SlideShare a Scribd company logo
1 of 14
Download to read offline
UNIVERSITÀ DEGLI STUDI DI
NAPOLI
“FEDERICO II”
SCUOLA POLITECNICA E DELLE SCIENZE DI BASE
DIPARTIMENTO DI INGEGNERIA CHIMICA, DEI MATERIALI
E DELLA PRODUZIONE INDUSTRIALE
CORSO DI LAUREA IN INGEGNERIA MECCANICA PER LA
PROGETTAZIONE E LA PRODUZIONE
TESI DI LAUREA
Comparative analysis of manufacturing technologies for
liquid rocket regenerative thrust chambers
Relatore Candidato
Ch.mo Prof. Ing. Antonino Squillace Alfonso Sciano
Matr. M64/280
Correlatori
Ing. Manrico Fragiacomo
Ing. Fabio Scherillo
ANNO ACCADEMICO 2014/2015
INDEX
Page
Acknowledgements………….…………………………...…………...i
Abstract………………………………………………………………ii
List of Figures……………………………………………………….iii
List of Tables………………………………………...…………….viii
CHAPTER 1. Introduction…...……………………………………...1
1.1 Background and motivation….…………………………...……………………..1
1.2 The Hyprob-Bread project………………………………………………………3
1.3 Thesis objective………………………………...…………………………………7
1.4 Outline of the work……………………………………………………………….8
CHAPTER 2. Liquid rocket engine: Design and main
parameters…………………………………………………………..10
2.1 Liquid rocket thrust chamber basic performance parameters and main
technological issues………...…………………………………………………..10
2.1.1 Specific Impulse Is...............................................................11
2.1.2 Characteristic Velocity c*……………………………….……12
2.1.3 Thrust Coefficient Cf…………………………………………..13
2.2 Injector head……………………………………………………………………..14
2.3 Combustion chamber……………………………………………………………23
2.4 Cooling system…………………………………………………………………..27
2.4.1 Regenerative cooling………………………………………….27
2.4.2 Dump cooling…………………………………………………..28
2.4.3 Film cooling…………………………………………………….30
2.4.4 Transpiration cooling…………………………………………30
2.4.5 Ablative cooling………………………………………………..31
2.4.6 Radiation cooling……………………………………………...33
2.4.7 Heat-Sink Cooling……………………………………………..33
2.5 Nozzle……………………………………………………………………………..35
2.5.1 Conical nozzle………………………………………………….37
2.5.2 Bell nozzle………………………………………………………37
2.6 Ignition system…….……………………………………………………………..40
2.6.1 Pyrotechnic igniters………….………………………………..40
2.6.2 Spark plugs……………………………………………………..41
2.6.3 Spark-torch igniters…………………………………………...42
2.6.4 Combustion-wave igniters……………………………………43
2.6.5 Resonance igniters…………………………………………….44
CHAPTER 3. Hyprob-Bread case study……………………………46
3.1 Subscale combustion breadboards…………………………………...46
3.2 Igniter…………………………………………………………………….48
3.3 Injector…………………………………………………………………...51
3.4 Methane Thermal Properties MTP Breadboard……………………52
3.5 Demonstrator……………………………………………………………55
3.6 Injection head…………………………………………………………...56
3.7 Combustion chamber…………………………………………………..59
CHAPTER 4. Thrust chambers’ manufacturing techniques
survey………………………………………………………………..64
4.1 Brazing……………………………………………………………………………64
4.1.1 Furnace Brazing……………………………………………….67
4.1.2 Brazing for thrust chambers………………………………….70
4.2 Diffusion bonding………………………..……………..……………………….71
4.2.1 Massive diffusion bonding……………………………………………74
4.2.2 Thin sheet diffusion bonding…………………………………………74
4.2.3 Diffusion bonding for thrust chambers: Platelet diffusion
bonding……………………………………………………………….…76
4.3 Additive manufacturing AM……………………………………………………80
4.3.1 Selective Laser Sintering……………….……………………..80
4.3.2 Electron-beam Melting………………………………………..81
4.3.3 Three-dimensional Printing 3DP……………………………82
4.3.4 Laser-engineered Net Shaping……………………………….84
4.3.5 Additive manufacturing for thrust chambers……………….85
4.4 Laser beam welding……………………………………………………….…….87
4.4.1 Conduction Welding…………………………………………..89
4.4.2 Penetration Laser Welding…………………………………...90
4.4.3 Laser Welding for thrust chamber…………………………..91
4.5 Ultrasonic welding………………………………………………………………92
4.5.1 Lateral drive system…………………………………………...93
4.5.2 Wedge reed system…………………………………………….94
4.5.3 Ultrasonic Welding for thrust chambers……………………97
4.6 Electroplating……………………………………………………………………98
4.6.1 Electroplating………………………..…………………………98
4.6.2 Electroless Plating…………………………………………...101
4.6.3 Electroforming…..…………………….……………………..101
