SlideShare a Scribd company logo
1 of 88
Download to read offline
SCHOOL OF PHARMACY
DEPARTMENT OF PHARMACY
COURSE NAME: REMEDIAL MATHEMATICS
COURSE CODE: BP106RMT
UNIT – I – PARTIAL FRACTIONS – BP106RMT
UNIT-1
PARTIAL FRACTION
An algebraic fraction can be broken down into simpler parts known as “partial fractions“.
Consider an algebraic fraction, (3x+5)/(2x2
-5x-3). This expression can be split into simple form
like (2)/(x-3) – (1)/(2x+1).
The simpler parts [(2)/(x-3)]-[(1)/(2x+1)] are known as partial fractions.
This means that the algebraic expression can be written in the form of:
(3x+5)/(2x2
-5x-3) = ((2)/(x-3))-((1)/(2x+1))
Note: The partial fraction decomposition only works for the proper rational expression (the
degree of the numerator is less than the degree of the denominator). In case, if the rational
expression is in improper rational expression (the degree of the numerator is greater than the
degree of the denominator), first do the division operation to convert into proper rational
expression. This can be achieved with the help of polynomial long division method.
PARTIAL FRACTION FORMULA
The procedure or the formula for finding the partial fraction is:
1. While decomposing the rational expression into the partial fraction, begin with the proper
rational expression.
2. Now, factor the denominator of the rational expression into the linear factor or in the
form of irreducible quadratic factors (Note: Don’t factor the denominators into the
complex numbers).
3. Write down the partial fraction for each factor obtained, with the variables in the
numerators, say A and B.
4. To find the variable values of A and B, multiply the whole equation by the denominator.
5. Solve for the variables by substituting zero in the factor variable.
6. Finally, substitute the values of A and B in the partial fractions.
PARTIAL FRACTIONS FROM RATIONAL FUNCTIONS
Any number which can be easily represented in the form of p/q, such that p and q are integers
and q≠0 is known as a rational number. Similarly, we can define a rational function as the ratio
of two polynomial functions P(x) and Q(x), where P and Q are polynomials in x and Q(x)≠0.
A rational function is known as proper if the degree of P(x) is less than the degree of Q(x);
otherwise, it is known as an improper rational function. With the help of the long division
process, we can reduce improper rational functions to proper rational functions. Therefore, if
P(x)/Q(x) is improper, then it can be expressed as:
P(x)Q(x)=A(x)+R(x)Q(x)
Here, A(x) is a polynomial in x and R(x)/Q(x) is a proper rational function.
We know that the integration of a function f(x) is given by F(x) and it is represented by:
∫f(x)dx = F(x) + C
Here R.H.S. of the equation means integral of f(x) with respect to x.
PARTIAL FRACTIONS DECOMPOSITION
In order to integrate a rational function, it is reduced to a proper rational function. The method in
which the integrand is expressed as the sum of simpler rational functions is known as
decomposition into partial fractions. After splitting the integrand into partial fractions, it is
integrated accordingly with the help of traditional integrating techniques. Here the list of Partial
fractions formulas is given.
PARTIAL FRACTION OF IMPROPER FRACTION
An algebraic fraction is improper if the degree of the numerator is greater than or equal to that of
the denominator. The degree is the highest power of the polynomial. Suppose, m is the degree of
the denominator and n is the degree of the numerator. Then, in addition to the partial fractions
arising from factors in the denominator, we must include an additional term: this additional term
is a polynomial of degree n − m.
Note:
 A polynomial with zero degree is K, where K is a constant
 A polynomial of degree 1 is Px + Q
 A polynomial of degree 2 is Px2
+Qx+K
Type: 1
2. Solve 3x+1/(x-2)(x+1) into partial fractions
3. Resolve 1/x2
-1 into partial fractions
Type: 2
Type 3:
LOGARITHMS
The logarithmic function is an inverse of the exponential function. It is defined as:
y=logax, if and only if x=ay
; for x>0, a>0, and a≠1.
Natural logarithmic function: The log function with base e is called natural logarithmic function
and is denoted by loge.
f(x) = logex
The questions of logarithm could be solved based on the properties, given below
Product rule: logb MN = logb M + logb N
Quotient rule: logb M/N = logb M – logb N
Power rule: logb Mp
= P logb M
Zero Exponent Rule: loga 1 = 0
Change of Base Rule: logb (x) = ln x / ln b or logb (x) = log10 x / log10 b
Solved Examples:
1. Express 53
= 125 in logarithm form.
Solution:
53
= 125
As we know,
ab
= c ⇒ logac=b
Therefore;
Log5125 = 3
2. Express log101 = 0 in exponential form.
Solution:
Given, log101 = 0
By the rule, we know;
logac=b ⇒ ab
= c
Hence,
100
= 1
3. Find the log of 32 to the base 4.
Solution: log432 = x
4x
= 32
(22
)x
= 2x2x2x2x2
22x
= 25
2x=5
x=5/2
Therefore,
log432 =5/2
4. Find x if log5(x-7)=1.
Solution: Given,
log5(x-7)=1
Using logarithm rules, we can write;
51
= x-7
5 = x-7
x=5+7
x=12
5. If logam=n, express an-1
in terms of a and m.
Solution:
logam=n
an
=m
an
/a=m/a
an-1
=m/a
6. Solve for x if log(x-1)+log(x+1)=log21
Solution: log(x-1)+log(x+1)=log21
log(x-1)+log(x+1)=0
log[(x-1)(x+1)]=0
Since, log 1 = 0
(x-1)(x+1) = 1
x2
-1=1
x2
=2
x=± √2
Since, log of negative number is not defined.
Therefore, x=√2
7. Express log(75/16)-2log(5/9)+log(32/243) in terms of log 2 and log 3.
Solution: log(75/16)-2log(5/9)+log(32/243)
Since, nlogam=logamn
⇒log(75/16)-log(5/9)2
+log(32/243)
⇒log(75/16)-log(25/81)+log(32/243)
Since, logam-logan=loga(m/n)
⇒log[(75/16)÷(25/81)]+log(32/243)
⇒log[(75/16)×(81/25)]+log(32/243)
⇒log(243/16)+log(32/243)
Since, logam+logan=logamn
⇒log(32/16)
⇒log2
8. Express 2logx+3logy=log a in logarithm free form.
Solution: 2logx+3logy=log a
logx2
+logy3
=log a
logx2
y3
=log a
x2
y3
=log a
9. Prove that: 2log(15/18)-log(25/162)+log(4/9)=log2
Solution: 2log(15/18)-log(25/162)+log(4/9)=log2
Taking L.H.S.:
⇒2log(15/18)-log(25/162)+log(4/9)
⇒log(15/18)2
-log(25/162)+log(4/9)
⇒log(225/324)-log(25/162)+log(4/9)
⇒log[(225/324)(4/9)]-log(25/162)
⇒log[(225/324)(4/9)]/(25/162)
⇒log(72/36)
⇒log2 (R.H.S)
10. Express log10(2+1) in the form of log10x.
Solution: log10(2+1)
=log102+log101
=log10(2×10)
=log1020
11. Find the value of x, if log10(x-10)=1.
Solution: Given, log10(x-10)=1.
log10(x-10) = log1010
x-10 = 10
x=10+10
x=20
12. Find the value of x, if log(x+5)+log(x-5)=4log2+2log3
Solution: Given,
log(x+5)+log(x-5)=4log2+2log3
log(x+5)(x-5) = 4log2+2log3 [log mn=log m+log n]
log(x2
-25) = log24
+log32
log(x2
-25) = log16+log9
log(x2
-25)=log(16×9)
log(x2
-25)=log144
x2
-25=144
x2
=169
x=±√169
x=±13
13. Solve for x, if log(225/log15) = log x
Solution: log x = log(225/log15)
log x=log[(15×15)]/log15
log x = log 152
/log 15
log x = 2log 15/log 15
log x = 2
Or
log10x=2
102
=x
x=10×10
x=100
Solved Examples
(i)Sol:
(ii)sol:
IMPORTANT RESULTS:
RESULT:1
RESULT:1
RESULT: 2 Prove that
Proof:
FUNCTIONS
DEFINITION:
Function (mathematics) is defined as if each element of set A is connected with the elements of set B, it
is not compulsory that all elements of set B are connected; we call this relation as function.
f: A → B ( f is a function from A to B )
Types of function:
One-one Function or Injective Function :
If each elements of set A is connected with different elements of set B, then we call this function as One-
one function.
Many-one Function :
If any two or more elements of set A are connected with a single element of set B, then we call this
function as Many one function.
Onto function or Surjective function :
Function f from set A to set B is onto function if each element of set B is connected with set of A
elements.
Into Function :
Function f from set A to set B is Into function if at least set B has a element which is not connected with
any of the element of set A.
Constant Function:
A function f: A→B is a constant function if the range of f contains only one element.
f(x)=4
Identity Function:
Let A be a non - empty set then f: A→A defined by f(x)=x, called the identity function on A
EXAMPLE
1. What is the range of the following function?
f(x) = {(4,6) ,(5,7),(6,8),(7,9)}
Solution:-
Given a set of ordered pairs, the range is found by identifying the y-coordinates from the set.
So the range is {6, 7, 8, 9}.
2. What is the domain of the following function?
f(x) = {(4,6) ,(5,7),(6,8),(7,9)}
Solution:-
The domain contains the x-coordinates of a set of ordered pairs.
{4,5,6,7}
3. Identify one to one and onto function
Solution:
SCHOOL OF PHARMACY
DEPARTMENT OF PHARMACY
COURSE NAME: REMEDIAL MATHEMATICS
COURSE CODE: BP106RMT
UNIT – II – MATRICES & DETERMINANTS – BP106RMT
SCHOOL OF PHARMACY
DEPARTMENT OF PHARMACY
COURSE NAME: REMEDIAL MATHEMATICS
COURSE CODE: BP106RMT
UNIT – III – CALCULUS– BP106RMT
Unit - III
Differential Calculus
Introduction
Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a
moving object with respect to time is the object's velocity. This measures how quickly the
position of the object changes when time is advanced.
Differentiation
The rate at which a function changes with respect to independent variable is called the
derivative of the function. The derivative of a function is defined in terms of the limit
involving increments of the independent and dependent variables and this limit is denoted by .
The process of finding the derivative of a function is called the derivative of a function.
First derivative formulas
S. No.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10. 0
11.
12.
13.
14.
15.
Example 1:
Differentiate the following with respect to x
(i) (ii) (iii) (iv)
(v)
Solution
(i) Let
.
(ii) Let
.
(iii)Let
=
=
= .
(iv)Let
=
(v)Let
=
Example 2
Example 4
Example 5
MAXIMA AND MINIMA
EXAMPLE:
Find the maximum and the minimum values, if any, without using derivatives of the
following functions:
(i) f (x) = 4x2
4x + 4 on R
Solution:
Given f (x) = 4x2
4x + 4 on R
= 4x2
4x + 1 + 3
By grouping the above equation we get,
= (2x 1)2
+ 3
Since, (2x 1)2
= (2x 1)2
Thus, the minimum value of f(x) is 3 at x = ½
Since, f(x) can be made large. Therefore maximum value does not exist.
(ii) f (x) = x3
6x2
+ 9x +15
Solution:
Given, f(x) = x3
6x2
+ 9x + 15
2
12x + 9 = 3(x2
4x + 3)
= 3 (x 3) (x 1)
For all maxima and minima,
= 3(x 3) (x 1) = 0
= x = 3, 1
At x =
Since, x = 1 is a point of Maxima
Since, x =3 is point of Minima.
Hence, local maxima value f (1) = (1)3
6(1)2
+ 9(1) + 15 = 19
Local minima value f (3) = (3)3
6(3)2
+ 9(3) + 15 = 15
(iii) f(x) = x3
3x
Solution:
Given, f (x) = x3
3x
Differentiate with respect to x then we get,
2
3
= 3x2
= 3 x = ±1
Again 2
3
1)= 6 > 0
By second derivative test, x = 1 is a point of local minima and local minimum value of g at
x = 1 is f (1) = 13
3 = 1 3 = 2
However, x = 1 is a point of local maxima and local maxima value of g at
x = 1 is f ( 1) = ( 1)3
3( 1)
= 1 + 3
= 2
Hence, the value of minima is 2 and maxima is 2.
Applications of derivative
Example 6:
The total cost function for the production of units of an item is given by .
Find (a) average cost (b) marginal cost (c) marginal average cost.
Solution
Given
(a) Average cost = (b) marginal cost = (c) marginal
average cost = .
Example 7:
Let the cost function of a firm be given by the following equation:
where stands for the cost function and for output. Calculate (i) output at which marginal
cost is minimum (ii) output at which average cost is minimum (iii) output at which average cost
is equal marginal cost.
Solution
Given (i) Marginal cost (MC) =
gives MC is
maximum when the output is 10. (ii) Average cost (AC)
= = gives
and AC is minimum when the output is 15. (iii) When average cost =
marginal cost = i.e.,
or is inadmissible. Output at which average cost is equal to marginal cost is 15
units.
Example 8:
The cost function for producing units of a product is (in
rupees) and the revenue function is R . Find the output for which profit is
maximum.
Solution
Given and R
Profit function P = R C =
When
or is inadmissible. Also
The profit is maximum when the output is 7 units.
The maximum profit =
SCHOOL OF PHARMACY
DEPARTMENT OF PHARMACY
COURSE NAME: REMEDIAL MATHEMATICS
COURSE CODE: BP106RMT
UNIT – IV – ANALYTICAL GEOMETRY– BP106RMT







