SlideShare a Scribd company logo
1 of 159
1A
Imber- [im-ber]
m (genitive imbris);
1. rain
2. a stormcloud
2A
Kevin Warren
Design Team Lead (DTL)
Kelsey Kecherson
Assistant DTL
Jared Basile
Aerodynamics/CAD
Michael Browne
Structures/Landing Gear
Anthony Salazar
Structures/Landing Gear
Matthew Hanus
Weight and Balance
David Wilson
Stability and Control
Inigo Ripodas
Propulsion Liaison
3A
• Past 20 years:
• 14 fatal accidents
• Structural failure
• Aircraft unable to maneuver in wildfire
weather (up- and down-drafts)
• 36 Crewmen killed
4A
Figure 1A: Acreage Burned
5A
• Very Large Air Tankers (VLAT) can
drop as much as 12 loads of smaller
aircraft.
• Only 3 VLAT’s are available:
• 2 DC-10-10
• 1 747-100
• Dwindling fleet of firefighting aircraft
6A
• No purpose built engine for
firefighting
• Available engines will not perform in
adverse weather created by wildfires
• Current aircraft can not maintain
proper speed and altitude during
downdrafts
7A
8A
• Mission Specifications and Profile
• Preliminary Design Components
• Labor Hour and Cost Estimations
• Conclusions and Recommendations
imber tech - Kevin Warren
9A
10A
imber tech - Kevin Warren
Main RFP Requirements:
• 120,000 lb Slurry payload
• 2G emergency maneuver at 150 kts
• TO/Land on 7,000 ft runway
• Operational Radius of 300 nm
• 2500 nm ferry range
• Maximum Cockpit visibility
11A
Figure 2A: Design Point
12A
Loaded Flight Empty Flight
1
2
3
5
7
9
4 86
Figure 3A: Mission Profile
13A
Table 1A: Comparison
Imber tech – Kevin Warren
Aircraft Payload
(lb)
Take-Off
(ft)
Sorties Cruise Speed
(knots)
B747 170,000 8,000 1 517
DC-10 119,556 10,000 1 310
C-130 J-30 44,000 3,586 7 350
Torrent 19 120,000 7,000 3 430
14A
15A
• High Wing
• Ground clearance
• Short Landing
• Servicing
• T-Tail
• Engine wash
• Composite Material
• Lightweight
imber tech – Kelsey Kecherson
16A
• High-Cl airfoil
• 2g maneuver at slurry drop
• Tank for 120,000 lb of slurry
• Pressurized system
• Maximum pilot visibility
• Safer low-level navigation
imber tech – Kelsey Kecherson
17A
• Aft door
• Allows slurry tank removal
• High-thrust powerplant
• Designed for adverse wildfire conditions
imber tech – Kelsey Kecherson
18A
19A
Table 2A: Cockpit Dimensions Table 3A: Cockpit CG
Location (From Nose)
X-Location 7.18 ft
Y-Location 0.00 ft
Z-Location 17.6 ft
Length 10.10 ft
Width 12.11 ft
Height (at seat
location)
5.30 ft
Seatback Angle 10 deg
imber tech – Kelsey Kecherson
20A
Table 4A: Required Pilot Vision AnglesSeatback angle 10 deg
Overnose vision angle 21 deg
Over-the-side vision angle,
no head movement 35 deg
Over-the-side vision angle,
head against cockpit glass 70 deg
