SlideShare a Scribd company logo
1 of 44
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
1 K1359820
FACULTY OF SCIENCE, ENGINEERING
AND COMPUTING
School of Aerospace and Aircraft Engineering
BSc (Hons) DEGREE
IN
BSc Aerospace Engineering
Name: Arunthihan Ramajeyan
ID Number: K1359820
Project Title: DESIGN AND MANUFACTURE GAS TURBINE
BLADE
Date: April 2016
Supervisor: Dr Hossein Mirzaii
WARRANTY STATEMENT
This is a student project. Therefore, neither the student nor Kingston University makes any
warranty, express or implied, as to the accuracy of the data or conclusion of the work
performed in the project and will not be held responsible for any consequences arising out of
any inaccuracies or omissions therein.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
2 K1359820
DECLARATION
I, the undersigned ArunthihanRamajeyanstudentof BScHonoursdegree inAerospace Engineering
herebydeclare thatthe projectworkpresentedinthisreportismyownworkand has beencarried
out underthe supervisionof DrHosseinMirzaii of KingstonUniversityLondon.
Thiswork hasnot beenpreviouslysubmittedtoanyotheruniversityforanyexamination.
Word count: 6853
Name: ArunthihanRamajeyan
StudentID: K1359820
Date: 25/04/2016
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
3 K1359820
ACKNOWLEDGEMENTS
Firstand foremost,Iwouldlike toexpressmysinceregratitude to mymodule supervisor,DrHossein
Mirzaii,whohas beenguidingme throughoutthisproject.Hisadvice andguidance made me give my
bestto complete thisproject.He sharedhisexpertisewithme,whichgave me abetter
understandingof the conceptandalso hisfriendlinessmade me enjoythisproject.Itisthe main
reasonwhichledme to finishthisprojectsuccessfullytothe bestof myability.
I wouldalsolike tothankthe lab technicians,Mr.MartinTheobald,Mr Dean WellsandMr. Dave
Haskell forguidingandhelpingme complete my3Dprintedcomponentsandforhelpingme
throughoutthe investmentcastingprocess. Iwouldliketoexpressmysincere gratitude tomyfamily
and mycolleague Mr.NirojanParanjothywhodidthe same projectwithme.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
4 K1359820
ABSTRACT
There are somany methodsof castingalloys,turbine bladesare manufacturedbyinvestmentcasting
methodor normallyaslost-wax method.The investmentcastingmethodwasdevelopedover5500
yearsago and can trace itsroots back to bothancientEgyptand China.Thisis the keymethodwhich
isusedpresentlyinAviationindustryformanufacturingthe gasturbine blades.Investmentcasting
methodismainlyusedbecause ithaswide range of advantages.Itformsthe componentwith
undercuts,canproduce a verysmoothsurface whichisformedwithoutapartingline inthe
componentandaccuracy. Thisdissertationlooksdetailedintothe theoretical andpractical side of
designingmethodusedwiththe aidof SolidWorks andinvestmentcastingmethod.
AIMS AND OBJECTIVES
The endmostaimof thisprojectisto DesignandManufacture Gas turbine blade
 Researchmethodsof casting
 Create the designof Gas turbine blade
 Manufacturingthe turbine blade usinginvestmentcastingmethod
 Researchmaterialsandtheireffectivenessonturbine blades
METHODOLOGY
The methodsthat I’mgoingto use to achieve myaimsandobjectivesare asfollows:
 Create a designof turbine blade asa tree designusingSolidWorks
 Create the 3D printedobjectusing3Dprinter.
 Create the final metal blade usinginvestmentcastingmethod
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
5 K1359820
Contents
DECLARATION .............................................................................................................................. 2
ACKNOWLEDGEMENTS ................................................................................................................. 3
ABSTRACT....................................................................................................................................4
AIMS AND OBJECTIVES.............................................................................................................. 4
METHODOLOGY........................................................................................................................ 4
1 INTRODUCTION ......................................................................................................................... 9
2 Gas Turbine engine.................................................................................................................. 10
2.1 Types of jet engines........................................................................................................... 12
2.1.1 Turbojet..................................................................................................................... 12
2.1.2 Turboprops................................................................................................................. 13
2.1.3 Turbofans................................................................................................................... 13
2.1.4 Turboshafts ................................................................................................................ 14
2.1.5 Ramjets...................................................................................................................... 15
2.2 Gas turbine design......................................................................................................... 15
2.2.1 Fans ........................................................................................................................... 16
2.2.2 Compressor................................................................................................................ 16
2.2.3 Combustion chamber.................................................................................................. 17
2.2.4 Turbine....................................................................................................................... 17
2.3 Gas Turbine blade ............................................................................................................. 19
2.4 Turbine Blade failure ......................................................................................................... 21
2.4.1 High cycle fatigue........................................................................................................ 21
2.4.2 Environmental attack.................................................................................................. 22
2.4.3 Creep damage............................................................................................................. 22
2.4.4 Erosion/Wear............................................................................................................. 22
2.5 Materials used .................................................................................................................. 23
2.6 Cooling system.................................................................................................................. 24
3. Methods of Casting............................................................................................................. 25
3.1.1 Sand casting................................................................................................................... 25
3.1.2 Die casting..................................................................................................................... 26
3.1.3 Shell Mould Casting........................................................................................................ 27
3.1.4 Lost foam casting............................................................................................................ 27
3.1.5 Investment Casting......................................................................................................... 28
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
6 K1359820
3.1.6 Cooling systems.............................................................................................................. 30
3.2 Designing Process ................................................................................................................. 30
3.3 SolidWorks Design....................................................................................................... 32
4. Manufacturing Process........................................................................................................ 34
4.2 Investment Casting Process ................................................................................................... 35
4.2.1 Silicon Mould making...................................................................................................... 35
4.2.2 Making the Wax model................................................................................................... 37
4.2.3 Ceramic Coating............................................................................................................. 39
5 CONCLUSION........................................................................................................................... 40
6 References .............................................................................................................................. 42
Figure 1 Newton's third law......................................................................................................... 10
Figure 2(Durham, 2012) .............................................................................................................. 11
Figure 3Turbojet engine.............................................................................................................. 12
Figure 4Turboprop...................................................................................................................... 13
Figure 5Turbofans....................................................................................................................... 14
Figure 6Turboshaft ..................................................................................................................... 14
Figure 7Ramjets.......................................................................................................................... 15
Figure 8Design............................................................................................................................ 15
Figure 9Compressor.................................................................................................................... 16
Figure 10Combustion chamber.................................................................................................... 17
Figure 11Turbine ........................................................................................................................ 18
Figure 12Impulse Turbines.......................................................................................................... 18
Figure 13Impulse and Reaction turbines ...................................................................................... 19
Figure 14Gas turbine blades........................................................................................................ 20
Figure 15HCF blade..................................................................................................................... 21
Figure 16Creep damage curve..................................................................................................... 22
Figure 17Sand casting................................................................................................................. 26
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
7 K1359820
Figure 18Die Casting................................................................................................................... 26
Figure 19Shell mould casting....................................................................................................... 27
Figure 20Lost Foam Casting......................................................................................................... 27
Figure 21Investment casting method........................................................................................... 29
Figure 22Turbine blade design..................................................................................................... 31
Figure 23Turbine blade aero foil design ....................................................................................... 31
Figure 24Turbine blade side view................................................................................................. 31
Figure 25Aerofoil view with the dimensions in mm....................................................................... 32
Figure 26Aerofoil blade twist angle 9˚.......................................................................................... 32
Figure 27Blade heights 1.76 in..................................................................................................... 32
Figure 28Blade view.................................................................................................................... 32
Figure 29Blade root.................................................................................................................... 33
Figure 30blade root side view...................................................................................................... 33
Figure 31Final blade views.......................................................................................................... 33
Figure 32Final blades with the tree.............................................................................................. 33
Figure 33UP BOX ........................................................................................................................ 34
Figure 34Removing off the Turbine blade..................................................................................... 35
Figure 35Turbine bladeswith the sheet ....................................................................................... 35
Figure 36Mould box.................................................................................................................... 35
Figure 37Silicon mould Cut into half............................................................................................. 36
Figure 38Breaking off the Mould box........................................................................................... 36
Figure 39Silicon settling .............................................................................................................. 36
Figure 40Pouring Silicon into the mould box................................................................................. 36
Figure 41Mixing silicon with curing agent..................................................................................... 36
Figure 42Assembly...................................................................................................................... 38
Figure 43Wax blades and tree..................................................................................................... 38
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
8 K1359820
Figure 44Wax blades................................................................................................................... 38
Figure 45Wax Tree model ........................................................................................................... 38
Figure 46Wax poured.................................................................................................................. 38
Figure 47ceramic coating left to dry............................................................................................. 39
Figure 48Ceramic first coating..................................................................................................... 39
Table 1Failure Severity................................................................................................................ 21
Table 2(Tantalum - element information, properties and uses, no date) ........................................ 23
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
9 K1359820
1 INTRODUCTION
Anyaircraft whichmovesthroughairismovedbythe force calledthrust.“Foreveryaction,there is
an equal andopposite reaction”accordingtoIsaac Newton’sthirdlaw of motion. Whenanytwo
objectsgetinterface witheachother,whetheritgetsdirectlyinteractedorat a distance,theyexert
forceseachother equally.
Anydevice whichconvertsheatenergyof fuel intomechanical energyisknownasengine orheat
engine.Engine iswidelyusedinautomobileindustries oran engine canbe evencalledasthe heart
of automobile.Tomake anaircraft move forward,there needtobe a pushingforce or thrustwhich
iscreatedby makingthe air accelerate betweenthe frontandthe backof the engine. Anydevice
whichconvertsheatenergyof fuel intomechanical energyisknownasengine orheatengine.Engine
iswidelyusedinautomobile industriesoranengine canbe evencalledasthe heartof automobile.
To make an aircraft move forward,there needtobe a pushingforce orthrust whichiscreatedby
makingthe air accelerate betweenthe frontandthe backof the engine.Itconvertsthe energyfrom
burningfuel bythree elementswhichithasinit. Theyare compressor,combustorandturbine.A gas
turbine cancreate thrustby acceleratingairormake electricity,turnpumpsandshippropellersby
drivinggenerators. (reserved,2016)
The turbine blade isa verycomplex shape whichconsistsof arootat the bottomof the blade.Ithas
an aerofoil shape whichextractsthe thermal energyfromthe hotexhaustgases.The rootof the
blade isattachedto a disc.There will be hundredsof bladesattachedinasingle disc,whichiscalled
a stage.There are several stagesineachsectionof the engine.(IMPRESSeducation:Circularmotion,
no date)
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
10 K1359820
2 Gas Turbine engine
As I indicatedabove inmyintroduction,“Foreveryaction,there isanequal andopposite reaction”.
To explainitwithanexample,asyousitina chair, yourbodyacts withone force on the chair, and
the chair reacts withanotherforce onyour body.Itis that “whenyousitin a chair,the force of
gravityisbalancedbythe force of the chairpushingup”(Newton’sThirdlaw of motion:Examplesof
the relationshipbetween twoforces- video&lessontranscript,2003).
BasicallyGasturbine enginesare usedfortwopurposes,firstforpowerproductionandsecondlyfor
generatingthrustforaircraft.Theyare very simple;theyhave three simplepartswhichare
Compressor,combustionareaandturbine.Compressorcompressesthe incomingairtohigh