 


  




 

 
 


  
   
 




 

 




 












  


  

  

   
 





   









 

 
 





































 











               

                 










              


          
             














          





           


           










 














   
 
  
   
  

    
 
 

   
 
  
  
 

   
 

 

  


 
 

 
 

 








SCHOOL OF PHARMACY
DEPARTMENT OF PHARMACY
COURSE NAME: REMEDIAL MATHEMATICS
COURSE CODE: BP106RMT
UNIT – V – DIFFERENTIAL EQUATIONS– BP106RMT
UNIT 4
LAPLACE TRANSFORMS
1. Introduction
A transformation is mathematical operations, which transforms a mathematical
expressions into another equivalent simple form. For example, the transformation
logarithms converts multiplication division, powers into simple addition, subtraction and
multiplication respectively.
The Laplace transform is one which enables us to solve differential equation by
use of algebraic methods. Laplace transform is a mathematical tool which can be used to
solve many problems in Science and Engineeing. This transform was first introduced by
Laplace, a French mathematician, in the year 1790, in his work on probability theory.
This technique became very popular when heaveside funcitons was applied to the
solution of ordinary differential equation in electrical Engeneering problems.
Many kinds of transformation exist, but Laplace transform and fourier transform
are the most well known. The Laplace transform is related to fourier transform, but
whereas the fourier transform expresses a function or signal as a series of mode of
vibrations, the Laplace transform resolves a function into its moments.
Like the fourier transfrom, the Laplace transform is used for solving differential
and integral equations. In Physics and Engineering it is used for analysis of linear time
invariant systems such as electrical circuits, harmonic oscillators, optical devices and
mechanical systems. In such analysis, the Laplace transform is often interpreted as a
transformation form the time domain in which inputs and outputs are functions of time,
to the frequency domain, where the same inputs and outputs are functions of complex
angular frequency in radius per unit time. Given a simple mathematical or functional
discription of an input or output to a system, the Laplace transform provides an
alternative functional discription that often simplifies the process of analyzing the
behaviour of the system or in synthesizing a new system based on a set of specification.
The Laplace transform belongs to the family of integral transforms. The solutions of
mechanical or electrical problems involving discontinuous force function are obtained
easily by Laplace transforms.
1.1 Definition of Laplace Transforms
Let f (t) be a functions of the variable t which is defined for all positive values of
t. Lets be the real constant. If the integral dt
t
f
e st
)
(
0


 exist and is equal to F(s), then
F(s) is called the Laplace transform of f (t) and is denoted by the symbol L[f(t)].
i.e. ]
[
)
(
)]
(
[
0
s
F
dt
t
f
e
t
f
L st


 

The Laplace Transform of f (t) is said to exist if the integral converges for some
values of s, otherwise it does not exist.
Here the operator L is called the Laplace transform operator which transforms the
functions f (t) into F(s).
Remark: 0
)
( 


s
F
Lim
S
.
1.2 Piecewise continuous function
A function f(t) is said to be piecewise continuous in any interval [a,b] if it is
defined on that interval, and the interval can be divided into a finite number of sub
intervals in each of which f (t) is continuous.
In otherwords piecewise continuous means f(t) can have only finite number of
finite discontinuities.
Figure 1.1
An example of a function which is periodically or sectional continuous is shown
graphically in Fig 1.1 above. This function has discontinuities at t1, t2 and t3.
1.3 Definition of Exponential order
A function f (t) is said to be of exponential order if 0
)
( 



t
f
e
Lim st
t
.
1.4 Sufficient conditions for the existence of the Laplace Transforms
Let f(t) be defined and continuous for all positive values of t. The Laplace
Transform of f (t) exists if the following conditions are satisfied.
(i) f (t) is piecewise continuous (or) sectionally continuous.
(ii) f(t) should be of exponential order.
1.5 Seven Indeterminates
1. 0
0
4. ∞  ∞ 7. 0o
.
2. 

5. 1∞
3. 0  ∞ 6. ∞o
.
2. Laplace Transform of Standard functions
1. Prove that L[e-at
] =
a
s 
1
where s + a > 0 or s > - a
Proof:
By definition L[f(t)] = st
e


0
f(t)dt
L[e-at
] = st
e


0
.e-at
dt = )
(
0
a
s
t
e 


 dt
Hence L[e-at
] =
a
s 
1
2. Prove that L[eat
]=
a
s 
1
where s > a
Proof:
By the defn of L[f(t)] = st
e


0
f(t)dt
L[e+at
] = st
e


0
.eat
dt = t
a
s
e )
(
0



 dt =











0
)
(
a
s
e t
a
s
=  
0
1
e
e
a
s


 

=
a
s 
1
Hence L[eat
] =
a
s 
1
3. L(cos at) = st
e


0
cos at dt
=










 0
2
2
)
sin
cos
( at
a
at
s
a
s
e st
= )
(
1
0 2
2
S
a
s



= 2
2
a
s
s

]
cos
sin
[
sin 2
2
bx
b
bx
a
b
a
e
bxdx
e
ax
ax





]
sin
cos
[
cos 2
2
bx
b
bx
a
b
a
e
bxdx
e
ax
ax




Hence L(cos at) = 2
2
a
s
s

4. L(sin at) = st
e


0
sin at dt =










 0
2
2
)
cos
sin
( at
a
at
s
a
s
e st
= )
0
(
1
0 2
2
a
a
s



L(sin at) = 2
2
a
s
a

5. L(cos hat) =  
at
at
e
e
L 

2
1
= 





















 )
)(
(
2
1
1
1
2
1
a
s
a
s
a
s
a
s
a
s
a
s
= 2
2
a
s
s

L(cos hat) = 2
2
a
s
s

6. L(sin hat) =  
at
at
e
e
L 

2
1
= 







 a
s
a
s
1
1
2
1
= 












)
)(
(
)
(
)
(
2
1
a
s
a
s
a
s
a
s
= 2
2
a
s
a

L(sin hat) = 2
2
a
s
a

7. L(1) = dt
e st
.
1
.
0


 =








 0
s
e st
=
s
s
1
1
0 








L(1) =
s
1
8. L(tn
) = dt
t
e n
st



0
=   dt
s
e
nt
s
e
t
st
n
st
n























1
0
0
=   dt
t
e
s
n n
st 1
0
0
0 





8. L(tt
) = dt
t
e n
st



0
=   dt
s
e
nt
s
e
t
st
n
st
n























1
0
0
=   dt
t
e
s
n n
st 1
0
0
0 





=  
1

n
t
L
s
n
L(tn
) =  
1

n
t
L
s
n
L(tn-1
) =  
2
1 
 n
t
L
s
n
L(t3
) =  
2
3
t
L
s
L(t2
) =  
t
L
s
2
L(tn
) = ).
1
(
.
1
.
2
.
3
.....
2
.
1
. L
s
s
s
s
n
s
n
s
n 

=
s
s
n
L
s
n
n
n
1
.
!
]
1
[
!