Unobstructed vision
upward/forward angle 20 deg
Grazing angle 30 deg
imber tech – Kelsey Kecherson
21A
22A
• Based on MGTOW: 552,277 lb
• 2G emergency maneuver at 150 KTAS
• Required CL = 2.66
• Clean configuration at 120 KTAS
• Required CL = 1.53
• MDD > 0.75
imber tech – Jared Basile
23A
NASA SC(2)-0714
Clmax = 2.09
αstall = 18o
imber tech – Jared Basile
24A
Design Variable Chosen Value
W/S (lb/ft2) 75
λ 0.6
(deg) 10
AR 9
Dependent Variable Value
S (ft2) 7364
c/4 (deg) 8.45
tmax (deg) 7.7
e 0.715
b (ft) 257
Table 5A: Design Variables
Imber tech – Jared Basile
25A
-1
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22
ClorCL
α (deg)
Airfoil
Wing
Figure 4A: 2D to 3D conversion
imber tech – Jared Basile
26A
Design Variable Chosen Value
cF/c 0.25
δF 20o
Swf/Sw 0.55
Table 6A: Comparison
Imber tech – Jared Basile
27A
-0.75
-0.5
-0.25
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3
-25 -20 -15 -10 -5 0 5 10 15 20 25
CL
α (deg)
Wing
20 deg Flaps
Figure 5A: Flapped and Unflapped CLα
imber tech – Jared Basile
28A
Figure 6A: Wing
imber tech – Jared Basile
29A
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1.04 1.12
Cp
M∞
Cp
Cpcr
Figure 7A: Mach Critial
imber tech – Jared Basile
30A
Design Variable Chosen Value
λ 0.18
(deg) 30
AR 5.5
b (ft) 110
Dependent Variable Value
S (ft2) 2200
c/4 (deg) 24.7
e 0.581
Table 7A: Comparison
Imber tech – Jared Basile
31A
-2
-1.6
-1.2
-0.8
-0.4
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
-32 -24 -16 -8 0 8 16 24 32
CL
AOA
Horizontal tail
HT w/ Elevator
Figure 8A: Horizontal Tail
imber tech – Jared Basile
32A
Design Variable Chosen Value
λ 0.9
(deg) 30
AR 4
b (ft) 35.7
Dependent Variable Value
S (ft2) 1275
c/4 (deg) 24.7
e 0.632
Table 8A: Design Variables
Imber tech – Jared Basile
33A
Figure 9A: Vertical Tail
imber tech – Jared Basile
-2
-1.6
-1.2
-0.8
-0.4
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
-32 -24 -16 -8 0 8 16 24 32
Vertical tail
VT w/ Rudder
34A
35A
Length = aWc a = 0.23 c = 0.50 W = 690000 lbs
Fuselage Length = 191 ft
Fineness Ratio 8
Inner Diameter = 23.9 ft
Outer Diameter = 24.4 ft
imber tech – Michael Browne
36A
Parameters Value
Mach Drag Divergence 0.8
Nose Fineness 1.5
Diameter 24.4ft
Length 36.7 ft
Table 9A: Nose Cone Sizing
imber tech – Michael Browne
37A
Parameters Value
Diameter 24.4 ft
Length 69 ft
Angle 16 degrees
Table 10A: Tail Cone Sizing
imber tech – Michael Browne
38A
Segment Length (ft)
Cockpit 10.10
Nose 36.7
Tail Cone 69.1
Cabin 85.2
Table 11A: Segment Sizes
imber tech – Michael Browne
39A
• Frames
• 20 inch spacing
• Longerons
• 10 inch spacing
• Stringers