pressure.Combustionareaiswhere the fuel andproduceshigh-pressure,high-velocitygas.Turbine
extractsthe energyfromthe high-pressure,high-velocitygasflowingfromthe combustionchamber.
To elaborate itbriefly, agasturbine engine movingforwardusesasimple principle.Justlike the
reactionforce producedbya balloon,the reactionforce producedbythe highspeedjetatthe tail of
the jetengine makesitmove forward.The higherthe speedof the jetthe greaterthe thrustforce.
The thrust force makesan aircraftmove forward.Such highspeedisachievedbyacombinationof
Figure 1 Newton's third law
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
11 K1359820
techniques.If youcanheatthe incomingairto a hightemperature,itwillexpandtremendouslyand
will create the high-velocityjet.Forthisprocess,acombustionchamberisused.The fuel isburntin
the combustionchamber.Effective combustionrequiresairtobe moderatelyhightemperatureand
pressure.Tobringthe air to thiscondition,asetof compressorstagesare used.The rotatingblades
of the compressoraddenergytothe fluidandits temperature andpressure rise toalevel suitable to
sustaincombustion.The compressorreceivesthe energyforthe rotationfromaturbine whichis
placedrightafterthe combustionchamber.The compressorandturbine are attachedto the same
shaft.The highenergyfluidthatleavesthe chambermakesthe turbine bladesturn.
The turbine bladeshave aspecial airfoil shape whichcreatesliftforce andmake themturn.Asthe
turbine absorbsenergyfromthe fluiditspressuredrops. Throughthese stepsareallyhothigh
speedairemittedthroughthe exitof the engine.(LearnEngineering,2015)
Figure 2(Durham, 2012)
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
12 K1359820
2.1 Types of jet engines
2.1.1 Turbojet
The term ‘turbojet’iscommonlyusedforanumberof enginessuchasturbojet,turboprop,turbofan
and turboshaft,because all of themuse acommonprinciple.Insimpleterms,asengine ejectsburnt
mixture backwardsaforwardforce is createdonthe engine of the aircraft.Inthiscase,greaterthe
backwardforce the greaterthe forwardforce. (Turbojetengines,2011)
The basic ideaof turbojetengine issimple.FirstAiristakenintothe frontof the engine and
compressedto3 to 12 times of its original pressure incompressor.Thenfuel isaddedtothe airin
the combustionchamberand burnedina combustionchambertoraise the temperature of the fluid
mixture toabout1,100˚F to 1,300˚F. The hot air ispassedthrougha turbine,whichdrivesthe
compressor. If the turbine andcompressorare efficientenough,the pressure atthe turbine willbe
nearlytwice the atmosphericpressure.Thispressurewhichisexcessissentthentothe nozzle to
produce a high-velocitygaswhichproducesthrust.Increase in thrustcanbe obtainedbyusinga
afterburner.Afterburnerisa secondchamberwhichispositionedafterthe nozzle.Thisincrease in
temperature iswill increase about40percentinthrust at take-off.
The turbojetisalsoknownas a reactionengine.Inareactionengine,The turbojetsucksairinand
squeezesorcompressesit.Thenthe gasesflow throughthe turbineandmake itspin.These gases
bounce back andshoot outof the rear of the exhaust, whichpushesthe plane forward. (Engines,no
date)
Figure 3Turbojet engine
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
13 K1359820
2.1.2 Turboprops
Turbopropenginesare usedinsome transportaircraftand small airliners.A turbopropengine hasa
propellerattachedinit.The hotgasesturn the turbine atthe back,and thisturns a shaftthat rotates
the propeller. The turbopropconsistsof acompressor,combustionchamber,andthe turbine like a
turbopropto run the turbine,Sothatthe turbine createspowertodrive the compressor.The
turboproppropulsionefficiency ishigherthancomparedwithaturbojetengine forspeedsbelow
500 mph.Recentturbopropengineshave lotsof bladeswithfewerdiameterstogive amore
efficientoperationathigherflightspeeds.Inaturbopropengine the bladesare scimitar-shapedwith
swept-backleadingedge inthe blade tips. (Engines,nodate)
2.1.3 Turbofans
A turbofanconsistsof a large fanat the frontside of the engine whichisusedtosuck inair. Normally
the air flowsaroundthe outside of the engine whichwill make itgive itmore thrustatlow speeds
and formakingit quitter.Ina turbofanonlysome airgoesintothe combustionchamber,the
remainderpassesthroughafan,low-pressure compressor,andisejecteddirectlymixedwiththe
gas-generatorexhausttoproduce a hotjet whereasall the airenteringthe intake passesthrough
the gas generator,whichismade upwiththe compressor,combustionchamberandturbine.It
Figure 4Turboprop
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
14 K1359820
achievesthisbyincreasingthe total air-massflow andreducingthe velocitywithinthe total energy
supplyasthe same. (Engines,nodate)
2.1.4 Turboshafts
Thisengine ismuchlike aturbopropsystem.Itprovidespowerforahelicopterwithoutdrivinga
propellerinit.Thisturbopropengineisdesignedsothathelicopterrotor speedisfree of the rotating
speedof the generatorandisnot dependentwithit.Evenwhenthe generatorisvariedtomodulate
the amountof powerreduced,the turboproppermitsthe rotorspeedtobe keptinthe same level.
(Engines,nodate)
Figure 5Turbofans
Figure 6Turboshaft
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
15 K1359820
2.1.5 Ramjets
The ramjetis the simplestjetengine whichhasnomovable partin it. Airenteringitiscompressedby
the movementof the vehicle.Ithasa longduct intowhichfuel isfedat a controlledrate.The fuel is
ignitedbythe incomingheatedcompressedair.A Ramjetwill onlystartworkabove a speedof 485
km/h.The Ramjetismore fuel efficientthanturbojetsandturbofansabove Mach3 makingthem
betterforuse on missiles. (Darling,nodate)
2.2 Gasturbinedesign
Figure 7Ramjets
Figure 8Design
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
16 K1359820
2.2.1 Fans
The fan inthe frontof the engine anditisa gas turbine whichdrawsair intothe engine;it
compressesthe bypassstreamtoproduce 80 percentof the engine’sthrust,andfeeds airtothe gas
turbine core. (reserved,2016a)
2.2.2 Compressor
The compressorisdrivenbythe turbine.Itrotatesat highspeed,addingenergytothe airflow and
compressingintoasmallerspace.Socompressingthe airincreasesthe pressureinside the engine.
The purpose of a compressoristo increase the pressure of the airinside the gasturbine engine.
Thenit sendsthe compressedairintothe combustionchamber. (reserved,2016a)
The compressorisassumedto containfourteenstagesof rotorblades andstatorvanes.Inan axial
flowcompressor,eachstage normallybooststhe pressurefromthe previousstage.A singlestage of
compressionconsistsof asetof rotorbladesattachedon a disk,followedbystatorvanesattached
to a stationaryring.
In general,the compressorrotorbladesconvertmechanical energyintogaseousenergy.
Figure 9Compressor
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
17 K1359820
2.2.3 Combustionchamber
The combustionchamberisthe area inside the enginewhere the fuel orairmixture iscompressed
and ignited. Itisnormallyformedonone side bythe shape castintothe cylinderhead,inthe other
side bythe top of the piston.The chamberisat its smallestdimensionwhenthe pistonisattop-
dead-centre.Andatthistime the fuel/airwillbe ina conditionwhere itisreadytobe ignited.
2.2.4 Turbine
There are fourstagesina turbine. The turbine convertsthe gaseousenergyof the burnedfuel/air
mixture outof the combustorintomechanical energytodrive the compressor,throughareduction
gear,the propeller.Itconvertsgaseousenergyintomechanical energybyexpandingthe hot,high-
pressure gasestoa lowertemperature andpressure.Eachstage consistsof stationaryvaneswhich
are followedbyrotatingblades.The vanesandbladesare airfoilsthatprovide forasmoothof the
gases.As the airstreamentersthe turbine fromthe combustionsection,itisacceleratedbythe
stator vanesinthe firststage.Thenthe stator vanesformthe convergentductsthatconvertthe
gaseousheatand pressure energyintohighervelocitygasflow.
Figure 10Combustion chamber
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
18 K1359820
As the highvelocitygasflowsacrossthe turbine blades,the gaseousenergyisconvertedto
mechanical energy.ATthisstage velocity,temperatureandpressure of the gasare compromisedto
rotate the turbine togenerate powerfromthe engine. (FUNDAMENTALSOFGASTURBINE ENGINES,
2010)
There are twobasictypesof steamturbines,impulseturbinesandreactionturbines,inwhichhe
bladesare designedtocontrol the speed,pressure anddirectionof the steamasitpassesthrough
the turbine.
2.2.4.1 ImpulseTurbines
The steam jetsare keptat the turbine’sbucketshapedrotorbladesdirectlywhere the pressure
exertedbythe jetscausesthe rotorto rotate andthe velocityof the
streamto reduce as itimpartsits kineticenergytothe blades. But
the blades change the directionof flowof the steamhoweverits
pressure remainsthe same asitpassesthroughthe rotor bladesas
the gap betweenthe bladesare constant.Therefore Impulse
turbinesare knownasconstant pressure turbines.Sothe nextseries
Figure 11Turbine
Figure 12Impulse Turbines
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
19 K1359820
of fixedbladesreversesthe directionof the steambefore itpassestothe secondrow of moving
blades.
2.2.4.2 ReactionTurbines
The rotor bladesof the reactionturbine are more like aerofoils;theyare arranged where the cross
sectionin-betweenthe chambersformed are fixedbladeswhichreducesthe inletside of the blades.
The chambersbetweenbladesformnozzles sothatasthe steamprogressesthroughthe chambers,
itsvelocityincreasesandthe pressure decreases.Alsothe pressure decreasesinboththe fixedand
movingblades.Soasthe steamenters ina jetinbetweenthe rotorblades, the steamcreatesa
reactive force onthe bladeswhichinturncreatesthe turningmomentonthe turbine rotor justlike
ina steamengine. (Shukla,2013)
2.3 Gas Turbine blade
Turbine blade isthe rotatingcomponentwithinthe turbine whichgiveschallengestothe designand
manufacturingcommunities. Itisan individual componentwhichmakesthe turbinesectionof agas
turbine engine.Bladesare responsible forextractingenergyfromthe hightemperature,high
Figure 13Impulse and Reaction turbines
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
20 K1359820
pressure gasproducedbythe combustor.Theyare exposed tomore toughenvironmentsinagas
turbine.
Therefore turbine bladesare carefullydesignedtoresistall these toughconditionsandmake upwith
the suitable material whichcanresistall these conditions.There are some more methodsdone to
withstandall these problemssuchascoolingsystem, boundarylayer,thermal bearingcoatingsand
internal airchannels. The Gasturbine blade isdesignedinanaerofoil designandreformedinsucha
waywhere itprovidesequal space betweenadjacentblades. The areaof the cross-sectionof each
blade isfixedbythe allowedstressinthe material usedandbythe size of the holeswhichisrequired
for blade coolingpurpose.The trailingedge of the blade isdesignedthininconsideringpreventingit
fromblade crackingwhichmay occur due to the change intemperature while the engine works.
One of the mostimportant thingsconsideredingasturbine blade isattachingthe blade tothe
turbine discbecause the stressinthe discaroundthe fixingandinthe blade root has a key
behaviouronthe limitingrimspeed.
Thisdesignof fixingthe blade tothe discwhichisusedinmostof the gas turbine enginespresently
isknownas ‘fir-tree’fixing,whereasinpastthe blade isfixedbythe de Laval bulbrootingfixing. This
‘fit-free’ensuresthatthe loadingonthe blade isshared byall the serrations.The blade isfree inthe
serrationswhenthe turbine isstill andis rigidinthe rootby centrifugal loadingwhenthe turbine is
rotating.A shroudisfittedatthe tip of the blade anda small
segmentismade upat the tipof the blades whichformsa
tangential ringaroundthe blade whichisformed toreduce the loss
of efficiencythroughgasleakage acrossthe blade tips.(166837
EB161 rolls royce the jet engine fifth edition gazoturbinnyy
dviga, no date)
Figure 14Gas turbine blades
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
21 K1359820
2.4 Turbine Blade failure
Failure meansthata thingdoesnotmeetits desirable objective;inthiscase a turbine blade failure
meansthat it’snolongersuitable foruse butcan be usedtill the limitedamountof time givenforit
to be used.
2.4.1 Highcyclefatigue
Highcycle fatigue isthe mainproblemof a turbine blade it isgenerallycausedaerodynamic
excitationsandby self-excitedvibrationandflutterwhichisbecause of the repeatedcyclingof the
loadon a structural member.HCFdamage occurs whenthe stresslevelsare above the fatigue
strength.Itoccurs aftera numberof loadcyclesthat resultsincracking.The crack will thengradually
increase throughthe material witheachstresscycle.
Table 1Failure Severity
Figure 15HCF blade
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
22 K1359820
2.4.2 Environmental attack
The environmentshouldbe consideredinturbineblade failure astheyare exposedtobe damaged
fromoxidation,corrosionandsulphidation. Itdoesnotleadthe blade toa enormousfailure butit
has a role init whichcan slowlydamage the blade withtime.
2.4.3 Creepdamage
Thisdamage occurs whenthe blade isoperatedovertimeunderhighstressesandtemperature.Asa
roughrule,a 15° increase inblade metal temperaturecutscreeplife by50 percent.Thisshowsthe
importance of effective cooling. ([CSL STYLE ERROR: reference with no printed form.])
2.4.4 Erosion/Wear
Thiscause catastrophicblade failure rarely,butitcontributestosome otherblade failureswhichcan
cause a blade replacement.Inadditiontothe primarydamage causedbyerosion,areductioninthe
surge margincan occur if the tipsof the bladesgetseverelyeroded.
Figure 16Creep damage curve
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
23 K1359820
2.5 Materials used
Moderngas turbineshave the mostadvancedtechnologyinall aspects,Turbine bladesare exposed
to the extreme operatingcondition. Itisexposedtoaround1400°C – 1500°C, highpressure,high
rotational speed,vibration,small circulationareaandsoon.
So to overcome it,Gasturbine bladesare made usingadvancedmaterialsandsuperalloysthat
containsupto ten significantelements,itconsistsof rectangularlocksof stone stackedinaregular
array withnarrow seriesof cementtostickthemtogether.Presentlytantalumisusedreplacing
intermetallicformof titanium whichhasbeenusedinthe past. (NEW TECHNOLOGY USED IN
GAS TURBINE BLADE MATERIALS, no date)
Tantalumis an incrediblyuseful metal with uniquepropertiesthatmake itthe choice fora range of
placesto be usedwhere strength,durability,corrosion,resistance,ductilityandahighmeltingpoint
are critical. (Tantalum (Ta), 2015).
Table 2(Tantalum - element information, properties and uses, no date)
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
24 K1359820
Since the 950’s, 250°C of allowablemetal temperatureshasbeenyieldedfromwroughtto
conventionallycastto directionallysolidifiedtosinglecrystal turbine blades.Inthe otherside,
coolingdevelopmentshave nearlydoubledthe temperature whichentersthe turbine.
If metallurgical developmentcanbe exploitedbyreducingthe coolingairquantitythisisa
potentiallyimportantperformance enhancer.
2.6 Cooling system
Turbine bladespresentlyfocustoonblade coolingsystemwhichisimportanttoreduce the blade
metal temperature toacceptable levelsforthe materialsincreasingthermalcapabilityof the engine.
Turbine blade coolingisclassifiedintotwosectionssuchasinternal coolingsystemandexternal
coolingsystem.
Internal blade cooling:It iswhere the heatis removedbya variation of convectionand
impingementcoolingconfigurations,wherehighvelocity airflowsandhitsthe innersurface of the
turbine blades.
External blade cooling:It is where coldairisinjectedthroughthe coolingholesof the external
surface of the turbine blade surface tocreate a thinfilmcoolinglayer.
Howeverinbothcasestheyare implementedtokeepthe entire bladecool enoughtoensure that
the hightemperature doesnotdamage the blades.There are more sub-partsinsideInternalcooling
systemandExternal coolingsystemwhichisnotnecessarytoexplaininthe reportasit isnot done in
throughoutproject.Thisisa general brief of how coolingsystemsworkandthe purpose of it. (2016,
2014)
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
25 K1359820
3. Methods of Casting
Castingisa manufacturingwhichismostlyusedtomake more complex methods.Itisaprocessin
whichnormallyliquidmaterial ispouredintoamould,whichhasahollow cavityof the desired
shape inwhichwe expectoursolidfinishedmaterial shouldbe.Thenthe solidifiedpartisejectedor
brokenoutof the mouldto complete the casting process.Inmyproject,Ihave usedinvestment
castingmethodto manufacture the gasturbine blade.Sointhisreportas ittakesmore time,Ihave
explainedthe typesof castingasan overview summarisingand concentratedmore onInvestment
castingmethod. Basictypesof casting:Sand casting,Die casting,Shell mould casting,lost-foam
casting,and investmentcasting.
3.1.1 Sand casting
It isa metal castingprocesscharacterisedbyusingsandasthe mouldmaterial. Inadditiontothe
sand,clay ismixed withthe sand.The mixture ismoistenedwithwater,sometimeswithsome other
substancestodevelopstrengthandplasticityof the claytomake the combinationsuitable for
moulding. The word‘sandcasting’isreferredtoanobjectproducedbythe sand castingprocess.
Over70% of all metal castingsare producedbya sand castingprocess.Thiscastingmethodis
relativelycheapandobstinate evenforsteel foundryuse.
Basic Process:
 Place a patternin sandto create a mould.
 Incorporate the patternand sandin a gatingsystem.
 Remove the pattern
 Fill the mouldcavitywithmoltenmetal
 Allowthe metal tocool
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
26 K1359820
 Breakaway the sand mouldandremove the casting.
3.1.2 Die casting
It isa meal castingprocesswhichforcesmoltenmetal underhighpressure intoamouldcavity.The
mouldcavityismade usingtwohardenedsteel dieswhichworksmore similarlike aninjection
mouldduringthe process.
Figure 17Sand casting
Figure 18Die Casting
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
27 K1359820
3.1.3 Shell Mould Casting
It isa metal castingprocessinmanufacturingindustryinwhichthe mouldisathinhardenedshellof
sand andthermosettingresinbinder,withsome other material.
3.1.4 Lost foam casting
It isa type of evaporative-patterncastingwhichissimilartoinvestmentcastingexceptinthisfoamis
usedforthe patterninsteadof wax.
Figure 19Shell mould casting
Figure 20Lost Foam Casting
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
28 K1359820
3.1.5 Investment Casting
Investmentcastingwhichisalsoknownaslostwasinvestmentcasting,isaprecisioncastingprocess
usedto create more complex metal partsfromalmostanyalloys.The use of thiscastingmethod
acceleratedin1940s as a resultof demandfor specialisedtools.FollowingWorldWarII,the