L(tn
) =
 
1
1
1
!



n
n
s
n
or
s
n
In particular n = 1,2,3….
we get L(t) = 2
1
s
L(t2
) = 3
!
2
s
L(t3
) = 4
!
3
s
2.1 Linear propertyof Laplace Transform
1. L(f(t)  g(t)) = L(f(t)  L(g(t))
2. L(Kf(t)  g(t)) = KL(f(t)
Proof (1): By the defn of L.T
L[f(t)] = dt
t
f
e st
)
(
0



L(f(t)  g(t)] =  dt
t
g
t
f
e st
)
(
)
(
0




=
dt
t
g
e
dt
t
f
e st
st
)
(
)
(
0
0





 
=    
)
(
)
( t
g
L
t
f
L 
Hence L[f(t)  g(f)] = L[f(t)]  L[g(t)]
(2) L[Kf(t)] = KL[f(t)]
By the defn of L.T
L[Kf(t)] = dt
t
Kf
e st
)
(
0



= dt
t
f
e
K st
)
(
0



= KL[f(t)]
Hence L[K(t)] = KL[f(t)]
2.2 Recall
1. 2 sin A cos B = sin(A+B) + sin(A-B)
2. 2 cos A sin B = sin(A+B) - sin(A-B)
3. 2 cos A cos B = cos(A+B) + cos(A-B)
4. 2 sin A sin B = cos(A-B) - cos(A+B)
5. sin2
A =
2
2
cos
1 A

6. cos2
A =
2
2
cos
1 A

7. sin 3A = 3sin A – 4 sin3
A
8. cos 3A = 4cos3
A – 3 cos A
9. sin (A+B) = sin A cos B + cos A sin B
10. sin (A-B) = sin A cos B - cos A sin B
11. cos (A-B) = cos A cos B + sin A sin B
12. cos (A+B) = cos A cos B - sin A sin B
3.1 Problems
1. Find Laplace Transform of sin2
t
Solution
L(sin2
t) = 




 
2
2
cos
1 t
L
= )
2
cos
1
(
2
1
t
L  = 







4
1
2
1
2
s
s
s
2. Find L(cos3
t)
Solution:
We know that cos3
A = 4 cos3
A – 3 cos A
hence cos2
A = A
A 3
cos
4
1
cos
4
3

L(cos2
t) = )
3
cos
cos
3
(
4
1
t
t
L  = 







 9
1
3
4
1
2
2
s
s
s
s
3. Find L(sin 3t cos t)
Solution:
We know that sin A cos B=  
)
sin(
)
sin(
2
1
B
A
B
A 


hence sin 3t cos t = )
2
sin
4
(sin
2
1
t
t 
L(sin 3t cos t) = )
2
sin
4
(sin
2
1
t
t
L  = 







 4
2
16
4
2
1
2
2
s
s
=
4
1
16
2
2
2


 s
s
4. Find L(1 + e-3t
– 5e4t
)
Solution
L[1+e-3t
– 5e4t
] = L[1] L[e-3t
] + 5L (e4t
]
=
4
5
3
1
1




s
s
s
6. Find L(3 + e6t
+ sin2t – 5 cos 3t)
Solution:
L(3 + e6t
+ sin 2t – 5 cos 3t) = 3L(1) + L(e6t
) + L(sin 2t) – 5L(cos 3t)
=
9
5
4
2
6
1
1
.
3 2
2






s
s
s
s
s
7. Find L(sin (2t + 3))
Solution:
L(sin(2t + 3)) = L(sin 2t cos 3 + sin 3 cos 2t)
= cos 3L (sin 2t) + sin 3L(cos 2t)
=
4
3
sin
4
2
3
cos 2
2


 s
s
s
8. Find L(sin 4t + 3 sin h2t – 4 cos h5t + e-5t
)
Solution:
L(sin 4t + 3 sin h2t – 4 cos h5t + e-5t
)
= L(sin 4t) + 3L (sin h2t) – 4L (cos h5t) + L(e-5t
)
=
5
1
25
.
4
4
2
.
3
16
4
2
2
2






 s
s
s
s
s
=
5
1
25
4
4
6
16
4
2
2
2






 s
s
s
s
s
9. Find L((1 + t)2
)
Solution:
L((1 + t)2
) = L(1 + 2t + t2
)
= L(1) + 2L(t) + L(t2
)
= 3
2
!
2
1
.
2
1
s
s
s


3.2 Note
1. (n+1) = dx
e
x x
n 


0
(By definition)
(n+1) = n!, n = 1,2,3,…
(n+1) = n(n), n > 0
12. Find 







 2
/
3
1
t
t
L
Solution:








 2
/
3
1
t
t
L = L(t-1/2
) + L(t3/2
)
=
   
1
2
3
1
2
1
1
2
3
1
2
1









s
s
=
   
2
5
2
1
2
1
2
1
.
2
3
2
1
s
s



=
2
5
4
3
s
s



4. First Shifting Theorem (First translation)
1. If L(f(t)) = F(s). then L(e-at
f(t)) = F (s+a)
4.1 Corollary: L(eat
f(t)) = F(s-a)
4.2 Note:
1. L(e-at
f(t)) = L[f(t)]s→s+a
= [F(s)]s→s+a
= F (s+a)
2. L(eat
f(t)) = L[f(t)]s→s-a
= [F(s)]s→s-a
= F (s-a)
4.3 Problems
1. Find L(te2t
)
Solution:
L(te2t
) = [L(t)]s→s-2 =
2
2
1








s
s
s
= 2
)
2
(
1

s
2. Find L(t5
e-t
)
Solution:
L(t5
e-t
) = [L(t5
)]s→s+1 =
1
6
!
5








s
s
s
= 6
)
1
(
!
5

s
3. Find L(e-2t
sin 3t)
Solution:
L(e-2t
sin 3t) = L(sin 3t)]s→s+2
=
2
2
9
3








 s
s
s
=
9
)
2
(
3
2


s
=
16
)
1
(
1
2



s
s
5. Theorem
If L(f(t)) = F(s), then L(tf(t)) = ))
(
( s
F
ds
d

similarly  
)
(
2
t
f
t
L = )
(
)
1
( 2
2
2
s
F
ds
d

 
)
(
3 t
f
t
L = )
(
)
1
( 3
3
3
s
F
ds
d

In general,  
)
(t
f
t
L n
= )
(
)
1
( s
F
ds
d
n
n
n

5.1 Problems
1. Fine  
t
te
L 3
Solution:
We know that   ))
(
(
)
( t
f
L
ds
d
t
tff
L


Here t
e
t
f 3
)
( 
L  
t
te3
=  
t
e
L
ds
d 3

= 







3
1
s
ds
d
= 










 1
)
3
(
)
1
(
)
0
)(
3
(
s
s
= 2
)
3
(
1

s
2. Find  
t
t
L 3
sin
Solution:
 
)
(t
tf
L =  
)
(t
f
L
ds
d

 
)
(t
tf
L =  
t
L
ds
d
3
sin

= 







9
3
2
s
ds
d
=
    
  











2
2
2
9
2
3
0
9
s
s
s
=
 2
2
9
6

s
s
3. Find  
t
te
L t
3
sin
2

Solution:
 
t
t
e
L t
3
sin
(
2

= 2
)
3
sin
( 
s
s
t
t
L
=
2
)
3
(sin








s
s
t
L
ds
d
=
2
2
9
3
















s
s
s
ds
d
=
 
  2
2
2
2
9
)
2
(
3
0
9















s
s
s
s
s
=
 2
2
9
)
2
(
)
2
(
6



s
s
6. Theorem
If )
(
))
(
( s
F
t
f
L  and if
t
t
f
Lt
t
)
(
0

exist then ds
t
f
e
t
t
f
L st
s
)
(
)
( 









Recall
1. B
A
AB log
log
)
log( 

2.   B
A
B
A log
log
log 

3. A
B
AB
log
log 
4. 0
1
log 
5. 

0
log
6. 


log
7. x
dx
x
log
1


8.
a
x
a
x
a
dx 1
2
2
tan
1 



9.
2
)
(
tan 1 



10.    
a
s
a
s 1
1
tan
2
cot 




Problems
1. Find 






 
t
e
L
t
2
1
Solutions:
0
0
1 2
0


 t
e
Lim
t
t
(Interminate form)
Apply L – Hospital Rule
2
1
2 2
0




t
t
e
Lim
the given function exists in the limit t → 0







 
t
e
L
t
2
1
=  ds
e
L t
s
2
1


=  
 ds
e
L
L t
s
2
)
1
( 


= ds
s
s
s










2
1
1
=  

 s
s
s )
2
log(
log
=













 s
s
s
2
log
=
 





























s
s s
s
s
s
2
1
1
log
2
1
log
=
2
log
0


s
s
=
1
2
log








s
s
= 




 
s
s 2
log
2. Find 




 
t
at
L
cos
1
Solution:
0
0
cos
1
0


 t
at
Lim
t
(Indeterminte form)
Apply L – Hospital Rule.
0
1
sin
0


at
a
Lim
t
(finite)
the given function exists in the limit t → 0





 
t
at
L
cos
1
=  ds
at
L
s
cos
1


=  
 ds
at
L
L
s
cos
)
1
( 


= ds
a
s
s
s
s










2
2
1
=  









s
a
s
s 2
2
log
2
1
log
=  






 

s
a
s
s 2
1
2
2
log
log =









 s
a
s
s
2
2
log
=














s
s
a
s
s
2
2
1
log =














s
s
a 2
2
1
1
log
= 









2
2
log
1
log
a
s
s
=







 





















s
s
a
a
s
s
a
s
s 2
2
1
2
2
2
2
log
log
log
11. Laplace Transform of Derivations
Here, we explore how the Laplace transform interacts with the basic operators of
calculus differentation and integration. The greatest interest will be in the first identity
that we will derive. This relates the transform of a derivative of a function to the
transform of the original function, and will allow to convert many initial - value
problems to easily solved algebraic Equations. But there are useful relations involving
the Laplace transform and either differentiation (or) integration. So we’ll look at them
too.
11.1. Theorem
If L(f(t)) = F(s) Then
(i) L(f(t)) = sL(f(t)) – f
(ii) L(f(t)) = s2
L(f(t)) – sf(0) - f(0)
and in genereal
L(fn
(t)) = sn
L(f(t)) – sn-1
f(0) – sn-2
f(0)…….fn-1
(0)
11.2 Note
We have, L(f(t)) = sL(f(t)) – f (0) …. (1) and
L(f(t)) = s2
L(f(t)) – sf (0) - f(0) ….(2)
When f(0) = 0 and f(0) = 0
(1) & (2) becomes
Lf(t) = sLf(t) and Lf(t) = s2
Lf(t)
This shows that under certain conditions, the process of Laplace transform replaces
differentiation by multiplication by the factor s and s 2 respectively.
13 Definition
If the Laplace transform of a function f (t) is F(S) (ie) L( f (t)) = F(S) then f (t) is called
an inverse laplace transform of F (s) and is denoted by
f (t) = L-1
(F(s))
Here L-1
1 is called the inverse Laplace transform operator.
14. Standard results in inverse Laplace transforms
Laplace Transform Inverse Laplace Transform
s
L
1
)
1
(  1
1
1