• 8.4 inch spacing (between 7.3 and 9.5)
40A
imber tech – Michael Browne
41A
• Ribs
• 25 inch spacing
• Spars
• 3 spars at 10%, 40%, and 75% wing chord
• Stringers
• 8 inch spacing
imber tech – Anthony Salazar
42A
Weight of Aircraft 552277 lbs
nose wheels (4) 13807 lbs
main wheels (32) 15533 lbs
Table 12A: Estimated Weight Per Wheel
Figure 10A: Landing Gear Beam
443
999
1201
43A
imber tech – Anthony Salazar
Good Year Tire
Pressure
(Recommended < 120)
115
Diameter 39 in
Width 13 in
Rolling Radius 17.7 in
Table 13A: Refined Tire Sizing
Figure 11A: Tire Contact Area
Source: Raymer page 362, 5th Edition
44A
imber tech – Anthony Salazar
Static Loads on Tires (lbs)
Max Static Load 257,640
Max Static Load
(nose) 28,438
Min Static Load
(nose) 26,739
Dynamic Braking
Load (nose) 18,881
Table 14A: Static Loads on Tires
Figure 12A: Wheel Load Geometry
Source: Raymer page 359, 5th Edition
imber tech – Anthony Salazar
>15
Ma
Mf
Na
Nf
45A
Shock Absorber
VT Assumption
(ft/s)
10 ȠT 0.47
Ƞ 0.75 Loleo (load) (lbs) 128820
ST (in) 1.795 Doleo (main landing gear) (in) 14.36
S (in) 12.297 Doleo (nose landing gear) (in) 8.70
Ng 2 Length Oleo (in) 25.82
Table 15A: Shock Absorber Dimensions
imber tech – Anthony Salazar
46A
Tip Back Angle
End of Empennage 16.6 (deg)
Bogey 2 32.5 (deg)
Table 16A: Torrent 19 Tip Back Angle
Figure 13A: Torrent 19 Tip Criterion
imber tech – Anthony Salazar
47A
Figure 14A: Lateral Tip Over (ft)
imber tech – Anthony Salazar
48A
Ground Clearance
Landing Gear to
Wing
12.55 (deg)
Table 17A: Ground Clearance
Figure 15A: Ground Clearance
imber tech – Anthony Salazar
49A
12.55°
Figure 16A: Nose Gear Retracted Side View
imber tech – Anthony Salazar
50A
51A
• Raymer’s Statistical Group Weight
Method
• Cargo/Transport Weights Groups
• Compared to Nicolai’s Method
• Nicolai’s Composite Weight Reduction
Factors
imber tech – Matthew Hanus
52A
Figure 17A: Composite Make-up
imber tech – Matthew Hanus
Al 7075-T6
Al 7475 T7351
53A
Component Weight (lbs)
Wing 76,339
Horizontal Tail 8,183
Vertical Tail 18,829
Fuselage 31,738
Main Landing Gear 17,258
Engines (4) 16,403 x 4 = 65,612
Fuel (8 tanks) 18,692.25 x 8 = 149,538
Slurry 120,000
Slurry Tank 36,000
Table 18A: Component Weights
imber tech – Matthew Hanus
54A
Figure 18A: Side View with Component CG Locations
imber tech – Matthew Hanus
55A
A GJD
F I E
C B
H
Figure 19B: Center Of Gravity Location
1: Fuel Burn – depart airport
2: Slurry Drop
3: Fuel Burn – return to airport
Imber tech – Matthew Hanus
56A
• Most aft X CG: 86.36 ft (1,037 in.)
• Most forward X CG: 85.42 ft (1,025 in.)
• Total X CG shift: 0.94 ft (11 in.)
• Max Z CG location: 21.68 ft (260 in.)