4.6.4 Electroplating for thrust chambers………………………...103
4.7 Composite materials………...………………………………….……………..105
4.7.1 Reinforced plastics…………………………………………...106
4.7.2 Metal-matrix Composites……………………………………107
4.7.3 Ceramic-matrix Composites………………………………..108
4.7.4 Composites materials for thrust chamber…………………110
4.8 Centrifugal casting…………………………………………………………….113
4.8.1 True Centrifugal Casting……………………………………114
4.8.2 Semi-Centrifugal Casting…………………………………...114
4.8.3 Centrifuge or Pressure Casting…………………………….115
4.8.4 Centrifugal casting for thrust chamber……………………118
4.9 Thermal spray………………………………………………………………….119
4.9.1 High Velocity Oxy/Fuel Spraying HVOF…………………123
4.9.2 Vacuum Plasma Spraying VPS……………………………..124
4.9.3 RF Plasma Spraying…………………………………………126
4.9.4 Thermal spray for thrust chamber…………………………127
CHAPTER 5. Selected technology………………………………...131
5.1 Assessment criteria..………...……………………………………….131
5.2 Evolution of brazing procedure………………………………...…..132
5.2.1 The materials’ choice………………….……………………………..132
5.2.2 Activities of CIRA in cooperation with ATM: synthesis of main
results…........................................................................................135
5.2.3 Activities of CIRA in cooperation with AVIO: synthesis of main
results………………………………………………..…………………141
5.2.4 Activities of CIRA in cooperation with CSM: synthesis of main
results..……………………………………………………..…………..151
CHAPTER 6. Butt joints analysis…………………………………163
6.1 Preparation of the specimens..……………………………………..165
6.2 SEM and EDS analysis……………………..………………………..167
6.3 Tensile tests………………………………………….........................174
CHAPTER 7. Conclusions…………………………………….…179
7.1 Final considerations…………………………………………...179
7.2 Future developments of the chosen process and alternative
approaches…………..………………….………………………..180
Bibliography………………………………………………………182
ACKNOWLEDGEMENTS
The author gratefully thanks Prof. Antonino Squillace and Prof. Luigi
Carrino, Dr. Francesco Battista, Michele Ferraiuolo, Daniele Ricci,
Guido Saccone and the co-rapporteurs Dr. Fabio Scherillo and
Manrico Fragiacomo for their very precious support and useful
contribution to the work reported here.
ABSTRACT
This study was performed within the framework of the HYPROB BREAD program,
aimed to design and develop new promising configuration of rocket engine
regenerative thrust chambers, fuelled by methane and oxygen. This choice was
motivated by safety, handling and operation easiness and environmentally friendly
considerations.
Regenerative thrust chamber manufacturing is still a bottleneck in the design and
development process of rocket engines and several manufacturing methods were
proposed worldwide e.g., vacuum brazing, diffusion bonding, laser beam welding,
ultrasonic welding, electroplating, additive manufacturing, thermal spray,
centrifugal casting etc.
After a comprehensive literature survey brazing was chosen by CIRA in order to
obtain a technological on-ground demonstrator of a thrust chamber, based on
CuCrZr alloy inner liner and Inconel 718 outer shell.
The selected manufacturing process was investigated and developed in
collaboration with CIRA’s partners e.g., ATM, AVIO and CSM.
An alternative more efficient vacuum brazing method consisting in a preliminary
copper electroplating of Inconel 718 joint surfaces aimed to use a brazing alloy for
homogeneous component edges was conceived, experimentally studied and
realized.
Specimens produced by CSM were tested in the laboratories of the Department of
Chemical Engineering, Materials and Industrial Manufacturing at the University of
Naples Federico II.
Preliminary results of mechanical characterization and SEM and EDS analysis
show promising feasibility of this method to regenerative rocket engine thrust
chamber manufacturing. In any case, a future optimization and industrialization
should be carried out for a complete achievement of the final objective.
Linkedin
Linkedin
Linkedin
Linkedin
Linkedin
Linkedin
Linkedin
Linkedin