s
L
a
s
e
L at


1
)
( at
e
a
s
L 







 1
1
a
s
e
L at


 1
)
( at
e
a
s
L 









1
1
2
1
)
(
s
t
L  t
s
L 







2
1 1
3
2 !
2
)
(
s
t
L  2
3
1 !
2
t
s
L 







4
3 !
3
)
(
s
t
L  3
4
1 !
3
t
s
L 







1
!
)
( 
 n
n
s
n
t
L n
n
t
s
n
L 








1
1 !
where n is a +ve integer
2
2
)
(sin
a
s
a
at
L

 at
a
s
a
L sin
2
2
1









2
2
)
(cos
a
s
s
at
L

 at
a
s
s
L cos
2
2
1









2
2
)
(sin
a
s
a
hat
L

 hat
a
s
a
L sin
2
2
1









2
2
)
(cos
a
s
s
hat
L

 hat
a
s
s
L cos
2
2
1









15 Partial Fraction
The rational fraction P(x)/Q(x) is said to be resolved into partial fraction if it can be
expressed as the sum of difference of simple proper fractions.
Rules for resolving a Proper Fraction P(x) / Q(x) into partial fractions
Rule 1
Corresponding to every non repeated, linear factor (ax+b) of the denomiator Q(x), there
exists a partial fraction of the form
b
ax
A

where A is a constant, to be determined.
For Example
(i)
5
3
2
)
5
3
)(
2
(
7
2







x
B
x
A
x
x
x
(ii)
3
2
2
1
)
3
2
)(
2
)(
1
(
22
18
5 2











x
C
x
A
x
A
x
x
x
x
x
Rule 2
Corresponding to every repeated linear factor (ax b)k
of the denominator Q(x), there exist
k partial fractions of the forms,
k
k
b
ax
A
b
ax
A
b
ax
A
b
ax
A
)
(
,
)
(
,
)
(
, 3
3
2
2
1





where A1, A2, ….. Ak are constants to be detemined.
For example
(i) 2
2
)
3
2
(
3
2
2
)
3
2
)(
2
(
3
4









x
C
x
B
x
A
x
x
x
(ii) 3
2
3
)
1
2
(
)
1
2
(
)
1
2
(
1
)
1
2
)(
1
(
2











x
D
x
C
x
B
x
A
x
x
x
Rule 3
Corresponding to every non-repeated irreducible quadratic factor ax2 +
bx + c of the
denominator Q(x) there exists a partial fraction of the form
c
bx
ax
B
Ax



2
where A and B
are constants to be determined.
(ax2
+ bx + c) is said to be an irreducible quadratic factor, if it cannot be factorized into
two linear fractors with real coefficients.
Example
(i)
9
4
)
9
)(
4
(
1
2
2
2
2









2
x
D
Cx
x
B
Ax
x
x
x
(ii)
4
3
)
1
2
(
1
2
)
4
3
(
)
1
2
(
4
2
5
8
2
2
2
2
2
3












x
D
Cx
x
B
x
A
x
x
x
x
x
In the case of an improper fraction, by division, it can be expressed as the sum of integral
function and a proper fraction and then proper fraction is resolved into partial fractions.
Inverse Laplace Transform using Partial Fractions
1. Find 










)
3
)(
1
(
1
1
s
s
L
Solution:
Let F(s) = 








 )
3
)(
1
(
1
s
s
Let us split F(S) into partial fractions,
)
3
)(
1
(
1

 s
s = )
3
(
)
1
( 

 s
B
s
A
1 = A(S+3) + B(S+1)
Putting S = - 1 Putting S = -3
A = 2
1 B = - 2
1

)
3
)(
1
(
1

 s
s
=
)
3
(
2
1
)
1
(
2
1



 s
s
 








 )
3
)(
1
(
1
s
s
= 
















3
1
2
1
1
1
2
1 1
1
s
L
s
L
= t
t
e
e 3
2
1
2
1 


=  
t
t
e
e 3
2
1 


2. Find 












)
2
)(
3
(
2
2
1
s
s
s
s
s
L
Solution:
Consider,
2
3
)
2
)(
3
(
2
2









s
C
s
B
s
A
s
s
s
s
s
)
2
)(
3
(
)
3
(
)
2
(
)
2
)(
3
(
)
2
)(
3
(
2
2













s
s
s
s
Cs
s
Bs
s
s
A
s
s
s
s
s
)
3
(
)
2
(
)
2
)(
3
(
2
2








 s
Cs
s
Bs
s
s
A
s
s
put s = -3 put s = 2 put s = 0
9 – 3 – 2 -= B(-3)(5) 4 + 2 – 2 -= C(2)(5) -2 = A(3)(-2)
4=15B 4 = 10C A =
3
1
B =
15
4
C =
10
4
C =
5
2
2
1
.
5
2
3
1
.
15
4
1
.
3
1
)
2
)(
3
(
2
2









s
s
s
s
s
s
s
s



































 



2
1
5
2
3
1
15
4
1
3
1
)
2
)(
3
(
2 1
1
1
2
1
s
L
s
L
s
L
s
s
s
s
s
L
t
t
e
e 2
3
5
2
15
4
)
1
(
3
1


 
3. Find 








6
5
2
1
s
s
s
L
Solution:
Consider,
)
3
(
)
2
(
)
3
)(
2
(
6
5
2








 s
B
s
A
s
s
s
s
s
s
S =A (s + 3) + B(s + 2)
Put s = -3 Put s = -2
-3 = A(0) + b(-1) -2 = A(1) + B(0)
-3 = -B A = -2
B = 3
)
3
(
3
)
2
(
2
)
3
)(
2
( 





 s
s
s
s
s






























 


)
3
(
3
)
2
(
1
2
)
3
)(
2
(
1 1
1
1
s
B
L
s
L
s
s
L
= -2e-2t
+ 3e-3t
4. Find 









2
1
)
1
(s
s
L
Solution:
Consider, 2
2
)
1
(
1
)
1
( 



 s
B
s
A
s
s
2
2
)
1
(
)
1
(
)
1
( 



 s
B
s
A
s
s
s = A(s + 1) + B
Put s = -1 Put s = 0
B = -1 0 = A + B
0 = A – 1
A = 1
2
)
1
( 
s
s
= 2
)
1
(
1
1
1


 s
s










2
1
)
1
(s
s
L = 











2
1
)
1
(
1
1
1
s
s
L
= 




















2
1
1
)
1
(
1
)
1
(
1
s
L
s
L
= 





 


2
1 1
s
L
e
e t
t
= )
1
(
)
( t
e
t
e
e t
t
t


 


16. Convolution of two functions
If f (t) and g(t) are given functions, then the convolution of f (t) and g(t) is defined as
.
)
(
)
(
0
du
u
t
g
u
f
t

 It is denoted by f (t) * g (t) .
16.1 Convolution Theorem
If f (t) and g(t) are functions defined for t ≥ 0, then L(f(t) * g(t)) = L( f (t))L(g(t))
(ie) L(f(t) * g(t)) = F(s). G(s)
where F(s) = L(f(t)), G(s) = L(g(t))
Proof :
By definition of Laplace Transform,
We have )
(
*
))
(
( t
g
t
f
L =  dt
t
g
t
f
e st
)
(
*
)
(
0



= dt
du
u
t
u
f
e
t
st











)
)(
(
0
0
= dudt
u
t
g
u
f
e st
t
)
(
)
(
0
0





on changing the order of integration,
= dt
du
u
t
g
e
u
f st
u 











)
(
)
(
0
Put t – u = v When t = u, v = 0
dt = dv When t = ∞, v = ∞
)
(
*
))
(
( t
g
t
f
L = du
dv
v
g
e
u
f v
u
s












)
(
)
( )
(
0
0
= du
dv
v
g
e
e
u
f sv
su











)
(
)
(
0
0
= dv
v
g
e
du
u
f
e sv
su
)
(
)
(
0
0





= dv
t
g
e
dt
t
f
e st
st
)
(
)
(
0
0






= ))
(
(
))
)(
( t
g
L
t
f
L
)
(
).
(
)
(
*
))
(
( s
G
s
F
t
g
t
f
L 

Corollary
Using the above theorem
We get,
))
(
).
(
(
1
s
G
s
F
L
= )
(
*
)
( t
g
t
f
= ))
(
(
*
)
(
( 1
1
s
G
L
s
F
L 

Note
)
(
*
)
( t
g
t
f = )
(
*
)
( t
f
t
g
1. Use convolution theorem to find 










)
)(
(
1
1
b
s
a
s
L
Solution:











)
)(
(
1
1
b
s
a
s
L = 



















)
(
1
*
)
(
1 1
1
b
s
L
a
s
L = bt
at
e
e 

*
= du
e
e u
t
b
au
t
)
(
0



 = du
e
e bu
bt
au
t




0
=
t
u
b
a
bt
b
a
e
e
0
)
(
)
(











= )
1
(
)
(
)
(






t
b
a
bt
e
b
a
e
=
)
(
)
( b
a
e
b
a
e bt
bt






= )
(
)
(
1 at
bt
e
e
b
a



2. Use convolution theorem to find
)
1
(
1
2
1


s
s
L
Solution:
)
1
(
1
2
1


s
s
L = 











 

1
1
*
1
2
1
1
s
L
s
L = 1*sin t
= du
u
t
t
)
sin(
0

 =
t
u
t
0
1
_
cos(









= cos 0 – cos t = 1 – cos t
3. Find 









2
2
2
1
)
( a
s
s
L using convolution theorem
Solution:










2
2
2
1
)
( a
s
s
L = 








2
2
2
2
1 1
.
a
s
a
s
s
L
= 


















2
2
2
2
1
2
2
1 1
.
*
)
( a
s
a
s
s
L
a
s
s
L
= at
a
at sin
1
*
cos
= du
u
t
a
au
a
t
)
(
sin
cos
1
0


= du
u
u
t
a
u
u
t
a
a
t





 





2
)
(
sin
)
(
sin
1
0
= du
du
t
a
at
a
t
))
(
sin
(sin
2
1
0



=
t
a
u
t
a
at
u
a 0
2
)
2
(
cos
sin
2
1
















= 







a
at
a
at
at
t
a 2
cos
2
cos
sin
2
1
=
a
at
t
2
sin
APPLICATIONS OF INVERSE LAPLACE TRANSFORMS