imber tech – Matthew Hanus
57A
58A
imber tech – David Wilson
59A
• Full: 0.102
• Post Slurry: 0.114
• Empty Fuel: 0.107
• Empty: 0.128
imber tech – David Wilson
60A
Table 19A: Trim Conditions
Condition Cruise to drop Ferry cruise Take off
Drop
(Deg)
Alpha -4.77 -3.06 5.18 3.19
Ih -3.55 -3.85 -5.32 -5.87
imber tech – David Wilson
61A
• 2G Maneuver
• Cl used for drop: 1.4
• Velocity: 150 kts
• Cmcl from average SM
• Deflection required: 9.3 degrees
• Pitch rate: 7.27 deg/sec
imber tech – David Wilson
62A
• Take off
• X-distance to Rear Gear: 14 ft
• Weight: 552,277 lb
• Moment required: 7,731,878 ft·lb
• Size chose: 30% chord
• Total moment:
-249,598 ft·lb
imber tech – David Wilson
63A
• Take-off
• Trim: -5.32 deg
• Elevator deflection:
-5 deg
• AOA: -6.82 deg
• 2G Maneuver
• Trim: -5.87 deg
• Elevator deflection:
-9.322 deg
• AOA: -8.66 deg
imber tech – David Wilson
64A
imber tech – David Wilson
65A
imber tech – David Wilson
Figure 20B: Cnβ vs Vertical Area
66A
-0.006
-0.004
-0.002
0
0.002
0.004
0.006
0.008
0.01
0 500 1000 1500 2000 2500 3000
Cn B
Vertical Tail Sizeβ
Vertical Tail Size
imber tech – David Wilson
Table 20A: Clβ
Parameter Value
Dihedral 0
Wing sweep -0.000624
Wing position -0.00016
Vertical Tail -0.00121
Total (1/deg) -0.002
67A
• Aircraft becomes more stable during
drop
• Elevators provide control
• Vmc requirement met
• Stability derivatives are stable
imber tech – David Wilson
68A
69A
• Used Brandt’s Method for Drag Build-Up
calculations
• Specifies approximations for each type
of surface
• Considers these areas and subtracts the
areas of intersection
imber tech – Inigo Ripodas
70A
Circular Surfaces
S (ft2
)
Nose Cone 1437
Nose Cone Sphere 14
Fuselage 8006
Tail Cone 3254
Engine 532 (x4)
Total 14839
Table 21A: Wetted Area of Circular Surfaces
imber tech – Inigo Ripodas
71A
• Estimated Wetted Area = 37,643 ft2
• CATIA Estimated Area = 39,525 ft2
imber tech – Inigo Ripodas
72A
Figure 21A: Total Drag
imber tech – Inigo Ripodas
73A
Figure 22A: Thrust Available and Thrust Required at Sea-Level
imber tech – Inigo Ripodas
74A
Figure 22A: Thrust Available and Thrust Required at 10,000 ft
imber tech – Inigo Ripodas
75A
Figure 22A: Thrust Available and Thrust Required at 20,000 ft
imber tech – Inigo Ripodas
76A
Figure 22A: Thrust Available and Thrust Required at 30,000 ft
imber tech – Inigo Ripodas
77A
Figure 22A: Thrust Available and Thrust Required at 40,000 ft
imber tech – Inigo Ripodas
78A
79A
• Similar Engines
• Engine Cycle and Design Point
• Mission Analysis
• Engine Configuration and Layout
• Inlet and Diffuser Design and Installation Loss
• Nozzle Design and Installation Loss
80A
ṁ - Kyle Klouda
81A
Low TSFC ~ 0.553 (lbm/lbf*hr)
Low Emissions/ Noise
High Turbine Inlet Temperature ~ 3325o R
High Weight ~ 17250 lb.
82A
ṁ - Troy Kilgore
Small frame
Lightweight
3-Spool Design
TSFC ~ 0.557 (lbm/lbf*hr)
Sound-deadening material in inlet area
83A
ṁ - Troy Kilgore
Highly complex compressor system
High TSFC ~ .63 (lbm/lbf*hr)
84A
ṁ - Troy Kilgore
Engine Model GE90-85B RB211-882/884 PW4084
Dry Weight (engine) (lb) 17250 13100 14920
Thrust(sea-level) (lb) 87400 84950 87900
TSFC(sea-level)
(lbm/hr*lbf)
0.294 N.A 0.329
TSFC(cruise) (lbm/hr*lbf) 0.5526 0.557 N.A.