technique expandedintomanyindustrial andcommercial applications.
The term “investment”referstoceramicmaterialsthatare usedto buildahollow shell intowhich
moltenmetal ispouredintomake castings. (InvestmentcastingFAQs,nodate)
Requirementsforinvestmentcasting:
 Metal die
 Wax
 Ceramic slurry
 Furnace
 Molten metal
Advantages:
 Reliability– It providesreliableprocesscontrolsand
repeatabilitythatare maintainedfromcastingtocasting.
 Tolerances– It holdstolerancesof ±.005˚
 AmortizationLowers toolingcost – It is lowerthanother
castingtoolingcosts.
 Better for the Environment – It is producedfrom9 wax
patternswhichinmostcases can be reclaimedandused
again.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
29 K1359820
 Intricate Design– Can easilyincorporate featuressuchas
logos,productID’s/numbers,andlettersintotheir
component. (Advantagesof investmentcastingvs.Sand
casting,die casting,nodate)
Process:
 Patterncreation – The wax patternsare typically injected moulded into a metal die and are
formed as one piece.
 Mould creation – This “pattern tree” is dipped into slurry of fine ceramic particles, coated
with more coarse particles, and dried to form a ceramic shell around the patterns.
 Pouring – The mould is pre-heated in a furnace to approximately 1000˚C and the molten
metal is poured from a ladle into the gating system of the mould, filling the mould cavity.
 Cooling– Afterthe mouldisfilled,the moltenmetal is allowed to cool and solidify in to the
shape of the final casting.
 Castingremoval – Afterthe moltenmetal hascooled,the mouldis broken and the casting is
removed.
 Finishing – Heat treatment or grinding or sand blasting the part at the gates to harden the
final part. (CustomPartNet, 2009)
Figure 21Investment casting method
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
30 K1359820
3.1.6 Cooling systems
Turbine bladeslifetime isreducedasitis exposedtoveryhottemperatures.Therefore,turbine
coolingisnecessarytoincrease the bladesworkingtime.Due tothe contributionandthe
developmentof turbine coolingsystemsthe turbinehasbeenlastedlong. Turbine bladecoolingis
classifiedintotwosections;theyare internal coolingsystemandexternalcoolingsystem.
Internal coolingsystem:It is where the heatisremovedbya variationof convectionand
impingementcoolingconfigurations,wherevelocityairflowsandhitsthe innersurface of the
turbine blades.
External Coolingsystem:It iswhere the coldair isinjectedthroughthe filmcoolingholeswhichare
on the external blade surface tocreate athinfilmcoolinglayer.
Internal coolingsystemandexternal coolingsystemare implementedtothe turbine blade tokeep
the entire blade cool andensure thattemperature gradientswithinthe blade are kepttoan
acceptable level. (2016,2014)
3.2 Designing Process
The turbine blade isan aero foil shape andwhendesigningaturbine blade,eachstage of the blade
has differentdimensions.FirstIcouldn’tfindarealisticdesignof aturbine blade,asthisisa design
and manufacturingproject,struggledinfindingthe realisticdimension.Discussedwiththe lab
techniciansandfinallyfoundthe actual blade whichisusedinthe Universitylab.Gotthe dimensions
of the blade usedmore accuratelywithadigital Verniercalliper.Beloware the Designof the Turbine
blade used.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
31 K1359820
Figure 23Turbine blade aero foil design Figure 22Turbine blade design
Figure 24Turbine blade side view
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
32 K1359820
3.3 SolidWorks Design
The SolidWorkssoftware isa3D mechanical design,whichallowstodesignanythree Dimensional
objects.Belowisthe blade androotdesignwhichwasdesignedusingthe SolidWorkssoftware.
Figure 26Aerofoil blade twist angle 9˚
Figure 25Aerofoil view with the dimensions in
mm
Figure 28Blade view Figure 27Blade heights 1.76 in
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
33 K1359820
Figure 29Blade root Figure 30blade root side view
Figure 31Final blade views
Figure 32Final blades with the tree
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
34 K1359820
4. Manufacturing Process
4.1 Start of manufacturing process – 3D printing
My final designof the turbine bladeisconfirmedbymysupervisorandwasreadyto the 3D printing
process. The 3D printerdoesthe 3D printingprocedure automaticallywhenwe importthe CAD
designtoit.The universityprovidedme the 3D printer,inwhichthe masterpiece 3Dprintedmodel is
printedoutas an ABSplasticturbine blade. The 3D printerwhichprintedmyblade isknownasUP
BOX. UP BOX specifications:
 Material used– ABS plastic
 Resolution– 100 microns
Dimension of the UP BOX:
 Width– 255 mm
 Height– 205 mm
 Depth – 205 mm
To printit out the firststepI didwas,savedthe file inSTL formatand sentitto the labtechnician
Mr. Dave Haskell.Then Openedthe CatalystEXsoftware andmodifiedthe dimensionsinthe
software tokeepitwithinthe machine requirements.Selectedprintpropertiesandadjusted
resolutionandorientationasthe labtechnicianinstructedme todo.The machine calculated
howmuch material will be usedandthe estimateddurationof the printing.The durationof my
blade tobe printedtook10 hours.Set the machine toprint, the machine printedmyblade all
nightand I tookit outthe followingdayinthe morning. The 3D printedturbine blade wasfixed
to the ABS plasticsheetinsidethe UPBOX,removed the blade sheetandunwantedmaterials
usingpliers,shears andascraper off the blade.
Figure 33UP BOX
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
35 K1359820
4.2 Investment Casting Process
4.2.1 Silicon Mould making
The firststepto start off made a mouldbox withthe suitable dimensionsof the turbine blade to
attach it fixedinside the bladewiththe aidof wires.The box must wideron eitherside bythe same
lengthof the blade andthe heightof the blade shouldbe three timesthe heightof the blade.
Length 136mm
Width 103mm
Height 100mm
Table 37 Dimensions
Aftermakingthe mouldbox,the blade mustbe keptinside the bladestable sothatitstaysstill when
pouringthe siliconinsidethe box.Todothis,Drilledsome holesinthe
blade andin the root of the blade.Kept the blade usingcopperwires
inside the blade andheldathickmetal at the bottomof the root sothat
wax will be pouredinitand the copperwiresare usedso that afterthe
Figure 35Turbine blades with the
sheet Figure 34Removing off the
Turbine blade
Figure 36Mould box
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
36 K1359820
siliconmouldiscomplete,the coppercanbe removedandthe copperholeswill be usedasair
pocketsto suckout air whenpouringthe wax.
The turbine blade istapedmakinga partingline before itwaskeptinsidethe mouldbox sothat
whencuttingthe siliconmould,the partinglinewill make iteasytocut the siliconblade.
Calculated the volume of the silicon to be poured in to the mould box
Length × Width × Height
136 mm × 103 mm × 100 mm
Volume =1400800 mm3
Volume =1400.8 cubic centimetres
Withthe helpof the labtechnician,mixedcuringagentwiththe Silicon.Amountof curingagent
mixedwas10% of the siliconwhichis 140.08 cubic centimetresandmixeditwiththe hardenerto
allowitto settle.Aftermixingthem,keptitinthe vacuumchamberto remove anyair inside with
settingupit to -1 bar pressure.Afterit,pouredthe siliconintothe box andkeptitinthe vacuum
chamberagainso that it removes anymore airtrappedin it.The mouldbox withthe siliconiskept
inside the vacuumchamberovernighttosettle andtakenoutthe followingdaymorning.
Nextdaymorningremoved the mouldbox off afterthe siliconmixturesettledovernight. Cutthe
siliconmouldintohalf,anditisveryimportanttocut the siliconmouldandwiththe splittingline
where the tape wasput. Sothat the mould canbe easilyopenedandclosedforwax pouring.
Figure 41Mixing
silicon with curing
agent
Figure 40Pouring
Silicon into the
mould box
Figure 39Silicon
settling
Figure 38Breaking
off the Mould box
Figure 37Silicon
mould Cut into
half
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
37 K1359820
4.2.2 Making the Wax model
Aftercutting,tookoutthe ABSplastic3D printedblade andtree designout,sprayedmouldrelease
inboth the siliconmouldwhere the wax blade the tree designsiliconmouldsticks.Sprayedmould
release inboththe siliconmouldwhere the wax blade sticksinandstapledbothtogethertightlyso
that the wax blade isstable inside the wax mouldandtapedittightly.Putthe topof the moulds with
tape so that the excess moltenwax doesnotoverflow.
In the afternoon,afterkeepingthe mouldinthe ovenforcouple of hourswiththe temperature of
30˚C to be warm and recycledwax whichwaskeptina separate ovenat100˚C to be melt.Poured
wax in the mouldswiththe helpof labtechnicianinthe hole of where athickmetal wasplacedas in
the mouldmakingprocessabove.Usedgravitymethodtopourthe wax intothe mould as the lab
techniciantoldme inpastyears it isthe waytheywere beingdoinginthismethod.Keptthe mould
so that the wax to be cooledand settledforthree hoursinthe mouldproperly.
Safety precautions:
 Lab coat
 Safety boots
 Pair of gloves
 Safety goggles
Afterthree hours,Separatedthe mouldoff andtookthe wax blade andtree designout.The wax
tree designwasa successinthe firstpouringasthe wax blade hassome airbubblesinit.It is
because the airrisesdidnot release the airoutproperly.Followingdaymorning,made the moulds
readyfor the secondpouringasin the firstprocessmentionedabovebutwithmakingthe airrising
holesmore clearsothat the blade doesnotgetany air bubblesinit.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
38 K1359820
Pouredwax inthe moulds.Sawthe air risesfilledwiththe wax properlyinthe secondpouring.After
keepingthe blade tocool foranothercouple of hours, separatedthe mouldsoff andtookoutthe
wax models.Thistime,blade wasnotupto the desiredlevel.Discussedwiththe labtechnician
aboutthe problemandcame to a conclusionof pre-heatingthe siliconmouldat35˚C warm so that
the wax can flowthroughall the complex parts. Afterkeepingittocool foranothercouple of hours,
separatedthe wax model off the mould.Itstill didn’tcome tothe desiredlevel.Thenrealisedthe
bladeshassome complex partsinwhichwax can’t flow throughthe gravitymethodof pouring. Did
sevenpouringof wax andfourof the blades were goodenoughtoprogresswiththe nextprocessas
time wasa probleminthisprocess.Itneedsquite more patience inthisprocesstogetthe desired
level of outcome. Startedassemblingprocess,attachedthe wax turbinebladestothe tree design
usinghotgun. Usedhot glue gunto attach two turbine bladesinatree.
Figure 46Wax
poured
Figure 45Wax Tree
model
Figure 44Wax blades Figure 43Wax blades and
tree
Figure 42Assembly
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
39 K1359820
4.2.3 Ceramic Coating
This process consists of three steps which is coating, stuccoing and hardening. It is a
repeated process in which the wax model is dipped in the ceramic. The first step of ceramic
coating is to get the amount of ceramic which is going to be used in the tree design. Used
340 ml of ceramic material with 470 ml of binder and stirred together.
The initial idea is to coat the turbine blades for about three to four layers with the time
interval of forty to forty five minutes with the ceramic mixture.
Future works to be done:
 Complete the wax coating
 Burnout/ De-Wax
 Pour molten metal and Break the Ceramic Coating
Figure 49Ceramic first coating Figure 48ceramic coating left
to dry
Figure 47 Ceramic
coated blade
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
40 K1359820
5 CONCLUSION
The gas turbine blade isa unique componentwithanaerofoil designwhichundergoes more tough
environmentssuchashightemperaturesandpressures,whereasexposedtoapproximately1500
degree C. The turbine blade experiences majorfailureslike creepandfatigue failureswhichisdue to
highdynamicstressescausedbyvibrationandresonance withinthe operatingrange.These failures
leadto the endof the life of blade aswell.Toovercome this,Engineersworkhardtopreventthese
failure problemsby implementingcoolingsystemsandmanufacturingthe bladesinmetallicalloys,
such as nickel basedalloys,whichhashighmeltingpoint,toughnessandlightweight.
The turbine blade ismanufacturedusinginvestmentcastingmethod,whichisaprocessthat needs
more patience.Thisprocessisa verylengthyprocess,beingafuture engineerthisprocessgave alot
of experience inpatience andatthe same time learnedhow tomanage time withwork.Thisprocess
alsogave quite muchexperienceinworkingasan engineerwithatechnicianinthe lab.
In thisthe author of thisreportlikestoshare the successandproblemsfacedinthisproject.Tostart
off with,Designingthe blade wasthe secondsteptothisprojectinwhichbackgroundresearch
playedamajor role forthe authoras thisis the firstindividual projectexperienced. Fordesigningthe
turbine blade,dimensionswere needed.Itwasone of the biggestchallengesfacedasall the turbine
blade manufacturingcompaniesdidnothelptogive the dimensions.Mailedandtriedtocontact
more than tenmanufacturingcompanies,still notevenasingle companyrepliednorgave their
blade dimensions.Asthe projecthadalimitedamountof time tomanufacture the turbine blade,
starteddesigningthe blade withanappropriate designchose andwithsome assumptions.
At the middle of the designingprocess,MrDave Haskell,labtechnicianfoundaturbine blade and
gave as thisprojectwas alreadybeendiscussedwithhim.Thentookthe dimensionsof the turbine
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
41 K1359820
blade anddesignedthe blade withall accurate dimensionsandgotapprovedbythe Supervisorfor
the designcreatedusingSolidWorks.
Once the designisdone,tookthe blade designtothe labtechnicianasit wasalreadybeendiscussed
withthemformakingthis project.Unfortunately,due torepairin3D printerittookquite a couple of
weekstogetthrough3D printingprocess.Asthe 3D printingmachine startedworking,startedthe
manufacturingprocess.The labtechnicianswerebusy because mostof the studentsusedlabfor
theirfinal projectsandthe techniciansgave time forthisprojectas3 days ina weekwhich wasnot
enoughtofinishthisprojectassome of the wax modelswere failure. Labtechnician,MrDave
Haskell alsotoldthatthismanufacturingprocesstakesonlytwotothree weekstobe finishedbut
thenwhenmethimtwomonthsago but inthe endtheywere all busy. The factor whichaffectedthis
projectalsoincludesnotplanningproperlyasthe supervisoradvised.Thisprojectcouldnotbe
finishedontime includesthe reasonthatitwas noteasyas itwas thoughtto be.
Future works to be done:
It isthe simplestparttobe done comparingthiswhole projectwhichcanbe done inthe following
week.Asmentionedabove withsomelabissuesthe processtooksome more time thanthe
expecteddate of deliverable.Two stepsawayfromfinishingthisproject,theyare finishingthe shell
formingwithceramicandmetal model making.
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
42 K1359820
6 References
166837 EB161 rollsroyce the jetengine fifthedition gazoturbinnyydviga(nodate) Available at:
http://airspot.ru/book/file/485/166837_EB161_rolls_royce_the_jet_engine_fifth_edition_gazoturbi
nnyy_dviga.pdf (Accessed:23April 2016).
Advantagesof investmentcastingvs.Sandcasting,die casting(nodate) Availableat:
http://www.thompsoninvestmentcastings.com/advantages-of-investment-casting.html(Accessed:
23 April 2016).
CFMInternational (2012) How doesa CFM56-7B work ? Availableat:
https://www.youtube.com/watch?v=KjYw0GdRpm0(Accessed:21April 2016).
CustomPartNet(2009) Investmentcasting.Available at:
http://www.custompartnet.com/wu/investment-casting(Accessed:24 April 2016).
Darling,D. (nodate) Ramjet.Available at:http://www.daviddarling.info/encyclopedia/R/ramjet.html
(Accessed:22 April 2016).
Durham,P. (2012) THE GASTURBINE ENGINE.Availableat:
http://www.123charlie.com/Chapter_14/Chap14Page002.htm(Accessed:21 April 2016).
Engines(nodate) Available at:https://www.grc.nasa.gov/www/k-
12/UEET/StudentSite/engines.html (Accessed:21April 2016).
FUNDAMENTALSOF GAS TURBINE ENGINES(2010) Available at:http://www.cast-
safety.org/pdf/3_engine_fundamentals.pdf(Accessed:22April 2016).
IMPRESS education:Circularmotion(nodate) Available at:
http://www.spaceflight.esa.int/impress/text/education/Circular%20Motion/Turbine_Blades.html
(Accessed:21 April 2016).
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
43 K1359820
InvestmentcastingFAQs(nodate) Available at:
http://www.afsinc.org/content.cfm?ItemNumber=6904 (Accessed:24April 2016).
INVESTMENTCASTINGS(nodate) Availableat:http://bimac.com/assets/pdfs/investment-casting-
process.pdf (Accessed:23April 2016).
Learn Engineering(2015) Jet engine,how itworks?Available at:
https://www.youtube.com/watch?v=KjiUUJdPGX0(Accessed:21 April 2016).
NEW TECHNOLOGY USED IN GAS TURBINE BLADE MATERIALS (nodate) Available at:
https://webcache.googleusercontent.com/search?q=cache:J-
Xp0gB5tr4J:https://dialnet.unirioja.es/descarga/articulo/4792527.pdf+&cd=3&hl=en&ct=clnk&gl=uk
(Accessed:23 April 2016).
Newton’sThirdlawof motion:Examplesof the relationshipbetweenTwoforces - video&lesson
transcript(2003) Available at:http://study.com/academy/lesson/newtons-third-law-of-motion-
examples-of-the-relationship-between-two-forces.html (Accessed:20April 2016).
reserved,A.rights(2016a) Compressors.Available at:http://www.rolls-royce.com/about/our-
technology/gas-turbine-technology/compressors.aspx (Accessed:22 April 2016).
reserved,A.rights(2016b) Fans. Availableat:http://www.rolls-royce.com/about/our-
technology/gas-turbine-technology/fans.aspx (Accessed:22 April 2016).
reserved,A.rights(2016c) Gas turbine technology.Availableat:http://www.rolls-
royce.com/about/our-technology/gas-turbine-technology.aspx(Accessed:21 April 2016).
reserved,A.rights(2016d) Turbines.Available at:http://www.rolls-royce.com/about/our-
technology/gas-turbine-technology/turbines.aspx (Accessed:21April 2016).
DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN
44 K1359820
Shukla,V.(2013) Instrumentationengineering.Availableat:
http://www.instrumentationengineers.org/2013/06/working-principle-of-impulse-turbines.html
(Accessed:22 April 2016).
Tantalum- elementinformation,propertiesanduses(nodate) Available at:
http://www.rsc.org/periodic-table/element/73/tantalum(Accessed:23April 2016).
Tantalum(Ta) (2015) Available at:http://www.elitematerial.co.uk/special-metals/tantalum-ta
(Accessed:23 April 2016).
Turbojetengines(2011) Availableat:http://aviationknowledge.wikidot.com/aviation:jet-aircraft
(Accessed:21 April 2016).
(NoDate) Available at:http://turbolab.tamu.edu/proc/turboproc/T27/Vol27015.pdf (Accessed:23
April 2016).
2016, E. (2014) Turbine blade cooling.Availableat:http://gtt.epfl.ch/page-63563-fr.html (Accessed:
25 April 2016).