More Related Content

Similar to BP106RMT.pdf

functions
 functions  functions
functions Gaditek
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Reviewhassaanciit
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxErlenaMirador1
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcupatrickpaz
 
REPRESENTATION OF FUNCTIONS.pptx
REPRESENTATION OF FUNCTIONS.pptxREPRESENTATION OF FUNCTIONS.pptx
REPRESENTATION OF FUNCTIONS.pptxGiezerAgamata1
 
Introduction to TreeNet (2004)
Introduction to TreeNet (2004)Introduction to TreeNet (2004)
Introduction to TreeNet (2004)Salford Systems
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6homeworkping3
 
Edsc 304 lesson 1
Edsc 304 lesson 1Edsc 304 lesson 1
Edsc 304 lesson 1urenaa
 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxExtremelyDarkness2
 
Synthetic and Remainder Theorem of Polynomials.ppt
Synthetic and Remainder Theorem of Polynomials.pptSynthetic and Remainder Theorem of Polynomials.ppt
Synthetic and Remainder Theorem of Polynomials.pptMarkVincentDoria1
 
Indefinite Integration One shot Revision
Indefinite Integration One shot Revision Indefinite Integration One shot Revision
Indefinite Integration One shot Revision CHANDHINIJAYARAMAN
 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating FunctionsNICO MONTERO
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integrationLawrence De Vera
 
Appendex b
Appendex bAppendex b
Appendex bswavicky
 

Similar to BP106RMT.pdf (20)

functions
 functions  functions
functions
 
Calculus - Functions Review
Calculus - Functions ReviewCalculus - Functions Review
Calculus - Functions Review
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
 
Lecture co3 math21-1
Lecture co3 math21-1Lecture co3 math21-1
Lecture co3 math21-1
 
Fmincon
FminconFmincon
Fmincon
 
R lecture co4_math 21-1
R lecture co4_math 21-1R lecture co4_math 21-1
R lecture co4_math 21-1
 
Project in Calcu
Project in CalcuProject in Calcu
Project in Calcu
 
REPRESENTATION OF FUNCTIONS.pptx
REPRESENTATION OF FUNCTIONS.pptxREPRESENTATION OF FUNCTIONS.pptx
REPRESENTATION OF FUNCTIONS.pptx
 
Introduction to TreeNet (2004)
Introduction to TreeNet (2004)Introduction to TreeNet (2004)
Introduction to TreeNet (2004)
 
Funcionesreales 160109205602
Funcionesreales 160109205602Funcionesreales 160109205602
Funcionesreales 160109205602
 
.
..
.
 
237654933 mathematics-t-form-6
237654933 mathematics-t-form-6237654933 mathematics-t-form-6
237654933 mathematics-t-form-6
 
Edsc 304 lesson 1
Edsc 304 lesson 1Edsc 304 lesson 1
Edsc 304 lesson 1
 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
 
Synthetic and Remainder Theorem of Polynomials.ppt
Synthetic and Remainder Theorem of Polynomials.pptSynthetic and Remainder Theorem of Polynomials.ppt
Synthetic and Remainder Theorem of Polynomials.ppt
 
Indefinite Integration One shot Revision
Indefinite Integration One shot Revision Indefinite Integration One shot Revision
Indefinite Integration One shot Revision
 
L16
L16L16
L16
 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating Functions
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
Appendex b
Appendex bAppendex b
Appendex b
 

Recently uploaded

FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfPondicherry University
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxmarlenawright1
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxPooja Bhuva
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17Celine George
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptNishitharanjan Rout
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...Amil baba
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 

Recently uploaded (20)

FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
Call Girls in Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in  Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in  Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in Uttam Nagar (delhi) call me [🔝9953056974🔝] escort service 24X7
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
NO1 Top Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam Ex...
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 