More Related Content

Similar to Linkedin

Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast mines
Anurag Jha
 
Tesi Master Atroshchenko
Tesi Master AtroshchenkoTesi Master Atroshchenko
Tesi Master Atroshchenko
thinfilmsworkshop
 
Experimental Investigation of Mist Film Cooling and Feasibility S
Experimental Investigation of Mist Film Cooling and Feasibility SExperimental Investigation of Mist Film Cooling and Feasibility S
Experimental Investigation of Mist Film Cooling and Feasibility S
Reda Ragab
 
AAS-GTA-reading-material.pdf
AAS-GTA-reading-material.pdfAAS-GTA-reading-material.pdf
AAS-GTA-reading-material.pdf
Drkalaivani2
 
AAS-GTA-reading-material.pdf material reading
AAS-GTA-reading-material.pdf material readingAAS-GTA-reading-material.pdf material reading
AAS-GTA-reading-material.pdf material reading
AbeerRagab2
 
design and manufacturing by using cnc plasma cutting machine.docx
design and manufacturing by using cnc plasma cutting machine.docxdesign and manufacturing by using cnc plasma cutting machine.docx
design and manufacturing by using cnc plasma cutting machine.docx
Mahamad Jawhar
 
MasterThesis-YimingHu
MasterThesis-YimingHuMasterThesis-YimingHu
MasterThesis-YimingHu
Yiming Hu
 
Graduation Thesis TUe- Michael Beljaars
Graduation Thesis TUe-  Michael BeljaarsGraduation Thesis TUe-  Michael Beljaars
Graduation Thesis TUe- Michael Beljaars
Michael Beljaars
 

Similar to Linkedin (20)

Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast mines
 
Daniels_MASc_thesis
Daniels_MASc_thesisDaniels_MASc_thesis
Daniels_MASc_thesis
 
Continuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction WeldingContinuous Drive Rotary Friction Welding
Continuous Drive Rotary Friction Welding
 
Tesi Master Atroshchenko
Tesi Master AtroshchenkoTesi Master Atroshchenko
Tesi Master Atroshchenko
 
Experimental Investigation of Mist Film Cooling and Feasibility S
Experimental Investigation of Mist Film Cooling and Feasibility SExperimental Investigation of Mist Film Cooling and Feasibility S
Experimental Investigation of Mist Film Cooling and Feasibility S
 
To enable the processing of new complex high performance alloys by improving ...
To enable the processing of new complex high performance alloys by improving ...To enable the processing of new complex high performance alloys by improving ...
To enable the processing of new complex high performance alloys by improving ...
 
Embs project report
Embs project reportEmbs project report
Embs project report
 
AAS-GTA-reading-material.pdf
AAS-GTA-reading-material.pdfAAS-GTA-reading-material.pdf
AAS-GTA-reading-material.pdf
 
AAS-GTA-reading-material.pdf material reading
AAS-GTA-reading-material.pdf material readingAAS-GTA-reading-material.pdf material reading
AAS-GTA-reading-material.pdf material reading
 
2017_12_Spitale.pdf
2017_12_Spitale.pdf2017_12_Spitale.pdf
2017_12_Spitale.pdf
 
STRETCHABLE STRAIN SENSORS BASED ON POLYPYRROLE AND THERMOPLASTIC POLYURETHAN...
STRETCHABLE STRAIN SENSORS BASED ON POLYPYRROLE AND THERMOPLASTIC POLYURETHAN...STRETCHABLE STRAIN SENSORS BASED ON POLYPYRROLE AND THERMOPLASTIC POLYURETHAN...
STRETCHABLE STRAIN SENSORS BASED ON POLYPYRROLE AND THERMOPLASTIC POLYURETHAN...
 
design and manufacturing by using cnc plasma cutting machine.docx
design and manufacturing by using cnc plasma cutting machine.docxdesign and manufacturing by using cnc plasma cutting machine.docx
design and manufacturing by using cnc plasma cutting machine.docx
 
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
SIMULATION AND OPTIMIZATION OF MATERIAL FLOW FORGING DEFECTS IN AUTOMOBILE CO...
 