More Related Content

Viewers also liked

B.H.E.L., Haridwar Summer Training Report
B.H.E.L., Haridwar Summer Training ReportB.H.E.L., Haridwar Summer Training Report
B.H.E.L., Haridwar Summer Training ReportAbhishek Kumar
 
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...IJMER
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis IJMER
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERGopi Chand
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINESuchit Moon
 
Construction and manufacturing of steam turbine
Construction and manufacturing of steam turbineConstruction and manufacturing of steam turbine
Construction and manufacturing of steam turbineHome
 
Simulation of gas turbine blade for enhancement of efficiency of gas turbine...
Simulation of gas turbine blade for enhancement of efficiency of  gas turbine...Simulation of gas turbine blade for enhancement of efficiency of  gas turbine...
Simulation of gas turbine blade for enhancement of efficiency of gas turbine...IJMER
 
Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1Zaib Amjad
 
Turbine manufacturing process
Turbine manufacturing processTurbine manufacturing process
Turbine manufacturing processphysics101
 
Bhel steam turbine manufacturing
Bhel steam turbine manufacturingBhel steam turbine manufacturing
Bhel steam turbine manufacturingHome
 

Viewers also liked (11)

B.H.E.L., Haridwar Summer Training Report
B.H.E.L., Haridwar Summer Training ReportB.H.E.L., Haridwar Summer Training Report
B.H.E.L., Haridwar Summer Training Report
 
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...
CFD Simulation on Gas turbine blade and Effect of Hole Shape on leading edge ...
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis
 
DESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZERDESIGN OF AIR PRE HEATER AND ECONOMIZER
DESIGN OF AIR PRE HEATER AND ECONOMIZER
 
VERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINEVERTICAL AXIS WIND TURBINE
VERTICAL AXIS WIND TURBINE
 
Construction and manufacturing of steam turbine
Construction and manufacturing of steam turbineConstruction and manufacturing of steam turbine
Construction and manufacturing of steam turbine
 
Simulation of gas turbine blade for enhancement of efficiency of gas turbine...
Simulation of gas turbine blade for enhancement of efficiency of  gas turbine...Simulation of gas turbine blade for enhancement of efficiency of  gas turbine...
Simulation of gas turbine blade for enhancement of efficiency of gas turbine...
 