BP106RMT.pdf

  • 1. SCHOOL OF PHARMACY DEPARTMENT OF PHARMACY COURSE NAME: REMEDIAL MATHEMATICS COURSE CODE: BP106RMT UNIT – I – PARTIAL FRACTIONS – BP106RMT
  • 2. UNIT-1 PARTIAL FRACTION An algebraic fraction can be broken down into simpler parts known as “partial fractions“. Consider an algebraic fraction, (3x+5)/(2x2 -5x-3). This expression can be split into simple form like (2)/(x-3) – (1)/(2x+1). The simpler parts [(2)/(x-3)]-[(1)/(2x+1)] are known as partial fractions. This means that the algebraic expression can be written in the form of: (3x+5)/(2x2 -5x-3) = ((2)/(x-3))-((1)/(2x+1)) Note: The partial fraction decomposition only works for the proper rational expression (the degree of the numerator is less than the degree of the denominator). In case, if the rational expression is in improper rational expression (the degree of the numerator is greater than the degree of the denominator), first do the division operation to convert into proper rational expression. This can be achieved with the help of polynomial long division method. PARTIAL FRACTION FORMULA The procedure or the formula for finding the partial fraction is: 1. While decomposing the rational expression into the partial fraction, begin with the proper rational expression. 2. Now, factor the denominator of the rational expression into the linear factor or in the form of irreducible quadratic factors (Note: Don’t factor the denominators into the complex numbers). 3. Write down the partial fraction for each factor obtained, with the variables in the numerators, say A and B. 4. To find the variable values of A and B, multiply the whole equation by the denominator. 5. Solve for the variables by substituting zero in the factor variable. 6. Finally, substitute the values of A and B in the partial fractions. PARTIAL FRACTIONS FROM RATIONAL FUNCTIONS Any number which can be easily represented in the form of p/q, such that p and q are integers and q≠0 is known as a rational number. Similarly, we can define a rational function as the ratio of two polynomial functions P(x) and Q(x), where P and Q are polynomials in x and Q(x)≠0. A rational function is known as proper if the degree of P(x) is less than the degree of Q(x); otherwise, it is known as an improper rational function. With the help of the long division process, we can reduce improper rational functions to proper rational functions. Therefore, if P(x)/Q(x) is improper, then it can be expressed as: P(x)Q(x)=A(x)+R(x)Q(x) Here, A(x) is a polynomial in x and R(x)/Q(x) is a proper rational function.
  • 3. We know that the integration of a function f(x) is given by F(x) and it is represented by: ∫f(x)dx = F(x) + C Here R.H.S. of the equation means integral of f(x) with respect to x. PARTIAL FRACTIONS DECOMPOSITION In order to integrate a rational function, it is reduced to a proper rational function. The method in which the integrand is expressed as the sum of simpler rational functions is known as decomposition into partial fractions. After splitting the integrand into partial fractions, it is integrated accordingly with the help of traditional integrating techniques. Here the list of Partial fractions formulas is given. PARTIAL FRACTION OF IMPROPER FRACTION An algebraic fraction is improper if the degree of the numerator is greater than or equal to that of the denominator. The degree is the highest power of the polynomial. Suppose, m is the degree of the denominator and n is the degree of the numerator. Then, in addition to the partial fractions arising from factors in the denominator, we must include an additional term: this additional term is a polynomial of degree n − m. Note:  A polynomial with zero degree is K, where K is a constant  A polynomial of degree 1 is Px + Q  A polynomial of degree 2 is Px2 +Qx+K
  • 5. 2. Solve 3x+1/(x-2)(x+1) into partial fractions 3. Resolve 1/x2 -1 into partial fractions
  • 7.
  • 8. LOGARITHMS The logarithmic function is an inverse of the exponential function. It is defined as: y=logax, if and only if x=ay ; for x>0, a>0, and a≠1. Natural logarithmic function: The log function with base e is called natural logarithmic function and is denoted by loge. f(x) = logex The questions of logarithm could be solved based on the properties, given below Product rule: logb MN = logb M + logb N Quotient rule: logb M/N = logb M – logb N Power rule: logb Mp = P logb M Zero Exponent Rule: loga 1 = 0 Change of Base Rule: logb (x) = ln x / ln b or logb (x) = log10 x / log10 b
  • 9. Solved Examples: 1. Express 53 = 125 in logarithm form. Solution: 53 = 125 As we know, ab = c ⇒ logac=b Therefore; Log5125 = 3 2. Express log101 = 0 in exponential form. Solution: Given, log101 = 0 By the rule, we know; logac=b ⇒ ab = c Hence, 100 = 1 3. Find the log of 32 to the base 4. Solution: log432 = x 4x = 32 (22 )x = 2x2x2x2x2 22x = 25 2x=5 x=5/2 Therefore, log432 =5/2 4. Find x if log5(x-7)=1. Solution: Given, log5(x-7)=1 Using logarithm rules, we can write; 51 = x-7 5 = x-7
  • 10. x=5+7 x=12 5. If logam=n, express an-1 in terms of a and m. Solution: logam=n an =m an /a=m/a an-1 =m/a 6. Solve for x if log(x-1)+log(x+1)=log21 Solution: log(x-1)+log(x+1)=log21 log(x-1)+log(x+1)=0 log[(x-1)(x+1)]=0 Since, log 1 = 0 (x-1)(x+1) = 1 x2 -1=1 x2 =2 x=± √2 Since, log of negative number is not defined. Therefore, x=√2 7. Express log(75/16)-2log(5/9)+log(32/243) in terms of log 2 and log 3. Solution: log(75/16)-2log(5/9)+log(32/243) Since, nlogam=logamn ⇒log(75/16)-log(5/9)2 +log(32/243) ⇒log(75/16)-log(25/81)+log(32/243) Since, logam-logan=loga(m/n) ⇒log[(75/16)÷(25/81)]+log(32/243) ⇒log[(75/16)×(81/25)]+log(32/243) ⇒log(243/16)+log(32/243) Since, logam+logan=logamn
  • 11. ⇒log(32/16) ⇒log2 8. Express 2logx+3logy=log a in logarithm free form. Solution: 2logx+3logy=log a logx2 +logy3 =log a logx2 y3 =log a x2 y3 =log a 9. Prove that: 2log(15/18)-log(25/162)+log(4/9)=log2 Solution: 2log(15/18)-log(25/162)+log(4/9)=log2 Taking L.H.S.: ⇒2log(15/18)-log(25/162)+log(4/9) ⇒log(15/18)2 -log(25/162)+log(4/9) ⇒log(225/324)-log(25/162)+log(4/9) ⇒log[(225/324)(4/9)]-log(25/162) ⇒log[(225/324)(4/9)]/(25/162) ⇒log(72/36) ⇒log2 (R.H.S) 10. Express log10(2+1) in the form of log10x. Solution: log10(2+1) =log102+log101 =log10(2×10) =log1020 11. Find the value of x, if log10(x-10)=1. Solution: Given, log10(x-10)=1. log10(x-10) = log1010 x-10 = 10 x=10+10 x=20 12. Find the value of x, if log(x+5)+log(x-5)=4log2+2log3 Solution: Given,
  • 12. log(x+5)+log(x-5)=4log2+2log3 log(x+5)(x-5) = 4log2+2log3 [log mn=log m+log n] log(x2 -25) = log24 +log32 log(x2 -25) = log16+log9 log(x2 -25)=log(16×9) log(x2 -25)=log144 x2 -25=144 x2 =169 x=±√169 x=±13 13. Solve for x, if log(225/log15) = log x Solution: log x = log(225/log15) log x=log[(15×15)]/log15 log x = log 152 /log 15 log x = 2log 15/log 15 log x = 2 Or log10x=2 102 =x x=10×10 x=100 Solved Examples (i)Sol:
  • 16. RESULT: 2 Prove that Proof: FUNCTIONS DEFINITION: Function (mathematics) is defined as if each element of set A is connected with the elements of set B, it is not compulsory that all elements of set B are connected; we call this relation as function. f: A → B ( f is a function from A to B ) Types of function: One-one Function or Injective Function : If each elements of set A is connected with different elements of set B, then we call this function as One- one function. Many-one Function : If any two or more elements of set A are connected with a single element of set B, then we call this function as Many one function. Onto function or Surjective function : Function f from set A to set B is onto function if each element of set B is connected with set of A elements. Into Function : Function f from set A to set B is Into function if at least set B has a element which is not connected with any of the element of set A.
  • 17. Constant Function: A function f: A→B is a constant function if the range of f contains only one element. f(x)=4 Identity Function: Let A be a non - empty set then f: A→A defined by f(x)=x, called the identity function on A EXAMPLE 1. What is the range of the following function? f(x) = {(4,6) ,(5,7),(6,8),(7,9)} Solution:- Given a set of ordered pairs, the range is found by identifying the y-coordinates from the set. So the range is {6, 7, 8, 9}. 2. What is the domain of the following function? f(x) = {(4,6) ,(5,7),(6,8),(7,9)} Solution:- The domain contains the x-coordinates of a set of ordered pairs. {4,5,6,7} 3. Identify one to one and onto function Solution:
  • 18.
  • 19. SCHOOL OF PHARMACY DEPARTMENT OF PHARMACY COURSE NAME: REMEDIAL MATHEMATICS COURSE CODE: BP106RMT UNIT – II – MATRICES & DETERMINANTS – BP106RMT
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34. SCHOOL OF PHARMACY DEPARTMENT OF PHARMACY COURSE NAME: REMEDIAL MATHEMATICS COURSE CODE: BP106RMT UNIT – III – CALCULUS– BP106RMT
  • 35. Unit - III Differential Calculus Introduction Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity. This measures how quickly the position of the object changes when time is advanced. Differentiation The rate at which a function changes with respect to independent variable is called the derivative of the function. The derivative of a function is defined in terms of the limit involving increments of the independent and dependent variables and this limit is denoted by . The process of finding the derivative of a function is called the derivative of a function. First derivative formulas S. No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 0 11. 12. 13. 14. 15.
  • 36. Example 1: Differentiate the following with respect to x (i) (ii) (iii) (iv) (v) Solution (i) Let . (ii) Let . (iii)Let = = = . (iv)Let = (v)Let =
  • 39. MAXIMA AND MINIMA EXAMPLE: Find the maximum and the minimum values, if any, without using derivatives of the following functions: (i) f (x) = 4x2 4x + 4 on R Solution: Given f (x) = 4x2 4x + 4 on R = 4x2 4x + 1 + 3 By grouping the above equation we get, = (2x 1)2 + 3 Since, (2x 1)2
  • 40. = (2x 1)2 Thus, the minimum value of f(x) is 3 at x = ½ Since, f(x) can be made large. Therefore maximum value does not exist. (ii) f (x) = x3 6x2 + 9x +15 Solution: Given, f(x) = x3 6x2 + 9x + 15 2 12x + 9 = 3(x2 4x + 3) = 3 (x 3) (x 1) For all maxima and minima, = 3(x 3) (x 1) = 0 = x = 3, 1 At x = Since, x = 1 is a point of Maxima Since, x =3 is point of Minima. Hence, local maxima value f (1) = (1)3 6(1)2 + 9(1) + 15 = 19 Local minima value f (3) = (3)3 6(3)2 + 9(3) + 15 = 15 (iii) f(x) = x3 3x Solution: Given, f (x) = x3 3x Differentiate with respect to x then we get, 2 3 = 3x2 = 3 x = ±1 Again 2 3