Cruise Altitude (feet) 35000 35000 35000
Cruise Speed (Mach) 0.8 0.83 0.83
Bypass Ratio 8.4 6.1 6.41
Overall Pressure Ratio 39.3 39 34.4
Spool No. 2 3 2
Fan Stages 1 1 1
LPC Stages 3 8 6
HPC Stages 9 6 11
LPT Stages 6 5 7
HPT Stages 2 1 2
airflow (lbm/s) 3037 2640 2550
Length (inches) 204 172 191.7
Case Diameter (inches) 134 132 118.5
Fan Diameter (inches) 123 110 112
Table 22A: Researched Values
85A
ṁ - Troy Kilgore
86A
Flight parameters Value Chosen
Mach 0.232
Altitude (ft) 10,000
Table 23A: Engine Design Points
87A
ṁ - Troy Kilgore
Design Choices Value Chosen
Compressor Pressure Ratio, πc 37
Low Pressure Ratio, πLPC 3.5
Fan Pressure Ratio, πf 1.8
Bypass Ratio, α 7.5
Turbine Temperature, Tt4 (°R) 3200
Bleed Air (lbm/s) 5.9
Table 24A: Engine Cycle Choices
88A
ṁ - Troy Kilgore
Mission Legs
(Sortie 1 data provided)
Altitude
(kft)
Mach Thrust Req’d
(lbf)
Fuel Burn
(lbf)
Takeoff 7 0.232 238,730 797
Climb 10 0.48 223,067 1,238
Climb & Accel 10-38 0.48-0.75 119,927 9,052
Cruise 38 0.75 31,458 13,869
Descend & Drop Slurry 10 0.232 143,117 171
Climb & Accel 10-38 0.232-0.75 118,172 6,148
Cruise/Descend/Land 38-7 0.75-0 29,993 15,637
Total (Sortie 1) - - - 46,911
Total (Sortie 2) - - - 44,418
Total (Sortie 3) - - - 44,350
Total Fuel Burn - - - 135,679
Table 25A: Mission Fuel Burn
89A
ṁ - Troy Kilgore
Mission Legs Altitude (kft) Mach Thrust Req’d
(lbf)
Fuel Burned
(lbf)
Takeoff 7 0.232 238,730 797
Climb 7-10 0.232-0.48 240,371 1,238
Climb & Accel 10-38 0.48-0.75 119,927 9,052
Cruise 38 0.75 31,458 123,529
Descend/Land 38-7 0.75-0 31,423 1,874
Ferry Total - - - 136,490
Table 26A: Ferry Fuel Burn
90A
ṁ - Troy Kilgore
91A
Component Length, in Diameter, in
Overall 348.02 169.51
Inlet 55 124
Fan 61.76 136
LPC 19.55 68.7
HPC 47.32 31.88
Combustor 27.45 35.98
HPT 10.15 35.16
LPT 31.14 76.52
Nozzle (from Max
Diameter)
239.68 169.51
92A
Table 27A: Engine Configuration
ṁ - Cameron Schmitt
93A
• Inlet Design
• Initial Sizing
• Blow-in Doors
• Pressure Calculations
• Resizing
• Cowling Design
94A
ṁ - Cameron Schmitt
• Conventional Pitot inlet
• High mass flow requirements
• Minimize additive drag
• Reduce free stream area mismatch
95A
ṁ - Cameron Schmitt
Table 28A: Install Losses
A1 = 10033 in2
Condition M0 M1 Alt (ft) Φ(%)
2-G Drop 0.232 0.8 10000 17.67
T/O 0.2320.737 7000 16.85
Climb 10kft 0.232 0.8 10000 17.67
Climb 17kft 0.6120.833 17000 1.94
Climb 24kft 0.6580.826 24000 1.04
Climb 31kft 0.7040.815 31000 0.46
Cruse 38kft 0.750.795 38000 0.02
Climb Out 0.66 0.84 19000 1.18
D1 =113in (9.4ft)
96A
ṁ - Cameron Schmitt
Drastically reduced Additive Drag at Design Point
Design
Point
A1 (in2) A0 (in2) M1 Dadd (lbf) Φ (%)
Without
Doors 10033 22198.99 0.8 10584.63 17.46
With Doors 16600 22198.99 0.364 1725.142 2.89
Auxiliary area = 6567 in2
Table 29A: Blow-in doors
97A
ṁ - Cameron Schmitt
• Exterior pressures
• Cp at 15% Chord
• Interior Pressures
• Mach at Fan Face =0.55
98A