Turbine engine 1
Turbine engine 1Turbine engine 1
Turbine engine 1
 
Trent 1000 presentation
Trent 1000 presentationTrent 1000 presentation
Trent 1000 presentation
 
Turbine manufacturing process
Turbine manufacturing processTurbine manufacturing process
Turbine manufacturing process
 
Bhel steam turbine manufacturing
Bhel steam turbine manufacturingBhel steam turbine manufacturing
Bhel steam turbine manufacturing
 

Similar to individual project dissertation

Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesAnurag Jha
 
Continuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingContinuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingM. Ahmad
 
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerThesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerMd Anzar Aman
 
Study and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerStudy and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerArunMalanthara
 
Gagan nir s103217540 capston_project_presentation
Gagan nir s103217540 capston_project_presentationGagan nir s103217540 capston_project_presentation
Gagan nir s103217540 capston_project_presentationGagan Nir
 
DESIGN AND FABRICATION OF A POWER SCISSOR JACK
DESIGN AND FABRICATION OF A POWER SCISSOR JACKDESIGN AND FABRICATION OF A POWER SCISSOR JACK
DESIGN AND FABRICATION OF A POWER SCISSOR JACKsasank babu
 
project-fum-final-fume-extractor-for-cnc-machine.pdf
project-fum-final-fume-extractor-for-cnc-machine.pdfproject-fum-final-fume-extractor-for-cnc-machine.pdf
project-fum-final-fume-extractor-for-cnc-machine.pdfRakshithMSGowda
 
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...Denny John
 
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...Shubham Dhaneshree
 
Design and fabrication of gearbox with inboard braking of an all terrain vehicle
Design and fabrication of gearbox with inboard braking of an all terrain vehicleDesign and fabrication of gearbox with inboard braking of an all terrain vehicle
Design and fabrication of gearbox with inboard braking of an all terrain vehicleabdul mohammad
 
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEDESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEAnurag Jha
 
13mmcc23 akash
13mmcc23  akash13mmcc23  akash
13mmcc23 akashAkash Vyas
 
Design of a suspension for a formula student race car
Design of a suspension for a formula student race carDesign of a suspension for a formula student race car
Design of a suspension for a formula student race carCaoKai3
 

Similar to individual project dissertation (20)

Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast mines
 
final review
final reviewfinal review
final review
 
HDPEnanocomposite
HDPEnanocompositeHDPEnanocomposite
HDPEnanocomposite
 
Vrb final year Ver5
Vrb final year Ver5Vrb final year Ver5
Vrb final year Ver5
 
Continuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingContinuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction Welding
 
project-i-green-building.pdf
project-i-green-building.pdfproject-i-green-building.pdf
project-i-green-building.pdf
 
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike SilencerThesis Report on Power Saving From Two -Wheeler Bike Silencer
Thesis Report on Power Saving From Two -Wheeler Bike Silencer
 
Study and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boilerStudy and Analysis of Tube Failure in Water Tube boiler
Study and Analysis of Tube Failure in Water Tube boiler
 
Gagan nir s103217540 capston_project_presentation
Gagan nir s103217540 capston_project_presentationGagan nir s103217540 capston_project_presentation
Gagan nir s103217540 capston_project_presentation
 
1321317174_3
1321317174_31321317174_3
1321317174_3
 
DESIGN AND FABRICATION OF A POWER SCISSOR JACK
DESIGN AND FABRICATION OF A POWER SCISSOR JACKDESIGN AND FABRICATION OF A POWER SCISSOR JACK
DESIGN AND FABRICATION OF A POWER SCISSOR JACK
 
project-fum-final-fume-extractor-for-cnc-machine.pdf
project-fum-final-fume-extractor-for-cnc-machine.pdfproject-fum-final-fume-extractor-for-cnc-machine.pdf
project-fum-final-fume-extractor-for-cnc-machine.pdf
 
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
 
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...
DESIGN AND FABRICATION OF POKA YOKE PNEUMATIC FIXTURE FOR MILLING AND SHAPER ...
 
PEAK 2016 CATALOG_opt
PEAK 2016 CATALOG_optPEAK 2016 CATALOG_opt
PEAK 2016 CATALOG_opt
 
Design and fabrication of gearbox with inboard braking of an all terrain vehicle
Design and fabrication of gearbox with inboard braking of an all terrain vehicleDesign and fabrication of gearbox with inboard braking of an all terrain vehicle
Design and fabrication of gearbox with inboard braking of an all terrain vehicle
 
Linkedin
LinkedinLinkedin
Linkedin
 
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEDESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
 
13mmcc23 akash
13mmcc23  akash13mmcc23  akash
13mmcc23 akash
 
Design of a suspension for a formula student race car
Design of a suspension for a formula student race carDesign of a suspension for a formula student race car
Design of a suspension for a formula student race car
 

