, we find that n decreases from 770 at 300K to 400 at 400K. As a result, R increases by 93.1 400 770 
  • 18. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-18 2.3 Diffusion Current Particles diffuse from a higher-concentration location to a lower-concentration location.
  • 19. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-19 2.3 Diffusion Current dx dn qDJ ndiffusionn , dx dp qDJ pdiffusionp , D is called the diffusion constant. Signs explained: n p x x
  • 20. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-20 Total Current – Review of Four Current Components Jn = Jn,drift + Jn,diffusion = qnnE + dx dn qDn Jp = Jp,drift + Jp,diffusion = qppE – dx dp qDp JTOTAL = Jn + Jp
  • 21. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-21 2.4 Relation Between the Energy Diagram and V, E E(x)= dx dE q 1 dx dE q 1 dx dV vc  Ec and Ev vary in the opposite direction from the voltage. That is, Ec and Ev are higher where the voltage is lower. + – Si E x Ec(x) Ef(x) Ev(x) E 0.7V - + V(x) 0.7V x 0 (a) (b) (c)x Ef (x) E 0.7V - + Ec(x) Ev(x) N-+ – 0.7eV N type Si
  • 22. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-22 2.5 Einstein Relationship between D and  dx dE e kT N dx dn ckT/)EE(c fc   dx dE kT n c  kT/)EE( c fc eNn   Consider a piece of non-uniformly doped semiconductor. Ev(x) Ec(x) Ef n-type semiconductor Decreasing donor concentration Ec(x) Ef N-type semiconductor Eq kT n 
  • 23. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-23 2.5 Einstein Relationship between D and  Eq kT n dx dn  0 dx dn qDqnJ nnn E at equilibrium. EE kT qD qnqn n n  0 nn q kT D  These are known as the Einstein relationship. pp q kT D Similarly,
  • 24. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-24 EXAMPLE: Diffusion Constant What is the hole diffusion constant in a piece of silicon with p = 410 cm2 V-1s-1 ? Solution: Remember: kT/q = 26 mV at room temperature. /scm11sVcm410)mV26( 2112         pp q kT D 
  • 25. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-25 2.6 Electron-Hole Recombination •The equilibrium carrier concentrations are denoted with n0 and p0. •The total electron and hole concentrations can be different from n0 and p0 . •The differences are called the excess carrier concentrations n’ and p’. '0 nnn  '0 ppp 
  • 26. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-26 Charge Neutrality •Charge neutrality is satisfied at equilibrium (n’= p’= 0). • When a non-zero n’is present, an equal p’may be assumed to be present to maintain charge equality and vice-versa. •If charge neutrality is not satisfied, the net charge will attract or repel the (majority) carriers through the drift current until neutrality is restored. 'p'n 
  • 27. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-27 Recombination Lifetime •Assume light generates n’and p’. If the light is suddenly turned off, n’and p’decay with time until they become zero. •The process of decay is called recombination. •The time constant of decay is the recombination time or carrier lifetime,  . •Recombination is nature’s way of restoring equilibrium (n’= p’= 0).
  • 28. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-28 • ranges from 1ns to 1ms in Si and depends on the density of metal impurities (contaminants) such as Au and Pt. •These deep traps capture electrons and holes to facilitate recombination and are called recombination centers. Recombination Lifetime Ec Ev Direct Recombination is unfavorable in silicon Recombination centers
  • 29. Direct and Indirect Band Gap Direct band gap Example: GaAs Direct recombination is efficient as k conservation is satisfied. Indirect band gap Example: Si Direct recombination is rare as k conservation is not satisfied Trap Modern Semiconductor Devices for Integrated Circuits (C. Hu)
  • 30. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-30  n dt nd    dt pdpn dt nd         Rate of recombination (s-1cm-3) pn 
  • 31. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-31 EXAMPLE: Photoconductors A bar of Si is doped with boron at 1015cm-3. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 1020/s·cm3. The recombination lifetime is 10s. What are (a) p0 , (b) n0 , (c) p’, (d) n’, (e) p , (f) n, and (g) the np product?
  • 32. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-32 EXAMPLE: Photoconductors Solution: (a) What is p0? p0 = Na = 1015 cm-3 (b) What is n0 ? n0 = ni 2/p0 = 105 cm-3 (c) What is p’? In steady-state, the rate of generation is equal to the rate of recombination. 1020/s-cm3 = p’/  p’= 1020/s-cm3 · 10-5s = 1015 cm-3
  • 33. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-33 EXAMPLE: Photoconductors (d) What is n’? n’= p’= 1015 cm-3 (e) What is p? p = p0 + p’= 1015cm-3 + 1015cm-3 = 2×1015cm-3 (f) What is n? n = n0 + n’= 105cm-3 + 1015cm-3 ~ 1015cm-3 since n0 << n’ (g) What is np? np ~ 21015cm-3 ·1015cm-3 = 21030 cm-6 >> ni 2 = 1020 cm-6. The np product can be very different from ni 2.
  • 34. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-34 2.7 Thermal Generation If n’is negative, there are fewer electrons than the equilibrium value. As a result, there is a net rate of thermal generation at the rate of |n|/ .
  • 35. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-35 2.8 Quasi-equilibrium and Quasi-Fermi Levels • Whenever n’= p’ 0, np  ni 2. We would like to preserve and use the simple relations: • But these equations lead to np = ni 2. The solution is to introduce two quasi-Fermi levels Efn and Efp such that kTEE c fc eNn /)(   kTEE v vf eNp /)(   kTEE c fnc eNn /)(   kTEE v vfp eNp /)(   Even when electrons and holes are not at equilibrium, within each group the carriers can be at equilibrium. Electrons are closely linked to other electrons but only loosely to holes.
  • 36. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-36 EXAMPLE: Quasi-Fermi Levels and Low-Level Injection Consider a Si sample with Nd=1017cm-3 and n’=p’=1015cm-3. (a) Find Ef . n = Nd = 1017 cm-3 = Ncexp[–(Ec– Ef)/kT]  Ec– Ef = 0.15 eV. (Ef is below Ec by 0.15 eV.) Note: n’and p’are much less than the majority carrier concentration. This condition is called low-level injection.
  • 37. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-37 Now assume n = p = 1015 cm-3. (b) Find Efn and Efp . n = 1.011017cm-3 =  Ec–Efn = kT  ln(Nc/1.011017cm-3) = 26 meV  ln(2.81019cm-3/1.011017cm-3) = 0.15 eV Efn is nearly identical to Ef because n  n0 . kTEE c fnc eN /)(  EXAMPLE: Quasi-Fermi Levels and Low-Level Injection
  • 38. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-38 EXAMPLE: Quasi-Fermi Levels p = 1015 cm-3 =  Efp–Ev = kT  ln(Nv/1015cm-3) = 26 meV  ln(1.041019cm-3/1015cm-3) = 0.24 eV kTEE v vfp eN /)(  Ec Ev Efp Ef Efn
  • 39. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-39 2.9 Chapter Summary dx dn qDJ ndiffusionn , dx dp qDJ pdiffusionp , nn q kT D  pp q kT D  Eppv  Ennv  Epdriftp qpJ , Endriftn qnJ , -
  • 40. Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 2-40 2.9 Chapter Summary  is the recombination lifetime. n’and p’are the excess carrier concentrations. n = n0+ n’ p = p0+ p’ Charge neutrality requires n’= p’. rate of recombination = n’/ = p’/ Efn and Efp are the quasi-Fermi levels of electrons and holes. kTEE v vfp eNp /)(   kTEE c fnc eNn /)(  