ROTARY FRICTION WELDING BY CONVENTIONAL LATHE - MTECH PROJECT.pdf
ROTARY FRICTION WELDING BY CONVENTIONAL LATHE - MTECH PROJECT.pdfROTARY FRICTION WELDING BY CONVENTIONAL LATHE - MTECH PROJECT.pdf
ROTARY FRICTION WELDING BY CONVENTIONAL LATHE - MTECH PROJECT.pdf
 
MasterThesis-YimingHu
MasterThesis-YimingHuMasterThesis-YimingHu
MasterThesis-YimingHu
 
thesis
thesisthesis
thesis
 
Asu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio PcmAsu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio Pcm
 
Production of phthalic anhydride from xylene
Production of phthalic anhydride from xyleneProduction of phthalic anhydride from xylene
Production of phthalic anhydride from xylene
 
plasma cutting.pdf
plasma cutting.pdfplasma cutting.pdf
plasma cutting.pdf
 
Graduation Thesis TUe- Michael Beljaars
Graduation Thesis TUe-  Michael BeljaarsGraduation Thesis TUe-  Michael Beljaars
Graduation Thesis TUe- Michael Beljaars
 

Linkedin

  • 1. UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” SCUOLA POLITECNICA E DELLE SCIENZE DI BASE DIPARTIMENTO DI INGEGNERIA CHIMICA, DEI MATERIALI E DELLA PRODUZIONE INDUSTRIALE CORSO DI LAUREA IN INGEGNERIA MECCANICA PER LA PROGETTAZIONE E LA PRODUZIONE TESI DI LAUREA Comparative analysis of manufacturing technologies for liquid rocket regenerative thrust chambers Relatore Candidato Ch.mo Prof. Ing. Antonino Squillace Alfonso Sciano Matr. M64/280 Correlatori Ing. Manrico Fragiacomo Ing. Fabio Scherillo ANNO ACCADEMICO 2014/2015
  • 2. INDEX Page Acknowledgements………….…………………………...…………...i Abstract………………………………………………………………ii List of Figures……………………………………………………….iii List of Tables………………………………………...…………….viii CHAPTER 1. Introduction…...……………………………………...1 1.1 Background and motivation….…………………………...……………………..1 1.2 The Hyprob-Bread project………………………………………………………3 1.3 Thesis objective………………………………...…………………………………7 1.4 Outline of the work……………………………………………………………….8 CHAPTER 2. Liquid rocket engine: Design and main parameters…………………………………………………………..10 2.1 Liquid rocket thrust chamber basic performance parameters and main technological issues………...…………………………………………………..10 2.1.1 Specific Impulse Is...............................................................11 2.1.2 Characteristic Velocity c*……………………………….……12 2.1.3 Thrust Coefficient Cf…………………………………………..13 2.2 Injector head……………………………………………………………………..14 2.3 Combustion chamber……………………………………………………………23 2.4 Cooling system…………………………………………………………………..27 2.4.1 Regenerative cooling………………………………………….27 2.4.2 Dump cooling…………………………………………………..28 2.4.3 Film cooling…………………………………………………….30 2.4.4 Transpiration cooling…………………………………………30 2.4.5 Ablative cooling………………………………………………..31 2.4.6 Radiation cooling……………………………………………...33 2.4.7 Heat-Sink Cooling……………………………………………..33 2.5 Nozzle……………………………………………………………………………..35 2.5.1 Conical nozzle………………………………………………….37 2.5.2 Bell nozzle………………………………………………………37 2.6 Ignition system…….……………………………………………………………..40 2.6.1 Pyrotechnic igniters………….………………………………..40 2.6.2 Spark plugs……………………………………………………..41
  • 3. 2.6.3 Spark-torch igniters…………………………………………...42 2.6.4 Combustion-wave igniters……………………………………43 2.6.5 Resonance igniters…………………………………………….44 CHAPTER 3. Hyprob-Bread case study……………………………46 3.1 Subscale combustion breadboards…………………………………...46 3.2 Igniter…………………………………………………………………….48 3.3 Injector…………………………………………………………………...51 3.4 Methane Thermal Properties MTP Breadboard……………………52 3.5 Demonstrator……………………………………………………………55 3.6 Injection head…………………………………………………………...56 3.7 Combustion chamber…………………………………………………..59 CHAPTER 4. Thrust chambers’ manufacturing techniques survey………………………………………………………………..64 4.1 Brazing……………………………………………………………………………64 4.1.1 Furnace Brazing……………………………………………….67 4.1.2 Brazing for thrust chambers………………………………….70 4.2 Diffusion bonding………………………..……………..……………………….71 4.2.1 Massive diffusion bonding……………………………………………74 4.2.2 Thin sheet diffusion bonding…………………………………………74 4.2.3 Diffusion bonding for thrust chambers: Platelet diffusion bonding……………………………………………………………….…76 4.3 Additive manufacturing AM……………………………………………………80 4.3.1 Selective Laser Sintering……………….……………………..80 4.3.2 Electron-beam Melting………………………………………..81 4.3.3 Three-dimensional Printing 3DP……………………………82 4.3.4 Laser-engineered Net Shaping……………………………….84 4.3.5 Additive manufacturing for thrust chambers……………….85 4.4 Laser beam welding……………………………………………………….…….87 4.4.1 Conduction Welding…………………………………………..89 4.4.2 Penetration Laser Welding…………………………………...90 4.4.3 Laser Welding for thrust chamber…………………………..91 4.5 Ultrasonic welding………………………………………………………………92 4.5.1 Lateral drive system…………………………………………...93 4.5.2 Wedge reed system…………………………………………….94 4.5.3 Ultrasonic Welding for thrust chambers……………………97 4.6 Electroplating……………………………………………………………………98 4.6.1 Electroplating………………………..…………………………98