individual project dissertation

  • 1. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 1 K1359820 FACULTY OF SCIENCE, ENGINEERING AND COMPUTING School of Aerospace and Aircraft Engineering BSc (Hons) DEGREE IN BSc Aerospace Engineering Name: Arunthihan Ramajeyan ID Number: K1359820 Project Title: DESIGN AND MANUFACTURE GAS TURBINE BLADE Date: April 2016 Supervisor: Dr Hossein Mirzaii WARRANTY STATEMENT This is a student project. Therefore, neither the student nor Kingston University makes any warranty, express or implied, as to the accuracy of the data or conclusion of the work performed in the project and will not be held responsible for any consequences arising out of any inaccuracies or omissions therein.
  • 2. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 2 K1359820 DECLARATION I, the undersigned ArunthihanRamajeyanstudentof BScHonoursdegree inAerospace Engineering herebydeclare thatthe projectworkpresentedinthisreportismyownworkand has beencarried out underthe supervisionof DrHosseinMirzaii of KingstonUniversityLondon. Thiswork hasnot beenpreviouslysubmittedtoanyotheruniversityforanyexamination. Word count: 6853 Name: ArunthihanRamajeyan StudentID: K1359820 Date: 25/04/2016
  • 3. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 3 K1359820 ACKNOWLEDGEMENTS Firstand foremost,Iwouldlike toexpressmysinceregratitude to mymodule supervisor,DrHossein Mirzaii,whohas beenguidingme throughoutthisproject.Hisadvice andguidance made me give my bestto complete thisproject.He sharedhisexpertisewithme,whichgave me abetter understandingof the conceptandalso hisfriendlinessmade me enjoythisproject.Itisthe main reasonwhichledme to finishthisprojectsuccessfullytothe bestof myability. I wouldalsolike tothankthe lab technicians,Mr.MartinTheobald,Mr Dean WellsandMr. Dave Haskell forguidingandhelpingme complete my3Dprintedcomponentsandforhelpingme throughoutthe investmentcastingprocess. Iwouldliketoexpressmysincere gratitude tomyfamily and mycolleague Mr.NirojanParanjothywhodidthe same projectwithme.
  • 4. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 4 K1359820 ABSTRACT There are somany methodsof castingalloys,turbine bladesare manufacturedbyinvestmentcasting methodor normallyaslost-wax method.The investmentcastingmethodwasdevelopedover5500 yearsago and can trace itsroots back to bothancientEgyptand China.Thisis the keymethodwhich isusedpresentlyinAviationindustryformanufacturingthe gasturbine blades.Investmentcasting methodismainlyusedbecause ithaswide range of advantages.Itformsthe componentwith undercuts,canproduce a verysmoothsurface whichisformedwithoutapartingline inthe componentandaccuracy. Thisdissertationlooksdetailedintothe theoretical andpractical side of designingmethodusedwiththe aidof SolidWorks andinvestmentcastingmethod. AIMS AND OBJECTIVES The endmostaimof thisprojectisto DesignandManufacture Gas turbine blade  Researchmethodsof casting  Create the designof Gas turbine blade  Manufacturingthe turbine blade usinginvestmentcastingmethod  Researchmaterialsandtheireffectivenessonturbine blades METHODOLOGY The methodsthat I’mgoingto use to achieve myaimsandobjectivesare asfollows:  Create a designof turbine blade asa tree designusingSolidWorks  Create the 3D printedobjectusing3Dprinter.  Create the final metal blade usinginvestmentcastingmethod
  • 5. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 5 K1359820 Contents DECLARATION .............................................................................................................................. 2 ACKNOWLEDGEMENTS ................................................................................................................. 3 ABSTRACT....................................................................................................................................4 AIMS AND OBJECTIVES.............................................................................................................. 4 METHODOLOGY........................................................................................................................ 4 1 INTRODUCTION ......................................................................................................................... 9 2 Gas Turbine engine.................................................................................................................. 10 2.1 Types of jet engines........................................................................................................... 12 2.1.1 Turbojet..................................................................................................................... 12 2.1.2 Turboprops................................................................................................................. 13 2.1.3 Turbofans................................................................................................................... 13 2.1.4 Turboshafts ................................................................................................................ 14 2.1.5 Ramjets...................................................................................................................... 15 2.2 Gas turbine design......................................................................................................... 15 2.2.1 Fans ........................................................................................................................... 16 2.2.2 Compressor................................................................................................................ 16 2.2.3 Combustion chamber.................................................................................................. 17 2.2.4 Turbine....................................................................................................................... 17 2.3 Gas Turbine blade ............................................................................................................. 19 2.4 Turbine Blade failure ......................................................................................................... 21 2.4.1 High cycle fatigue........................................................................................................ 21 2.4.2 Environmental attack.................................................................................................. 22 2.4.3 Creep damage............................................................................................................. 22 2.4.4 Erosion/Wear............................................................................................................. 22 2.5 Materials used .................................................................................................................. 23 2.6 Cooling system.................................................................................................................. 24 3. Methods of Casting............................................................................................................. 25 3.1.1 Sand casting................................................................................................................... 25 3.1.2 Die casting..................................................................................................................... 26 3.1.3 Shell Mould Casting........................................................................................................ 27 3.1.4 Lost foam casting............................................................................................................ 27 3.1.5 Investment Casting......................................................................................................... 28
  • 6. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 6 K1359820 3.1.6 Cooling systems.............................................................................................................. 30 3.2 Designing Process ................................................................................................................. 30 3.3 SolidWorks Design....................................................................................................... 32 4. Manufacturing Process........................................................................................................ 34 4.2 Investment Casting Process ................................................................................................... 35 4.2.1 Silicon Mould making...................................................................................................... 35 4.2.2 Making the Wax model................................................................................................... 37 4.2.3 Ceramic Coating............................................................................................................. 39 5 CONCLUSION........................................................................................................................... 40 6 References .............................................................................................................................. 42 Figure 1 Newton's third law......................................................................................................... 10 Figure 2(Durham, 2012) .............................................................................................................. 11 Figure 3Turbojet engine.............................................................................................................. 12 Figure 4Turboprop...................................................................................................................... 13 Figure 5Turbofans....................................................................................................................... 14 Figure 6Turboshaft ..................................................................................................................... 14 Figure 7Ramjets.......................................................................................................................... 15 Figure 8Design............................................................................................................................ 15 Figure 9Compressor.................................................................................................................... 16 Figure 10Combustion chamber.................................................................................................... 17 Figure 11Turbine ........................................................................................................................ 18 Figure 12Impulse Turbines.......................................................................................................... 18 Figure 13Impulse and Reaction turbines ...................................................................................... 19 Figure 14Gas turbine blades........................................................................................................ 20 Figure 15HCF blade..................................................................................................................... 21 Figure 16Creep damage curve..................................................................................................... 22 Figure 17Sand casting................................................................................................................. 26
  • 7. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 7 K1359820 Figure 18Die Casting................................................................................................................... 26 Figure 19Shell mould casting....................................................................................................... 27 Figure 20Lost Foam Casting......................................................................................................... 27 Figure 21Investment casting method........................................................................................... 29 Figure 22Turbine blade design..................................................................................................... 31 Figure 23Turbine blade aero foil design ....................................................................................... 31 Figure 24Turbine blade side view................................................................................................. 31 Figure 25Aerofoil view with the dimensions in mm....................................................................... 32 Figure 26Aerofoil blade twist angle 9˚.......................................................................................... 32 Figure 27Blade heights 1.76 in..................................................................................................... 32 Figure 28Blade view.................................................................................................................... 32 Figure 29Blade root.................................................................................................................... 33 Figure 30blade root side view...................................................................................................... 33 Figure 31Final blade views.......................................................................................................... 33 Figure 32Final blades with the tree.............................................................................................. 33 Figure 33UP BOX ........................................................................................................................ 34 Figure 34Removing off the Turbine blade..................................................................................... 35 Figure 35Turbine bladeswith the sheet ....................................................................................... 35 Figure 36Mould box.................................................................................................................... 35 Figure 37Silicon mould Cut into half............................................................................................. 36 Figure 38Breaking off the Mould box........................................................................................... 36 Figure 39Silicon settling .............................................................................................................. 36 Figure 40Pouring Silicon into the mould box................................................................................. 36 Figure 41Mixing silicon with curing agent..................................................................................... 36 Figure 42Assembly...................................................................................................................... 38 Figure 43Wax blades and tree..................................................................................................... 38
  • 8. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 8 K1359820 Figure 44Wax blades................................................................................................................... 38 Figure 45Wax Tree model ........................................................................................................... 38 Figure 46Wax poured.................................................................................................................. 38 Figure 47ceramic coating left to dry............................................................................................. 39 Figure 48Ceramic first coating..................................................................................................... 39 Table 1Failure Severity................................................................................................................ 21 Table 2(Tantalum - element information, properties and uses, no date) ........................................ 23
  • 9. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 9 K1359820 1 INTRODUCTION Anyaircraft whichmovesthroughairismovedbythe force calledthrust.“Foreveryaction,there is an equal andopposite reaction”accordingtoIsaac Newton’sthirdlaw of motion. Whenanytwo objectsgetinterface witheachother,whetheritgetsdirectlyinteractedorat a distance,theyexert forceseachother equally. Anydevice whichconvertsheatenergyof fuel intomechanical energyisknownasengine orheat engine.Engine iswidelyusedinautomobileindustries oran engine canbe evencalledasthe heart of automobile.Tomake anaircraft move forward,there needtobe a pushingforce or thrustwhich iscreatedby makingthe air accelerate betweenthe frontandthe backof the engine. Anydevice whichconvertsheatenergyof fuel intomechanical energyisknownasengine orheatengine.Engine iswidelyusedinautomobile industriesoranengine canbe evencalledasthe heartof automobile. To make an aircraft move forward,there needtobe a pushingforce orthrust whichiscreatedby makingthe air accelerate betweenthe frontandthe backof the engine.Itconvertsthe energyfrom burningfuel bythree elementswhichithasinit. Theyare compressor,combustorandturbine.A gas turbine cancreate thrustby acceleratingairormake electricity,turnpumpsandshippropellersby drivinggenerators. (reserved,2016) The turbine blade isa verycomplex shape whichconsistsof arootat the bottomof the blade.Ithas an aerofoil shape whichextractsthe thermal energyfromthe hotexhaustgases.The rootof the blade isattachedto a disc.There will be hundredsof bladesattachedinasingle disc,whichiscalled a stage.There are several stagesineachsectionof the engine.(IMPRESSeducation:Circularmotion, no date)
  • 10. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 10 K1359820 2 Gas Turbine engine As I indicatedabove inmyintroduction,“Foreveryaction,there isanequal andopposite reaction”. To explainitwithanexample,asyousitina chair, yourbodyacts withone force on the chair, and the chair reacts withanotherforce onyour body.Itis that “whenyousitin a chair,the force of gravityisbalancedbythe force of the chairpushingup”(Newton’sThirdlaw of motion:Examplesof the relationshipbetween twoforces- video&lessontranscript,2003). BasicallyGasturbine enginesare usedfortwopurposes,firstforpowerproductionandsecondlyfor generatingthrustforaircraft.Theyare very simple;theyhave three simplepartswhichare Compressor,combustionareaandturbine.Compressorcompressesthe incomingairtohigh pressure.Combustionareaiswhere the fuel andproduceshigh-pressure,high-velocitygas.Turbine extractsthe energyfromthe high-pressure,high-velocitygasflowingfromthe combustionchamber. To elaborate itbriefly, agasturbine engine movingforwardusesasimple principle.Justlike the reactionforce producedbya balloon,the reactionforce producedbythe highspeedjetatthe tail of the jetengine makesitmove forward.The higherthe speedof the jetthe greaterthe thrustforce. The thrust force makesan aircraftmove forward.Such highspeedisachievedbyacombinationof Figure 1 Newton's third law