  • 41. 1)= 6 > 0 By second derivative test, x = 1 is a point of local minima and local minimum value of g at x = 1 is f (1) = 13 3 = 1 3 = 2 However, x = 1 is a point of local maxima and local maxima value of g at x = 1 is f ( 1) = ( 1)3 3( 1) = 1 + 3 = 2 Hence, the value of minima is 2 and maxima is 2. Applications of derivative Example 6: The total cost function for the production of units of an item is given by . Find (a) average cost (b) marginal cost (c) marginal average cost. Solution Given (a) Average cost = (b) marginal cost = (c) marginal average cost = . Example 7: Let the cost function of a firm be given by the following equation: where stands for the cost function and for output. Calculate (i) output at which marginal cost is minimum (ii) output at which average cost is minimum (iii) output at which average cost is equal marginal cost. Solution Given (i) Marginal cost (MC) = gives MC is maximum when the output is 10. (ii) Average cost (AC) = = gives and AC is minimum when the output is 15. (iii) When average cost = marginal cost = i.e.,
  • 42. or is inadmissible. Output at which average cost is equal to marginal cost is 15 units. Example 8: The cost function for producing units of a product is (in rupees) and the revenue function is R . Find the output for which profit is maximum. Solution Given and R Profit function P = R C = When or is inadmissible. Also The profit is maximum when the output is 7 units. The maximum profit =
  • 43. SCHOOL OF PHARMACY DEPARTMENT OF PHARMACY COURSE NAME: REMEDIAL MATHEMATICS COURSE CODE: BP106RMT UNIT – IV – ANALYTICAL GEOMETRY– BP106RMT
  • 44.                                    
  • 45.                                
  • 46.                                       
  • 47.                          
  • 48.                     
  • 49.                                                                                           
  • 52.                                               
  • 57.                                       
  • 58.                                        
  • 60.
  • 61. SCHOOL OF PHARMACY DEPARTMENT OF PHARMACY COURSE NAME: REMEDIAL MATHEMATICS COURSE CODE: BP106RMT UNIT – V – DIFFERENTIAL EQUATIONS– BP106RMT
  • 62.
  • 63.
  • 64.
  • 65. UNIT 4 LAPLACE TRANSFORMS 1. Introduction A transformation is mathematical operations, which transforms a mathematical expressions into another equivalent simple form. For example, the transformation logarithms converts multiplication division, powers into simple addition, subtraction and multiplication respectively. The Laplace transform is one which enables us to solve differential equation by use of algebraic methods. Laplace transform is a mathematical tool which can be used to solve many problems in Science and Engineeing. This transform was first introduced by Laplace, a French mathematician, in the year 1790, in his work on probability theory. This technique became very popular when heaveside funcitons was applied to the solution of ordinary differential equation in electrical Engeneering problems. Many kinds of transformation exist, but Laplace transform and fourier transform are the most well known. The Laplace transform is related to fourier transform, but whereas the fourier transform expresses a function or signal as a series of mode of vibrations, the Laplace transform resolves a function into its moments. Like the fourier transfrom, the Laplace transform is used for solving differential and integral equations. In Physics and Engineering it is used for analysis of linear time invariant systems such as electrical circuits, harmonic oscillators, optical devices and mechanical systems. In such analysis, the Laplace transform is often interpreted as a transformation form the time domain in which inputs and outputs are functions of time, to the frequency domain, where the same inputs and outputs are functions of complex angular frequency in radius per unit time. Given a simple mathematical or functional discription of an input or output to a system, the Laplace transform provides an alternative functional discription that often simplifies the process of analyzing the behaviour of the system or in synthesizing a new system based on a set of specification. The Laplace transform belongs to the family of integral transforms. The solutions of mechanical or electrical problems involving discontinuous force function are obtained easily by Laplace transforms.
  • 66. 1.1 Definition of Laplace Transforms Let f (t) be a functions of the variable t which is defined for all positive values of t. Lets be the real constant. If the integral dt t f e st ) ( 0    exist and is equal to F(s), then F(s) is called the Laplace transform of f (t) and is denoted by the symbol L[f(t)]. i.e. ] [ ) ( )] ( [ 0 s F dt t f e t f L st      The Laplace Transform of f (t) is said to exist if the integral converges for some values of s, otherwise it does not exist. Here the operator L is called the Laplace transform operator which transforms the functions f (t) into F(s). Remark: 0 ) (    s F Lim S . 1.2 Piecewise continuous function A function f(t) is said to be piecewise continuous in any interval [a,b] if it is defined on that interval, and the interval can be divided into a finite number of sub intervals in each of which f (t) is continuous. In otherwords piecewise continuous means f(t) can have only finite number of finite discontinuities. Figure 1.1 An example of a function which is periodically or sectional continuous is shown graphically in Fig 1.1 above. This function has discontinuities at t1, t2 and t3. 1.3 Definition of Exponential order A function f (t) is said to be of exponential order if 0 ) (     t f e Lim st t .
  • 67. 1.4 Sufficient conditions for the existence of the Laplace Transforms Let f(t) be defined and continuous for all positive values of t. The Laplace Transform of f (t) exists if the following conditions are satisfied. (i) f (t) is piecewise continuous (or) sectionally continuous. (ii) f(t) should be of exponential order. 1.5 Seven Indeterminates 1. 0 0 4. ∞  ∞ 7. 0o . 2.   5. 1∞ 3. 0  ∞ 6. ∞o . 2. Laplace Transform of Standard functions 1. Prove that L[e-at ] = a s  1 where s + a > 0 or s > - a Proof: By definition L[f(t)] = st e   0 f(t)dt L[e-at ] = st e   0 .e-at dt = ) ( 0 a s t e     dt Hence L[e-at ] = a s  1 2. Prove that L[eat ]= a s  1 where s > a Proof: By the defn of L[f(t)] = st e   0 f(t)dt L[e+at ] = st e   0 .eat dt = t a s e ) ( 0     dt =            0 ) ( a s e t a s
  • 68. =   0 1 e e a s      = a s  1 Hence L[eat ] = a s  1 3. L(cos at) = st e   0 cos at dt =            0 2 2 ) sin cos ( at a at s a s e st = ) ( 1 0 2 2 S a s    = 2 2 a s s  ] cos sin [ sin 2 2 bx b bx a b a e bxdx e ax ax      ] sin cos [ cos 2 2 bx b bx a b a e bxdx e ax ax     Hence L(cos at) = 2 2 a s s  4. L(sin at) = st e   0 sin at dt =            0 2 2 ) cos sin ( at a at s a s e st = ) 0 ( 1 0 2 2 a a s    L(sin at) = 2 2 a s a  5. L(cos hat) =   at at e e L   2 1 =                        ) )( ( 2 1 1 1 2 1 a s a s a s a s a s a s = 2 2 a s s  L(cos hat) = 2 2 a s s  6. L(sin hat) =   at at e e L   2 1 =          a s a s 1 1 2 1
  • 69. =              ) )( ( ) ( ) ( 2 1 a s a s a s a s = 2 2 a s a  L(sin hat) = 2 2 a s a  7. L(1) = dt e st . 1 . 0    =          0 s e st = s s 1 1 0          L(1) = s 1 8. L(tn ) = dt t e n st    0 =   dt s e nt s e t st n st n                        1 0 0 =   dt t e s n n st 1 0 0 0       8. L(tt ) = dt t e n st    0 =   dt s e nt s e t st n st n                        1 0 0 =   dt t e s n n st 1 0 0 0       =   1  n t L s n L(tn ) =   1  n t L s n L(tn-1 ) =   2 1   n t L s n L(t3 ) =   2 3 t L s L(t2 ) =   t L s 2 L(tn ) = ). 1 ( . 1 . 2 . 3 ..... 2 . 1 . L s s s s n s n s n  
  • 70. = s s n L s n n n 1 . ! ] 1 [ !  L(tn ) =   1 1 1 !    n n s n or s n In particular n = 1,2,3…. we get L(t) = 2 1 s L(t2 ) = 3 ! 2 s L(t3 ) = 4 ! 3 s 2.1 Linear propertyof Laplace Transform 1. L(f(t)  g(t)) = L(f(t)  L(g(t)) 2. L(Kf(t)  g(t)) = KL(f(t) Proof (1): By the defn of L.T L[f(t)] = dt t f e st ) ( 0    L(f(t)  g(t)] =  dt t g t f e st ) ( ) ( 0     = dt t g e dt t f e st st ) ( ) ( 0 0        =     ) ( ) ( t g L t f L  Hence L[f(t)  g(f)] = L[f(t)]  L[g(t)] (2) L[Kf(t)] = KL[f(t)] By the defn of L.T L[Kf(t)] = dt t Kf e st ) ( 0   
  • 71. = dt t f e K st ) ( 0    = KL[f(t)] Hence L[K(t)] = KL[f(t)] 2.2 Recall 1. 2 sin A cos B = sin(A+B) + sin(A-B) 2. 2 cos A sin B = sin(A+B) - sin(A-B) 3. 2 cos A cos B = cos(A+B) + cos(A-B) 4. 2 sin A sin B = cos(A-B) - cos(A+B) 5. sin2 A = 2 2 cos 1 A  6. cos2 A = 2 2 cos 1 A  7. sin 3A = 3sin A – 4 sin3 A 8. cos 3A = 4cos3 A – 3 cos A 9. sin (A+B) = sin A cos B + cos A sin B 10. sin (A-B) = sin A cos B - cos A sin B 11. cos (A-B) = cos A cos B + sin A sin B 12. cos (A+B) = cos A cos B - sin A sin B 3.1 Problems 1. Find Laplace Transform of sin2 t Solution L(sin2 t) =        2 2 cos 1 t L = ) 2 cos 1 ( 2 1 t L  =         4 1 2 1 2 s s s
  • 72. 2. Find L(cos3 t) Solution: We know that cos3 A = 4 cos3 A – 3 cos A hence cos2 A = A A 3 cos 4 1 cos 4 3  L(cos2 t) = ) 3 cos cos 3 ( 4 1 t t L  =          9 1 3 4 1 2 2 s s s s 3. Find L(sin 3t cos t) Solution: We know that sin A cos B=   ) sin( ) sin( 2 1 B A B A    hence sin 3t cos t = ) 2 sin 4 (sin 2 1 t t  L(sin 3t cos t) = ) 2 sin 4 (sin 2 1 t t L  =          4 2 16 4 2 1 2 2 s s = 4 1 16 2 2 2    s s 4. Find L(1 + e-3t – 5e4t ) Solution L[1+e-3t – 5e4t ] = L[1] L[e-3t ] + 5L (e4t ] = 4 5 3 1 1     s s s 6. Find L(3 + e6t + sin2t – 5 cos 3t) Solution: L(3 + e6t + sin 2t – 5 cos 3t) = 3L(1) + L(e6t ) + L(sin 2t) – 5L(cos 3t) = 9 5 4 2 6 1 1 . 3 2 2       s s s s s
  • 73. 7. Find L(sin (2t + 3)) Solution: L(sin(2t + 3)) = L(sin 2t cos 3 + sin 3 cos 2t) = cos 3L (sin 2t) + sin 3L(cos 2t) = 4 3 sin 4 2 3 cos 2 2    s s s 8. Find L(sin 4t + 3 sin h2t – 4 cos h5t + e-5t ) Solution: L(sin 4t + 3 sin h2t – 4 cos h5t + e-5t ) = L(sin 4t) + 3L (sin h2t) – 4L (cos h5t) + L(e-5t ) = 5 1 25 . 4 4 2 . 3 16 4 2 2 2        s s s s s = 5 1 25 4 4 6 16 4 2 2 2        s s s s s 9. Find L((1 + t)2 ) Solution: L((1 + t)2 ) = L(1 + 2t + t2 ) = L(1) + 2L(t) + L(t2 ) = 3 2 ! 2 1 . 2 1 s s s   3.2 Note 1. (n+1) = dx e x x n    0 (By definition) (n+1) = n!, n = 1,2,3,… (n+1) = n(n), n > 0 12. Find          2 / 3 1 t t L