  • 4. 4.6.2 Electroless Plating…………………………………………...101 4.6.3 Electroforming…..…………………….……………………..101 4.6.4 Electroplating for thrust chambers………………………...103 4.7 Composite materials………...………………………………….……………..105 4.7.1 Reinforced plastics…………………………………………...106 4.7.2 Metal-matrix Composites……………………………………107 4.7.3 Ceramic-matrix Composites………………………………..108 4.7.4 Composites materials for thrust chamber…………………110 4.8 Centrifugal casting…………………………………………………………….113 4.8.1 True Centrifugal Casting……………………………………114 4.8.2 Semi-Centrifugal Casting…………………………………...114 4.8.3 Centrifuge or Pressure Casting…………………………….115 4.8.4 Centrifugal casting for thrust chamber……………………118 4.9 Thermal spray………………………………………………………………….119 4.9.1 High Velocity Oxy/Fuel Spraying HVOF…………………123 4.9.2 Vacuum Plasma Spraying VPS……………………………..124 4.9.3 RF Plasma Spraying…………………………………………126 4.9.4 Thermal spray for thrust chamber…………………………127 CHAPTER 5. Selected technology………………………………...131 5.1 Assessment criteria..………...……………………………………….131 5.2 Evolution of brazing procedure………………………………...…..132 5.2.1 The materials’ choice………………….……………………………..132 5.2.2 Activities of CIRA in cooperation with ATM: synthesis of main results…........................................................................................135 5.2.3 Activities of CIRA in cooperation with AVIO: synthesis of main results………………………………………………..…………………141 5.2.4 Activities of CIRA in cooperation with CSM: synthesis of main results..……………………………………………………..…………..151 CHAPTER 6. Butt joints analysis…………………………………163 6.1 Preparation of the specimens..……………………………………..165 6.2 SEM and EDS analysis……………………..………………………..167 6.3 Tensile tests………………………………………….........................174 CHAPTER 7. Conclusions…………………………………….…179 7.1 Final considerations…………………………………………...179 7.2 Future developments of the chosen process and alternative approaches…………..………………….………………………..180 Bibliography………………………………………………………182
  • 5. ACKNOWLEDGEMENTS The author gratefully thanks Prof. Antonino Squillace and Prof. Luigi Carrino, Dr. Francesco Battista, Michele Ferraiuolo, Daniele Ricci, Guido Saccone and the co-rapporteurs Dr. Fabio Scherillo and Manrico Fragiacomo for their very precious support and useful contribution to the work reported here.
  • 6. ABSTRACT This study was performed within the framework of the HYPROB BREAD program, aimed to design and develop new promising configuration of rocket engine regenerative thrust chambers, fuelled by methane and oxygen. This choice was motivated by safety, handling and operation easiness and environmentally friendly considerations. Regenerative thrust chamber manufacturing is still a bottleneck in the design and development process of rocket engines and several manufacturing methods were proposed worldwide e.g., vacuum brazing, diffusion bonding, laser beam welding, ultrasonic welding, electroplating, additive manufacturing, thermal spray, centrifugal casting etc. After a comprehensive literature survey brazing was chosen by CIRA in order to obtain a technological on-ground demonstrator of a thrust chamber, based on CuCrZr alloy inner liner and Inconel 718 outer shell. The selected manufacturing process was investigated and developed in collaboration with CIRA’s partners e.g., ATM, AVIO and CSM. An alternative more efficient vacuum brazing method consisting in a preliminary copper electroplating of Inconel 718 joint surfaces aimed to use a brazing alloy for homogeneous component edges was conceived, experimentally studied and realized. Specimens produced by CSM were tested in the laboratories of the Department of Chemical Engineering, Materials and Industrial Manufacturing at the University of Naples Federico II. Preliminary results of mechanical characterization and SEM and EDS analysis show promising feasibility of this method to regenerative rocket engine thrust chamber manufacturing. In any case, a future optimization and industrialization should be carried out for a complete achievement of the final objective.