  • 11. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 11 K1359820 techniques.If youcanheatthe incomingairto a hightemperature,itwillexpandtremendouslyand will create the high-velocityjet.Forthisprocess,acombustionchamberisused.The fuel isburntin the combustionchamber.Effective combustionrequiresairtobe moderatelyhightemperatureand pressure.Tobringthe air to thiscondition,asetof compressorstagesare used.The rotatingblades of the compressoraddenergytothe fluidandits temperature andpressure rise toalevel suitable to sustaincombustion.The compressorreceivesthe energyforthe rotationfromaturbine whichis placedrightafterthe combustionchamber.The compressorandturbine are attachedto the same shaft.The highenergyfluidthatleavesthe chambermakesthe turbine bladesturn. The turbine bladeshave aspecial airfoil shape whichcreatesliftforce andmake themturn.Asthe turbine absorbsenergyfromthe fluiditspressuredrops. Throughthese stepsareallyhothigh speedairemittedthroughthe exitof the engine.(LearnEngineering,2015) Figure 2(Durham, 2012)
  • 12. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 12 K1359820 2.1 Types of jet engines 2.1.1 Turbojet The term ‘turbojet’iscommonlyusedforanumberof enginessuchasturbojet,turboprop,turbofan and turboshaft,because all of themuse acommonprinciple.Insimpleterms,asengine ejectsburnt mixture backwardsaforwardforce is createdonthe engine of the aircraft.Inthiscase,greaterthe backwardforce the greaterthe forwardforce. (Turbojetengines,2011) The basic ideaof turbojetengine issimple.FirstAiristakenintothe frontof the engine and compressedto3 to 12 times of its original pressure incompressor.Thenfuel isaddedtothe airin the combustionchamberand burnedina combustionchambertoraise the temperature of the fluid mixture toabout1,100˚F to 1,300˚F. The hot air ispassedthrougha turbine,whichdrivesthe compressor. If the turbine andcompressorare efficientenough,the pressure atthe turbine willbe nearlytwice the atmosphericpressure.Thispressurewhichisexcessissentthentothe nozzle to produce a high-velocitygaswhichproducesthrust.Increase in thrustcanbe obtainedbyusinga afterburner.Afterburnerisa secondchamberwhichispositionedafterthe nozzle.Thisincrease in temperature iswill increase about40percentinthrust at take-off. The turbojetisalsoknownas a reactionengine.Inareactionengine,The turbojetsucksairinand squeezesorcompressesit.Thenthe gasesflow throughthe turbineandmake itspin.These gases bounce back andshoot outof the rear of the exhaust, whichpushesthe plane forward. (Engines,no date) Figure 3Turbojet engine
  • 13. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 13 K1359820 2.1.2 Turboprops Turbopropenginesare usedinsome transportaircraftand small airliners.A turbopropengine hasa propellerattachedinit.The hotgasesturn the turbine atthe back,and thisturns a shaftthat rotates the propeller. The turbopropconsistsof acompressor,combustionchamber,andthe turbine like a turbopropto run the turbine,Sothatthe turbine createspowertodrive the compressor.The turboproppropulsionefficiency ishigherthancomparedwithaturbojetengine forspeedsbelow 500 mph.Recentturbopropengineshave lotsof bladeswithfewerdiameterstogive amore efficientoperationathigherflightspeeds.Inaturbopropengine the bladesare scimitar-shapedwith swept-backleadingedge inthe blade tips. (Engines,nodate) 2.1.3 Turbofans A turbofanconsistsof a large fanat the frontside of the engine whichisusedtosuck inair. Normally the air flowsaroundthe outside of the engine whichwill make itgive itmore thrustatlow speeds and formakingit quitter.Ina turbofanonlysome airgoesintothe combustionchamber,the remainderpassesthroughafan,low-pressure compressor,andisejecteddirectlymixedwiththe gas-generatorexhausttoproduce a hotjet whereasall the airenteringthe intake passesthrough the gas generator,whichismade upwiththe compressor,combustionchamberandturbine.It Figure 4Turboprop
  • 14. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 14 K1359820 achievesthisbyincreasingthe total air-massflow andreducingthe velocitywithinthe total energy supplyasthe same. (Engines,nodate) 2.1.4 Turboshafts Thisengine ismuchlike aturbopropsystem.Itprovidespowerforahelicopterwithoutdrivinga propellerinit.Thisturbopropengineisdesignedsothathelicopterrotor speedisfree of the rotating speedof the generatorandisnot dependentwithit.Evenwhenthe generatorisvariedtomodulate the amountof powerreduced,the turboproppermitsthe rotorspeedtobe keptinthe same level. (Engines,nodate) Figure 5Turbofans Figure 6Turboshaft
  • 15. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 15 K1359820 2.1.5 Ramjets The ramjetis the simplestjetengine whichhasnomovable partin it. Airenteringitiscompressedby the movementof the vehicle.Ithasa longduct intowhichfuel isfedat a controlledrate.The fuel is ignitedbythe incomingheatedcompressedair.A Ramjetwill onlystartworkabove a speedof 485 km/h.The Ramjetismore fuel efficientthanturbojetsandturbofansabove Mach3 makingthem betterforuse on missiles. (Darling,nodate) 2.2 Gasturbinedesign Figure 7Ramjets Figure 8Design
  • 16. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 16 K1359820 2.2.1 Fans The fan inthe frontof the engine anditisa gas turbine whichdrawsair intothe engine;it compressesthe bypassstreamtoproduce 80 percentof the engine’sthrust,andfeeds airtothe gas turbine core. (reserved,2016a) 2.2.2 Compressor The compressorisdrivenbythe turbine.Itrotatesat highspeed,addingenergytothe airflow and compressingintoasmallerspace.Socompressingthe airincreasesthe pressureinside the engine. The purpose of a compressoristo increase the pressure of the airinside the gasturbine engine. Thenit sendsthe compressedairintothe combustionchamber. (reserved,2016a) The compressorisassumedto containfourteenstagesof rotorblades andstatorvanes.Inan axial flowcompressor,eachstage normallybooststhe pressurefromthe previousstage.A singlestage of compressionconsistsof asetof rotorbladesattachedon a disk,followedbystatorvanesattached to a stationaryring. In general,the compressorrotorbladesconvertmechanical energyintogaseousenergy. Figure 9Compressor
  • 17. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 17 K1359820 2.2.3 Combustionchamber The combustionchamberisthe area inside the enginewhere the fuel orairmixture iscompressed and ignited. Itisnormallyformedonone side bythe shape castintothe cylinderhead,inthe other side bythe top of the piston.The chamberisat its smallestdimensionwhenthe pistonisattop- dead-centre.Andatthistime the fuel/airwillbe ina conditionwhere itisreadytobe ignited. 2.2.4 Turbine There are fourstagesina turbine. The turbine convertsthe gaseousenergyof the burnedfuel/air mixture outof the combustorintomechanical energytodrive the compressor,throughareduction gear,the propeller.Itconvertsgaseousenergyintomechanical energybyexpandingthe hot,high- pressure gasestoa lowertemperature andpressure.Eachstage consistsof stationaryvaneswhich are followedbyrotatingblades.The vanesandbladesare airfoilsthatprovide forasmoothof the gases.As the airstreamentersthe turbine fromthe combustionsection,itisacceleratedbythe stator vanesinthe firststage.Thenthe stator vanesformthe convergentductsthatconvertthe gaseousheatand pressure energyintohighervelocitygasflow. Figure 10Combustion chamber
  • 18. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 18 K1359820 As the highvelocitygasflowsacrossthe turbine blades,the gaseousenergyisconvertedto mechanical energy.ATthisstage velocity,temperatureandpressure of the gasare compromisedto rotate the turbine togenerate powerfromthe engine. (FUNDAMENTALSOFGASTURBINE ENGINES, 2010) There are twobasictypesof steamturbines,impulseturbinesandreactionturbines,inwhichhe bladesare designedtocontrol the speed,pressure anddirectionof the steamasitpassesthrough the turbine. 2.2.4.1 ImpulseTurbines The steam jetsare keptat the turbine’sbucketshapedrotorbladesdirectlywhere the pressure exertedbythe jetscausesthe rotorto rotate andthe velocityof the streamto reduce as itimpartsits kineticenergytothe blades. But the blades change the directionof flowof the steamhoweverits pressure remainsthe same asitpassesthroughthe rotor bladesas the gap betweenthe bladesare constant.Therefore Impulse turbinesare knownasconstant pressure turbines.Sothe nextseries Figure 11Turbine Figure 12Impulse Turbines
  • 19. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 19 K1359820 of fixedbladesreversesthe directionof the steambefore itpassestothe secondrow of moving blades. 2.2.4.2 ReactionTurbines The rotor bladesof the reactionturbine are more like aerofoils;theyare arranged where the cross sectionin-betweenthe chambersformed are fixedbladeswhichreducesthe inletside of the blades. The chambersbetweenbladesformnozzles sothatasthe steamprogressesthroughthe chambers, itsvelocityincreasesandthe pressure decreases.Alsothe pressure decreasesinboththe fixedand movingblades.Soasthe steamenters ina jetinbetweenthe rotorblades, the steamcreatesa reactive force onthe bladeswhichinturncreatesthe turningmomentonthe turbine rotor justlike ina steamengine. (Shukla,2013) 2.3 Gas Turbine blade Turbine blade isthe rotatingcomponentwithinthe turbine whichgiveschallengestothe designand manufacturingcommunities. Itisan individual componentwhichmakesthe turbinesectionof agas turbine engine.Bladesare responsible forextractingenergyfromthe hightemperature,high Figure 13Impulse and Reaction turbines
  • 20. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 20 K1359820 pressure gasproducedbythe combustor.Theyare exposed tomore toughenvironmentsinagas turbine. Therefore turbine bladesare carefullydesignedtoresistall these toughconditionsandmake upwith the suitable material whichcanresistall these conditions.There are some more methodsdone to withstandall these problemssuchascoolingsystem, boundarylayer,thermal bearingcoatingsand internal airchannels. The Gasturbine blade isdesignedinanaerofoil designandreformedinsucha waywhere itprovidesequal space betweenadjacentblades. The areaof the cross-sectionof each blade isfixedbythe allowedstressinthe material usedandbythe size of the holeswhichisrequired for blade coolingpurpose.The trailingedge of the blade isdesignedthininconsideringpreventingit fromblade crackingwhichmay occur due to the change intemperature while the engine works. One of the mostimportant thingsconsideredingasturbine blade isattachingthe blade tothe turbine discbecause the stressinthe discaroundthe fixingandinthe blade root has a key behaviouronthe limitingrimspeed. Thisdesignof fixingthe blade tothe discwhichisusedinmostof the gas turbine enginespresently isknownas ‘fir-tree’fixing,whereasinpastthe blade isfixedbythe de Laval bulbrootingfixing. This ‘fit-free’ensuresthatthe loadingonthe blade isshared byall the serrations.The blade isfree inthe serrationswhenthe turbine isstill andis rigidinthe rootby centrifugal loadingwhenthe turbine is rotating.A shroudisfittedatthe tip of the blade anda small segmentismade upat the tipof the blades whichformsa tangential ringaroundthe blade whichisformed toreduce the loss of efficiencythroughgasleakage acrossthe blade tips.(166837 EB161 rolls royce the jet engine fifth edition gazoturbinnyy dviga, no date) Figure 14Gas turbine blades
  • 21. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 21 K1359820 2.4 Turbine Blade failure Failure meansthata thingdoesnotmeetits desirable objective;inthiscase a turbine blade failure meansthat it’snolongersuitable foruse butcan be usedtill the limitedamountof time givenforit to be used. 2.4.1 Highcyclefatigue Highcycle fatigue isthe mainproblemof a turbine blade it isgenerallycausedaerodynamic excitationsandby self-excitedvibrationandflutterwhichisbecause of the repeatedcyclingof the loadon a structural member.HCFdamage occurs whenthe stresslevelsare above the fatigue strength.Itoccurs aftera numberof loadcyclesthat resultsincracking.The crack will thengradually increase throughthe material witheachstresscycle. Table 1Failure Severity Figure 15HCF blade
  • 22. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 22 K1359820 2.4.2 Environmental attack The environmentshouldbe consideredinturbineblade failure astheyare exposedtobe damaged fromoxidation,corrosionandsulphidation. Itdoesnotleadthe blade toa enormousfailure butit has a role init whichcan slowlydamage the blade withtime. 2.4.3 Creepdamage Thisdamage occurs whenthe blade isoperatedovertimeunderhighstressesandtemperature.Asa roughrule,a 15° increase inblade metal temperaturecutscreeplife by50 percent.Thisshowsthe importance of effective cooling. ([CSL STYLE ERROR: reference with no printed form.]) 2.4.4 Erosion/Wear Thiscause catastrophicblade failure rarely,butitcontributestosome otherblade failureswhichcan cause a blade replacement.Inadditiontothe primarydamage causedbyerosion,areductioninthe surge margincan occur if the tipsof the bladesgetseverelyeroded. Figure 16Creep damage curve
  • 23. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 23 K1359820 2.5 Materials used Moderngas turbineshave the mostadvancedtechnologyinall aspects,Turbine bladesare exposed to the extreme operatingcondition. Itisexposedtoaround1400°C – 1500°C, highpressure,high rotational speed,vibration,small circulationareaandsoon. So to overcome it,Gasturbine bladesare made usingadvancedmaterialsandsuperalloysthat containsupto ten significantelements,itconsistsof rectangularlocksof stone stackedinaregular array withnarrow seriesof cementtostickthemtogether.Presentlytantalumisusedreplacing intermetallicformof titanium whichhasbeenusedinthe past. (NEW TECHNOLOGY USED IN GAS TURBINE BLADE MATERIALS, no date) Tantalumis an incrediblyuseful metal with uniquepropertiesthatmake itthe choice fora range of placesto be usedwhere strength,durability,corrosion,resistance,ductilityandahighmeltingpoint are critical. (Tantalum (Ta), 2015). Table 2(Tantalum - element information, properties and uses, no date)
  • 24. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 24 K1359820 Since the 950’s, 250°C of allowablemetal temperatureshasbeenyieldedfromwroughtto conventionallycastto directionallysolidifiedtosinglecrystal turbine blades.Inthe otherside, coolingdevelopmentshave nearlydoubledthe temperature whichentersthe turbine. If metallurgical developmentcanbe exploitedbyreducingthe coolingairquantitythisisa potentiallyimportantperformance enhancer. 2.6 Cooling system Turbine bladespresentlyfocustoonblade coolingsystemwhichisimportanttoreduce the blade metal temperature toacceptable levelsforthe materialsincreasingthermalcapabilityof the engine. Turbine blade coolingisclassifiedintotwosectionssuchasinternal coolingsystemandexternal coolingsystem. Internal blade cooling:It iswhere the heatis removedbya variation of convectionand impingementcoolingconfigurations,wherehighvelocity airflowsandhitsthe innersurface of the turbine blades. External blade cooling:It is where coldairisinjectedthroughthe coolingholesof the external surface of the turbine blade surface tocreate a thinfilmcoolinglayer. Howeverinbothcasestheyare implementedtokeepthe entire bladecool enoughtoensure that the hightemperature doesnotdamage the blades.There are more sub-partsinsideInternalcooling systemandExternal coolingsystemwhichisnotnecessarytoexplaininthe reportasit isnot done in throughoutproject.Thisisa general brief of how coolingsystemsworkandthe purpose of it. (2016, 2014)
  • 25. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 25 K1359820 3. Methods of Casting Castingisa manufacturingwhichismostlyusedtomake more complex methods.Itisaprocessin whichnormallyliquidmaterial ispouredintoamould,whichhasahollow cavityof the desired shape inwhichwe expectoursolidfinishedmaterial shouldbe.Thenthe solidifiedpartisejectedor brokenoutof the mouldto complete the casting process.Inmyproject,Ihave usedinvestment castingmethodto manufacture the gasturbine blade.Sointhisreportas ittakesmore time,Ihave explainedthe typesof castingasan overview summarisingand concentratedmore onInvestment castingmethod. Basictypesof casting:Sand casting,Die casting,Shell mould casting,lost-foam casting,and investmentcasting. 3.1.1 Sand casting It isa metal castingprocesscharacterisedbyusingsandasthe mouldmaterial. Inadditiontothe sand,clay ismixed withthe sand.The mixture ismoistenedwithwater,sometimeswithsome other substancestodevelopstrengthandplasticityof the claytomake the combinationsuitable for moulding. The word‘sandcasting’isreferredtoanobjectproducedbythe sand castingprocess. Over70% of all metal castingsare producedbya sand castingprocess.Thiscastingmethodis relativelycheapandobstinate evenforsteel foundryuse. Basic Process:  Place a patternin sandto create a mould.  Incorporate the patternand sandin a gatingsystem.  Remove the pattern  Fill the mouldcavitywithmoltenmetal  Allowthe metal tocool
  • 26. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 26 K1359820  Breakaway the sand mouldandremove the casting. 3.1.2 Die casting It isa meal castingprocesswhichforcesmoltenmetal underhighpressure intoamouldcavity.The mouldcavityismade usingtwohardenedsteel dieswhichworksmore similarlike aninjection mouldduringthe process. Figure 17Sand casting Figure 18Die Casting
  • 27. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 27 K1359820 3.1.3 Shell Mould Casting It isa metal castingprocessinmanufacturingindustryinwhichthe mouldisathinhardenedshellof sand andthermosettingresinbinder,withsome other material. 3.1.4 Lost foam casting It isa type of evaporative-patterncastingwhichissimilartoinvestmentcastingexceptinthisfoamis usedforthe patterninsteadof wax. Figure 19Shell mould casting Figure 20Lost Foam Casting