  • 74. Solution:          2 / 3 1 t t L = L(t-1/2 ) + L(t3/2 ) =     1 2 3 1 2 1 1 2 3 1 2 1          s s =     2 5 2 1 2 1 2 1 . 2 3 2 1 s s    = 2 5 4 3 s s    4. First Shifting Theorem (First translation) 1. If L(f(t)) = F(s). then L(e-at f(t)) = F (s+a) 4.1 Corollary: L(eat f(t)) = F(s-a) 4.2 Note: 1. L(e-at f(t)) = L[f(t)]s→s+a = [F(s)]s→s+a = F (s+a) 2. L(eat f(t)) = L[f(t)]s→s-a = [F(s)]s→s-a = F (s-a) 4.3 Problems 1. Find L(te2t ) Solution: L(te2t ) = [L(t)]s→s-2 = 2 2 1         s s s = 2 ) 2 ( 1  s 2. Find L(t5 e-t ) Solution:
  • 75. L(t5 e-t ) = [L(t5 )]s→s+1 = 1 6 ! 5         s s s = 6 ) 1 ( ! 5  s 3. Find L(e-2t sin 3t) Solution: L(e-2t sin 3t) = L(sin 3t)]s→s+2 = 2 2 9 3          s s s = 9 ) 2 ( 3 2   s = 16 ) 1 ( 1 2    s s 5. Theorem If L(f(t)) = F(s), then L(tf(t)) = )) ( ( s F ds d  similarly   ) ( 2 t f t L = ) ( ) 1 ( 2 2 2 s F ds d    ) ( 3 t f t L = ) ( ) 1 ( 3 3 3 s F ds d  In general,   ) (t f t L n = ) ( ) 1 ( s F ds d n n n  5.1 Problems 1. Fine   t te L 3 Solution: We know that   )) ( ( ) ( t f L ds d t tff L   Here t e t f 3 ) (  L   t te3 =   t e L ds d 3  =         3 1 s ds d =             1 ) 3 ( ) 1 ( ) 0 )( 3 ( s s = 2 ) 3 ( 1  s
  • 76. 2. Find   t t L 3 sin Solution:   ) (t tf L =   ) (t f L ds d    ) (t tf L =   t L ds d 3 sin  =         9 3 2 s ds d =                    2 2 2 9 2 3 0 9 s s s =  2 2 9 6  s s 3. Find   t te L t 3 sin 2  Solution:   t t e L t 3 sin ( 2  = 2 ) 3 sin (  s s t t L = 2 ) 3 (sin         s s t L ds d = 2 2 9 3                 s s s ds d =     2 2 2 2 9 ) 2 ( 3 0 9                s s s s s =  2 2 9 ) 2 ( ) 2 ( 6    s s 6. Theorem If ) ( )) ( ( s F t f L  and if t t f Lt t ) ( 0  exist then ds t f e t t f L st s ) ( ) (           Recall 1. B A AB log log ) log(   2.   B A B A log log log   3. A B AB log log  4. 0 1 log  5.   0 log 6.    log
  • 77. 7. x dx x log 1   8. a x a x a dx 1 2 2 tan 1     9. 2 ) ( tan 1     10.     a s a s 1 1 tan 2 cot      Problems 1. Find          t e L t 2 1 Solutions: 0 0 1 2 0    t e Lim t t (Interminate form) Apply L – Hospital Rule 2 1 2 2 0     t t e Lim the given function exists in the limit t → 0          t e L t 2 1 =  ds e L t s 2 1   =    ds e L L t s 2 ) 1 (    = ds s s s           2 1 1 =     s s s ) 2 log( log =               s s s 2 log
  • 78. =                                s s s s s s 2 1 1 log 2 1 log = 2 log 0   s s = 1 2 log         s s =        s s 2 log 2. Find        t at L cos 1 Solution: 0 0 cos 1 0    t at Lim t (Indeterminte form) Apply L – Hospital Rule. 0 1 sin 0   at a Lim t (finite) the given function exists in the limit t → 0        t at L cos 1 =  ds at L s cos 1   =    ds at L L s cos ) 1 (    = ds a s s s s           2 2 1 =            s a s s 2 2 log 2 1 log =            s a s s 2 1 2 2 log log =           s a s s 2 2 log =               s s a s s 2 2 1 log =               s s a 2 2 1 1 log =           2 2 log 1 log a s s
  • 79. =                               s s a a s s a s s 2 2 1 2 2 2 2 log log log 11. Laplace Transform of Derivations Here, we explore how the Laplace transform interacts with the basic operators of calculus differentation and integration. The greatest interest will be in the first identity that we will derive. This relates the transform of a derivative of a function to the transform of the original function, and will allow to convert many initial - value problems to easily solved algebraic Equations. But there are useful relations involving the Laplace transform and either differentiation (or) integration. So we’ll look at them too. 11.1. Theorem If L(f(t)) = F(s) Then (i) L(f(t)) = sL(f(t)) – f (ii) L(f(t)) = s2 L(f(t)) – sf(0) - f(0) and in genereal L(fn (t)) = sn L(f(t)) – sn-1 f(0) – sn-2 f(0)…….fn-1 (0) 11.2 Note We have, L(f(t)) = sL(f(t)) – f (0) …. (1) and L(f(t)) = s2 L(f(t)) – sf (0) - f(0) ….(2) When f(0) = 0 and f(0) = 0 (1) & (2) becomes Lf(t) = sLf(t) and Lf(t) = s2 Lf(t) This shows that under certain conditions, the process of Laplace transform replaces differentiation by multiplication by the factor s and s 2 respectively. 13 Definition If the Laplace transform of a function f (t) is F(S) (ie) L( f (t)) = F(S) then f (t) is called an inverse laplace transform of F (s) and is denoted by f (t) = L-1 (F(s))
  • 80. Here L-1 1 is called the inverse Laplace transform operator. 14. Standard results in inverse Laplace transforms Laplace Transform Inverse Laplace Transform s L 1 ) 1 (  1 1 1         s L a s e L at   1 ) ( at e a s L          1 1 a s e L at    1 ) ( at e a s L           1 1 2 1 ) ( s t L  t s L         2 1 1 3 2 ! 2 ) ( s t L  2 3 1 ! 2 t s L         4 3 ! 3 ) ( s t L  3 4 1 ! 3 t s L         1 ! ) (   n n s n t L n n t s n L          1 1 ! where n is a +ve integer 2 2 ) (sin a s a at L   at a s a L sin 2 2 1          2 2 ) (cos a s s at L   at a s s L cos 2 2 1          2 2 ) (sin a s a hat L   hat a s a L sin 2 2 1          2 2 ) (cos a s s hat L   hat a s s L cos 2 2 1          15 Partial Fraction The rational fraction P(x)/Q(x) is said to be resolved into partial fraction if it can be expressed as the sum of difference of simple proper fractions.
  • 81. Rules for resolving a Proper Fraction P(x) / Q(x) into partial fractions Rule 1 Corresponding to every non repeated, linear factor (ax+b) of the denomiator Q(x), there exists a partial fraction of the form b ax A  where A is a constant, to be determined. For Example (i) 5 3 2 ) 5 3 )( 2 ( 7 2        x B x A x x x (ii) 3 2 2 1 ) 3 2 )( 2 )( 1 ( 22 18 5 2            x C x A x A x x x x x Rule 2 Corresponding to every repeated linear factor (ax b)k of the denominator Q(x), there exist k partial fractions of the forms, k k b ax A b ax A b ax A b ax A ) ( , ) ( , ) ( , 3 3 2 2 1      where A1, A2, ….. Ak are constants to be detemined. For example (i) 2 2 ) 3 2 ( 3 2 2 ) 3 2 )( 2 ( 3 4          x C x B x A x x x (ii) 3 2 3 ) 1 2 ( ) 1 2 ( ) 1 2 ( 1 ) 1 2 )( 1 ( 2            x D x C x B x A x x x Rule 3 Corresponding to every non-repeated irreducible quadratic factor ax2 + bx + c of the denominator Q(x) there exists a partial fraction of the form c bx ax B Ax    2 where A and B are constants to be determined. (ax2 + bx + c) is said to be an irreducible quadratic factor, if it cannot be factorized into two linear fractors with real coefficients.
  • 82. Example (i) 9 4 ) 9 )( 4 ( 1 2 2 2 2          2 x D Cx x B Ax x x x (ii) 4 3 ) 1 2 ( 1 2 ) 4 3 ( ) 1 2 ( 4 2 5 8 2 2 2 2 2 3             x D Cx x B x A x x x x x In the case of an improper fraction, by division, it can be expressed as the sum of integral function and a proper fraction and then proper fraction is resolved into partial fractions. Inverse Laplace Transform using Partial Fractions 1. Find            ) 3 )( 1 ( 1 1 s s L Solution: Let F(s) =           ) 3 )( 1 ( 1 s s Let us split F(S) into partial fractions, ) 3 )( 1 ( 1   s s = ) 3 ( ) 1 (    s B s A 1 = A(S+3) + B(S+1) Putting S = - 1 Putting S = -3 A = 2 1 B = - 2 1  ) 3 )( 1 ( 1   s s = ) 3 ( 2 1 ) 1 ( 2 1     s s            ) 3 )( 1 ( 1 s s =                  3 1 2 1 1 1 2 1 1 1 s L s L = t t e e 3 2 1 2 1    =   t t e e 3 2 1   
  • 83. 2. Find              ) 2 )( 3 ( 2 2 1 s s s s s L Solution: Consider, 2 3 ) 2 )( 3 ( 2 2          s C s B s A s s s s s ) 2 )( 3 ( ) 3 ( ) 2 ( ) 2 )( 3 ( ) 2 )( 3 ( 2 2              s s s s Cs s Bs s s A s s s s s ) 3 ( ) 2 ( ) 2 )( 3 ( 2 2          s Cs s Bs s s A s s put s = -3 put s = 2 put s = 0 9 – 3 – 2 -= B(-3)(5) 4 + 2 – 2 -= C(2)(5) -2 = A(3)(-2) 4=15B 4 = 10C A = 3 1 B = 15 4 C = 10 4 C = 5 2 2 1 . 5 2 3 1 . 15 4 1 . 3 1 ) 2 )( 3 ( 2 2          s s s s s s s s                                         2 1 5 2 3 1 15 4 1 3 1 ) 2 )( 3 ( 2 1 1 1 2 1 s L s L s L s s s s s L t t e e 2 3 5 2 15 4 ) 1 ( 3 1     3. Find          6 5 2 1 s s s L Solution: Consider, ) 3 ( ) 2 ( ) 3 )( 2 ( 6 5 2          s B s A s s s s s s S =A (s + 3) + B(s + 2)
  • 84. Put s = -3 Put s = -2 -3 = A(0) + b(-1) -2 = A(1) + B(0) -3 = -B A = -2 B = 3 ) 3 ( 3 ) 2 ( 2 ) 3 )( 2 (        s s s s s                                   ) 3 ( 3 ) 2 ( 1 2 ) 3 )( 2 ( 1 1 1 1 s B L s L s s L = -2e-2t + 3e-3t 4. Find           2 1 ) 1 (s s L Solution: Consider, 2 2 ) 1 ( 1 ) 1 (      s B s A s s 2 2 ) 1 ( ) 1 ( ) 1 (      s B s A s s s = A(s + 1) + B Put s = -1 Put s = 0 B = -1 0 = A + B 0 = A – 1 A = 1 2 ) 1 (  s s = 2 ) 1 ( 1 1 1    s s           2 1 ) 1 (s s L =             2 1 ) 1 ( 1 1 1 s s L =                      2 1 1 ) 1 ( 1 ) 1 ( 1 s L s L
  • 85. =           2 1 1 s L e e t t = ) 1 ( ) ( t e t e e t t t       16. Convolution of two functions If f (t) and g(t) are given functions, then the convolution of f (t) and g(t) is defined as . ) ( ) ( 0 du u t g u f t   It is denoted by f (t) * g (t) . 16.1 Convolution Theorem If f (t) and g(t) are functions defined for t ≥ 0, then L(f(t) * g(t)) = L( f (t))L(g(t)) (ie) L(f(t) * g(t)) = F(s). G(s) where F(s) = L(f(t)), G(s) = L(g(t)) Proof : By definition of Laplace Transform, We have ) ( * )) ( ( t g t f L =  dt t g t f e st ) ( * ) ( 0    = dt du u t u f e t st            ) )( ( 0 0 = dudt u t g u f e st t ) ( ) ( 0 0      on changing the order of integration, = dt du u t g e u f st u             ) ( ) ( 0 Put t – u = v When t = u, v = 0 dt = dv When t = ∞, v = ∞ ) ( * )) ( ( t g t f L = du dv v g e u f v u s             ) ( ) ( ) ( 0 0 = du dv v g e e u f sv su            ) ( ) ( 0 0
  • 86. = dv v g e du u f e sv su ) ( ) ( 0 0      = dv t g e dt t f e st st ) ( ) ( 0 0       = )) ( ( )) )( ( t g L t f L ) ( ). ( ) ( * )) ( ( s G s F t g t f L   Corollary Using the above theorem We get, )) ( ). ( ( 1 s G s F L = ) ( * ) ( t g t f = )) ( ( * ) ( ( 1 1 s G L s F L   Note ) ( * ) ( t g t f = ) ( * ) ( t f t g 1. Use convolution theorem to find            ) )( ( 1 1 b s a s L Solution:            ) )( ( 1 1 b s a s L =                     ) ( 1 * ) ( 1 1 1 b s L a s L = bt at e e   * = du e e u t b au t ) ( 0     = du e e bu bt au t     0 = t u b a bt b a e e 0 ) ( ) (            = ) 1 ( ) ( ) (       t b a bt e b a e = ) ( ) ( b a e b a e bt bt       = ) ( ) ( 1 at bt e e b a    2. Use convolution theorem to find ) 1 ( 1 2 1   s s L Solution:
  • 87. ) 1 ( 1 2 1   s s L =                1 1 * 1 2 1 1 s L s L = 1*sin t = du u t t ) sin( 0   = t u t 0 1 _ cos(          = cos 0 – cos t = 1 – cos t 3. Find           2 2 2 1 ) ( a s s L using convolution theorem Solution:           2 2 2 1 ) ( a s s L =          2 2 2 2 1 1 . a s a s s L =                    2 2 2 2 1 2 2 1 1 . * ) ( a s a s s L a s s L = at a at sin 1 * cos = du u t a au a t ) ( sin cos 1 0   = du u u t a u u t a a t             2 ) ( sin ) ( sin 1 0 = du du t a at a t )) ( sin (sin 2 1 0    = t a u t a at u a 0 2 ) 2 ( cos sin 2 1                 =         a at a at at t a 2 cos 2 cos sin 2 1 = a at t 2 sin
  • 88. APPLICATIONS OF INVERSE LAPLACE TRANSFORMS