This document discusses how data science models have transitioned to the cloud to take advantage of greater computing resources. It notes that data science models are resource-intensive and traditionally required powerful local machines. The cloud allows data scientists to run models on cloud infrastructure for lower costs than high-end laptops and with access to many GPUs. Several major cloud platforms - Azure, AWS, and Google Cloud - are discussed and compared in terms of their machine learning offerings. The document also introduces Microsoft's Team Data Science Process, which aims to help data science teams collaborate more effectively on projects in the cloud.