  • 28. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 28 K1359820 3.1.5 Investment Casting Investmentcastingwhichisalsoknownaslostwasinvestmentcasting,isaprecisioncastingprocess usedto create more complex metal partsfromalmostanyalloys.The use of thiscastingmethod acceleratedin1940s as a resultof demandfor specialisedtools.FollowingWorldWarII,the technique expandedintomanyindustrial andcommercial applications. The term “investment”referstoceramicmaterialsthatare usedto buildahollow shell intowhich moltenmetal ispouredintomake castings. (InvestmentcastingFAQs,nodate) Requirementsforinvestmentcasting:  Metal die  Wax  Ceramic slurry  Furnace  Molten metal Advantages:  Reliability– It providesreliableprocesscontrolsand repeatabilitythatare maintainedfromcastingtocasting.  Tolerances– It holdstolerancesof ±.005˚  AmortizationLowers toolingcost – It is lowerthanother castingtoolingcosts.  Better for the Environment – It is producedfrom9 wax patternswhichinmostcases can be reclaimedandused again.
  • 29. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 29 K1359820  Intricate Design– Can easilyincorporate featuressuchas logos,productID’s/numbers,andlettersintotheir component. (Advantagesof investmentcastingvs.Sand casting,die casting,nodate) Process:  Patterncreation – The wax patternsare typically injected moulded into a metal die and are formed as one piece.  Mould creation – This “pattern tree” is dipped into slurry of fine ceramic particles, coated with more coarse particles, and dried to form a ceramic shell around the patterns.  Pouring – The mould is pre-heated in a furnace to approximately 1000˚C and the molten metal is poured from a ladle into the gating system of the mould, filling the mould cavity.  Cooling– Afterthe mouldisfilled,the moltenmetal is allowed to cool and solidify in to the shape of the final casting.  Castingremoval – Afterthe moltenmetal hascooled,the mouldis broken and the casting is removed.  Finishing – Heat treatment or grinding or sand blasting the part at the gates to harden the final part. (CustomPartNet, 2009) Figure 21Investment casting method
  • 30. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 30 K1359820 3.1.6 Cooling systems Turbine bladeslifetime isreducedasitis exposedtoveryhottemperatures.Therefore,turbine coolingisnecessarytoincrease the bladesworkingtime.Due tothe contributionandthe developmentof turbine coolingsystemsthe turbinehasbeenlastedlong. Turbine bladecoolingis classifiedintotwosections;theyare internal coolingsystemandexternalcoolingsystem. Internal coolingsystem:It is where the heatisremovedbya variationof convectionand impingementcoolingconfigurations,wherevelocityairflowsandhitsthe innersurface of the turbine blades. External Coolingsystem:It iswhere the coldair isinjectedthroughthe filmcoolingholeswhichare on the external blade surface tocreate athinfilmcoolinglayer. Internal coolingsystemandexternal coolingsystemare implementedtothe turbine blade tokeep the entire blade cool andensure thattemperature gradientswithinthe blade are kepttoan acceptable level. (2016,2014) 3.2 Designing Process The turbine blade isan aero foil shape andwhendesigningaturbine blade,eachstage of the blade has differentdimensions.FirstIcouldn’tfindarealisticdesignof aturbine blade,asthisisa design and manufacturingproject,struggledinfindingthe realisticdimension.Discussedwiththe lab techniciansandfinallyfoundthe actual blade whichisusedinthe Universitylab.Gotthe dimensions of the blade usedmore accuratelywithadigital Verniercalliper.Beloware the Designof the Turbine blade used.
  • 31. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 31 K1359820 Figure 23Turbine blade aero foil design Figure 22Turbine blade design Figure 24Turbine blade side view
  • 32. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 32 K1359820 3.3 SolidWorks Design The SolidWorkssoftware isa3D mechanical design,whichallowstodesignanythree Dimensional objects.Belowisthe blade androotdesignwhichwasdesignedusingthe SolidWorkssoftware. Figure 26Aerofoil blade twist angle 9˚ Figure 25Aerofoil view with the dimensions in mm Figure 28Blade view Figure 27Blade heights 1.76 in
  • 33. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 33 K1359820 Figure 29Blade root Figure 30blade root side view Figure 31Final blade views Figure 32Final blades with the tree
  • 34. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 34 K1359820 4. Manufacturing Process 4.1 Start of manufacturing process – 3D printing My final designof the turbine bladeisconfirmedbymysupervisorandwasreadyto the 3D printing process. The 3D printerdoesthe 3D printingprocedure automaticallywhenwe importthe CAD designtoit.The universityprovidedme the 3D printer,inwhichthe masterpiece 3Dprintedmodel is printedoutas an ABSplasticturbine blade. The 3D printerwhichprintedmyblade isknownasUP BOX. UP BOX specifications:  Material used– ABS plastic  Resolution– 100 microns Dimension of the UP BOX:  Width– 255 mm  Height– 205 mm  Depth – 205 mm To printit out the firststepI didwas,savedthe file inSTL formatand sentitto the labtechnician Mr. Dave Haskell.Then Openedthe CatalystEXsoftware andmodifiedthe dimensionsinthe software tokeepitwithinthe machine requirements.Selectedprintpropertiesandadjusted resolutionandorientationasthe labtechnicianinstructedme todo.The machine calculated howmuch material will be usedandthe estimateddurationof the printing.The durationof my blade tobe printedtook10 hours.Set the machine toprint, the machine printedmyblade all nightand I tookit outthe followingdayinthe morning. The 3D printedturbine blade wasfixed to the ABS plasticsheetinsidethe UPBOX,removed the blade sheetandunwantedmaterials usingpliers,shears andascraper off the blade. Figure 33UP BOX
  • 35. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 35 K1359820 4.2 Investment Casting Process 4.2.1 Silicon Mould making The firststepto start off made a mouldbox withthe suitable dimensionsof the turbine blade to attach it fixedinside the bladewiththe aidof wires.The box must wideron eitherside bythe same lengthof the blade andthe heightof the blade shouldbe three timesthe heightof the blade. Length 136mm Width 103mm Height 100mm Table 37 Dimensions Aftermakingthe mouldbox,the blade mustbe keptinside the bladestable sothatitstaysstill when pouringthe siliconinsidethe box.Todothis,Drilledsome holesinthe blade andin the root of the blade.Kept the blade usingcopperwires inside the blade andheldathickmetal at the bottomof the root sothat wax will be pouredinitand the copperwiresare usedso that afterthe Figure 35Turbine blades with the sheet Figure 34Removing off the Turbine blade Figure 36Mould box
  • 36. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 36 K1359820 siliconmouldiscomplete,the coppercanbe removedandthe copperholeswill be usedasair pocketsto suckout air whenpouringthe wax. The turbine blade istapedmakinga partingline before itwaskeptinsidethe mouldbox sothat whencuttingthe siliconmould,the partinglinewill make iteasytocut the siliconblade. Calculated the volume of the silicon to be poured in to the mould box Length × Width × Height 136 mm × 103 mm × 100 mm Volume =1400800 mm3 Volume =1400.8 cubic centimetres Withthe helpof the labtechnician,mixedcuringagentwiththe Silicon.Amountof curingagent mixedwas10% of the siliconwhichis 140.08 cubic centimetresandmixeditwiththe hardenerto allowitto settle.Aftermixingthem,keptitinthe vacuumchamberto remove anyair inside with settingupit to -1 bar pressure.Afterit,pouredthe siliconintothe box andkeptitinthe vacuum chamberagainso that it removes anymore airtrappedin it.The mouldbox withthe siliconiskept inside the vacuumchamberovernighttosettle andtakenoutthe followingdaymorning. Nextdaymorningremoved the mouldbox off afterthe siliconmixturesettledovernight. Cutthe siliconmouldintohalf,anditisveryimportanttocut the siliconmouldandwiththe splittingline where the tape wasput. Sothat the mould canbe easilyopenedandclosedforwax pouring. Figure 41Mixing silicon with curing agent Figure 40Pouring Silicon into the mould box Figure 39Silicon settling Figure 38Breaking off the Mould box Figure 37Silicon mould Cut into half
  • 37. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 37 K1359820 4.2.2 Making the Wax model Aftercutting,tookoutthe ABSplastic3D printedblade andtree designout,sprayedmouldrelease inboth the siliconmouldwhere the wax blade the tree designsiliconmouldsticks.Sprayedmould release inboththe siliconmouldwhere the wax blade sticksinandstapledbothtogethertightlyso that the wax blade isstable inside the wax mouldandtapedittightly.Putthe topof the moulds with tape so that the excess moltenwax doesnotoverflow. In the afternoon,afterkeepingthe mouldinthe ovenforcouple of hourswiththe temperature of 30˚C to be warm and recycledwax whichwaskeptina separate ovenat100˚C to be melt.Poured wax in the mouldswiththe helpof labtechnicianinthe hole of where athickmetal wasplacedas in the mouldmakingprocessabove.Usedgravitymethodtopourthe wax intothe mould as the lab techniciantoldme inpastyears it isthe waytheywere beingdoinginthismethod.Keptthe mould so that the wax to be cooledand settledforthree hoursinthe mouldproperly. Safety precautions:  Lab coat  Safety boots  Pair of gloves  Safety goggles Afterthree hours,Separatedthe mouldoff andtookthe wax blade andtree designout.The wax tree designwasa successinthe firstpouringasthe wax blade hassome airbubblesinit.It is because the airrisesdidnot release the airoutproperly.Followingdaymorning,made the moulds readyfor the secondpouringasin the firstprocessmentionedabovebutwithmakingthe airrising holesmore clearsothat the blade doesnotgetany air bubblesinit.
  • 38. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 38 K1359820 Pouredwax inthe moulds.Sawthe air risesfilledwiththe wax properlyinthe secondpouring.After keepingthe blade tocool foranothercouple of hours, separatedthe mouldsoff andtookoutthe wax models.Thistime,blade wasnotupto the desiredlevel.Discussedwiththe labtechnician aboutthe problemandcame to a conclusionof pre-heatingthe siliconmouldat35˚C warm so that the wax can flowthroughall the complex parts. Afterkeepingittocool foranothercouple of hours, separatedthe wax model off the mould.Itstill didn’tcome tothe desiredlevel.Thenrealisedthe bladeshassome complex partsinwhichwax can’t flow throughthe gravitymethodof pouring. Did sevenpouringof wax andfourof the blades were goodenoughtoprogresswiththe nextprocessas time wasa probleminthisprocess.Itneedsquite more patience inthisprocesstogetthe desired level of outcome. Startedassemblingprocess,attachedthe wax turbinebladestothe tree design usinghotgun. Usedhot glue gunto attach two turbine bladesinatree. Figure 46Wax poured Figure 45Wax Tree model Figure 44Wax blades Figure 43Wax blades and tree Figure 42Assembly
  • 39. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 39 K1359820 4.2.3 Ceramic Coating This process consists of three steps which is coating, stuccoing and hardening. It is a repeated process in which the wax model is dipped in the ceramic. The first step of ceramic coating is to get the amount of ceramic which is going to be used in the tree design. Used 340 ml of ceramic material with 470 ml of binder and stirred together. The initial idea is to coat the turbine blades for about three to four layers with the time interval of forty to forty five minutes with the ceramic mixture. Future works to be done:  Complete the wax coating  Burnout/ De-Wax  Pour molten metal and Break the Ceramic Coating Figure 49Ceramic first coating Figure 48ceramic coating left to dry Figure 47 Ceramic coated blade
  • 40. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 40 K1359820 5 CONCLUSION The gas turbine blade isa unique componentwithanaerofoil designwhichundergoes more tough environmentssuchashightemperaturesandpressures,whereasexposedtoapproximately1500 degree C. The turbine blade experiences majorfailureslike creepandfatigue failureswhichisdue to highdynamicstressescausedbyvibrationandresonance withinthe operatingrange.These failures leadto the endof the life of blade aswell.Toovercome this,Engineersworkhardtopreventthese failure problemsby implementingcoolingsystemsandmanufacturingthe bladesinmetallicalloys, such as nickel basedalloys,whichhashighmeltingpoint,toughnessandlightweight. The turbine blade ismanufacturedusinginvestmentcastingmethod,whichisaprocessthat needs more patience.Thisprocessisa verylengthyprocess,beingafuture engineerthisprocessgave alot of experience inpatience andatthe same time learnedhow tomanage time withwork.Thisprocess alsogave quite muchexperienceinworkingasan engineerwithatechnicianinthe lab. In thisthe author of thisreportlikestoshare the successandproblemsfacedinthisproject.Tostart off with,Designingthe blade wasthe secondsteptothisprojectinwhichbackgroundresearch playedamajor role forthe authoras thisis the firstindividual projectexperienced. Fordesigningthe turbine blade,dimensionswere needed.Itwasone of the biggestchallengesfacedasall the turbine blade manufacturingcompaniesdidnothelptogive the dimensions.Mailedandtriedtocontact more than tenmanufacturingcompanies,still notevenasingle companyrepliednorgave their blade dimensions.Asthe projecthadalimitedamountof time tomanufacture the turbine blade, starteddesigningthe blade withanappropriate designchose andwithsome assumptions. At the middle of the designingprocess,MrDave Haskell,labtechnicianfoundaturbine blade and gave as thisprojectwas alreadybeendiscussedwithhim.Thentookthe dimensionsof the turbine
  • 41. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 41 K1359820 blade anddesignedthe blade withall accurate dimensionsandgotapprovedbythe Supervisorfor the designcreatedusingSolidWorks. Once the designisdone,tookthe blade designtothe labtechnicianasit wasalreadybeendiscussed withthemformakingthis project.Unfortunately,due torepairin3D printerittookquite a couple of weekstogetthrough3D printingprocess.Asthe 3D printingmachine startedworking,startedthe manufacturingprocess.The labtechnicianswerebusy because mostof the studentsusedlabfor theirfinal projectsandthe techniciansgave time forthisprojectas3 days ina weekwhich wasnot enoughtofinishthisprojectassome of the wax modelswere failure. Labtechnician,MrDave Haskell alsotoldthatthismanufacturingprocesstakesonlytwotothree weekstobe finishedbut thenwhenmethimtwomonthsago but inthe endtheywere all busy. The factor whichaffectedthis projectalsoincludesnotplanningproperlyasthe supervisoradvised.Thisprojectcouldnotbe finishedontime includesthe reasonthatitwas noteasyas itwas thoughtto be. Future works to be done: It isthe simplestparttobe done comparingthiswhole projectwhichcanbe done inthe following week.Asmentionedabove withsomelabissuesthe processtooksome more time thanthe expecteddate of deliverable.Two stepsawayfromfinishingthisproject,theyare finishingthe shell formingwithceramicandmetal model making.
  • 42. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 42 K1359820 6 References 166837 EB161 rollsroyce the jetengine fifthedition gazoturbinnyydviga(nodate) Available at: http://airspot.ru/book/file/485/166837_EB161_rolls_royce_the_jet_engine_fifth_edition_gazoturbi nnyy_dviga.pdf (Accessed:23April 2016). Advantagesof investmentcastingvs.Sandcasting,die casting(nodate) Availableat: http://www.thompsoninvestmentcastings.com/advantages-of-investment-casting.html(Accessed: 23 April 2016). CFMInternational (2012) How doesa CFM56-7B work ? Availableat: https://www.youtube.com/watch?v=KjYw0GdRpm0(Accessed:21April 2016). CustomPartNet(2009) Investmentcasting.Available at: http://www.custompartnet.com/wu/investment-casting(Accessed:24 April 2016). Darling,D. (nodate) Ramjet.Available at:http://www.daviddarling.info/encyclopedia/R/ramjet.html (Accessed:22 April 2016). Durham,P. (2012) THE GASTURBINE ENGINE.Availableat: http://www.123charlie.com/Chapter_14/Chap14Page002.htm(Accessed:21 April 2016). Engines(nodate) Available at:https://www.grc.nasa.gov/www/k- 12/UEET/StudentSite/engines.html (Accessed:21April 2016). FUNDAMENTALSOF GAS TURBINE ENGINES(2010) Available at:http://www.cast- safety.org/pdf/3_engine_fundamentals.pdf(Accessed:22April 2016). IMPRESS education:Circularmotion(nodate) Available at: http://www.spaceflight.esa.int/impress/text/education/Circular%20Motion/Turbine_Blades.html (Accessed:21 April 2016).
  • 43. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 43 K1359820 InvestmentcastingFAQs(nodate) Available at: http://www.afsinc.org/content.cfm?ItemNumber=6904 (Accessed:24April 2016). INVESTMENTCASTINGS(nodate) Availableat:http://bimac.com/assets/pdfs/investment-casting- process.pdf (Accessed:23April 2016). Learn Engineering(2015) Jet engine,how itworks?Available at: https://www.youtube.com/watch?v=KjiUUJdPGX0(Accessed:21 April 2016). NEW TECHNOLOGY USED IN GAS TURBINE BLADE MATERIALS (nodate) Available at: https://webcache.googleusercontent.com/search?q=cache:J- Xp0gB5tr4J:https://dialnet.unirioja.es/descarga/articulo/4792527.pdf+&cd=3&hl=en&ct=clnk&gl=uk (Accessed:23 April 2016). Newton’sThirdlawof motion:Examplesof the relationshipbetweenTwoforces - video&lesson transcript(2003) Available at:http://study.com/academy/lesson/newtons-third-law-of-motion- examples-of-the-relationship-between-two-forces.html (Accessed:20April 2016). reserved,A.rights(2016a) Compressors.Available at:http://www.rolls-royce.com/about/our- technology/gas-turbine-technology/compressors.aspx (Accessed:22 April 2016). reserved,A.rights(2016b) Fans. Availableat:http://www.rolls-royce.com/about/our- technology/gas-turbine-technology/fans.aspx (Accessed:22 April 2016). reserved,A.rights(2016c) Gas turbine technology.Availableat:http://www.rolls- royce.com/about/our-technology/gas-turbine-technology.aspx(Accessed:21 April 2016). reserved,A.rights(2016d) Turbines.Available at:http://www.rolls-royce.com/about/our- technology/gas-turbine-technology/turbines.aspx (Accessed:21April 2016).
  • 44. DESIGN AND MANUFACTURE GAS TURBINE BLADE ARUNTHIHAN RAMAJEYAN 44 K1359820 Shukla,V.(2013) Instrumentationengineering.Availableat: http://www.instrumentationengineers.org/2013/06/working-principle-of-impulse-turbines.html (Accessed:22 April 2016). Tantalum- elementinformation,propertiesanduses(nodate) Available at: http://www.rsc.org/periodic-table/element/73/tantalum(Accessed:23April 2016). Tantalum(Ta) (2015) Available at:http://www.elitematerial.co.uk/special-metals/tantalum-ta (Accessed:23 April 2016). Turbojetengines(2011) Availableat:http://aviationknowledge.wikidot.com/aviation:jet-aircraft (Accessed:21 April 2016). (NoDate) Available at:http://turbolab.tamu.edu/proc/turboproc/T27/Vol27015.pdf (Accessed:23 April 2016). 2016, E. (2014) Turbine blade cooling.Availableat:http://gtt.epfl.ch/page-63563-fr.html (Accessed: 25 April 2016).