ṁ - Cameron Schmitt
• Increase A1
• Reduce Aux Area
• Smaller Blow-In Doors
• Six 754in2 Doors
• 20 in long
• 37.7 in wide
99A
ṁ - Cameron Schmitt
Figure 24A: Final Inlet Design
100A
ṁ - Cameron Schmitt
• Utilize Natural Laminar Flow
• Minimize drag
• NASA HSNLF-213
• 17.5ft Chord length
101A
ṁ - Cameron Schmitt
102A
Layout
• Chevron nozzles
• Core Plug
• Thrust reversing
Installation Loss
• 2 Types of losses due to difference
in fan and core diameter
103A
ṁ - Cameron Schmitt
• Distribute airflow into shear layer
• Reduces noise 1-2dB
• NBAA states any noise reduction
on an engine which can be
possible is required
104A
•IC1: 14 internal chevrons •IC2: 18 internal chevrons
•M1C: 14-lobed mixer •M3: 18-lobed mixer
Internal Nozzles
Figure 25A: Internal Nozzles
(http://www.lufthansagroup.com)
105A
Figure 26A: Noise Optimization
(http://www.lufthansagroup.com) 106A
• “Prop-wash” creates pressure drag on
nozzle and turbulent flow resulting in noise
• Directs flow into more streamline formation
• Noise-reduction cone reduces noise 2-3dB
107A
• Redirects fan mass flow
• Angled at 45 degrees
• Produces about 44% the thrust
of the fan in opposite direction
108A
• Maximum dia: 169.51 inches
(14.12 feet )
• From max diameter to end of
core plug: 239.68 inches
(19.97 feet)
109A
110A
111A
Initial Design Parameters
Fan Booster High Pressure
Mass Flow (lbm/s) 3395.80 399.32 399.32
Total Pressure (psia) 14.40 25.91 50.34
Total Temperature (R) 490.01 591.64 732.27
Angular Velocity (rad/s) 282.35 282.35 1054
Number of Stages* 1 3 10
*From similar engines
Table 30A: Initial Design Parameters
112A
ṁ - Courtney Hough
Fan Design Inputs and Goals
Stages 1
Pressure (psia) 14.40
Temperature Rise (R) 101.63
Tip Radius (in) 68
Angular Velocity (rad/s) 282.35
Inlet Mach 0.55
Mass Flow (lbm/s) 3395.80
Design Pressure Ratio 1.8
Table 31A: Fan Design Inputs and Goals
• Constant Tip Design
• Tip Speed Limit (1600 ft/s)
• Titanium
113A
ṁ - Courtney Hough
Fan Output
Number of Blades 23
Overall Diameter (in) 136
Tip Speed (ft/s) 1598
Hub-to-Tip Ratio 0.39
Exit Mach 0.58
Exit Angle (deg) 3.43
Actual Pressure Ratio 1.81
Stage Loading 0.49
Diffusion Factor 0.46
Table 32A: Fan Output
Figure 27A: Catia Fan Model
114A
ṁ - Courtney Hough
• Constant Mean Design
• Tip Speed Limit (1400 ft/s)
• Inlet guide vanes
• Titanium
115A
ṁ - Courtney Hough
Table 33A: Booster Compressor Output
Booster Output
Overall Diameter (in) 68.70
Tip Speed (ft/s) 807.23
Mean Radii (in) 32
Hub-to-Tip Ratio 0.86
Exit Mach 0.40
Exit Angle (deg) 0
Actual Pressure Ratio 1.96
Stage Loading 0.49
Diffusion Factor 0.59
Figure 28A: Catia Booster Model
116A
ṁ - Courtney Hough
• Constant Tip Design
• Tip Speed Limit (1400 ft/s)
• Inlet guide vanes
• Similar Engines
• GE90
• 10 stages
• Titanium & Nickel
117A
ṁ - Courtney Hough
Table 34A: HPC Output
Booster Output
Overall Diameter (in) 31.88
Tip Speed (ft/s) 1400
Hub-to-Tip Ratio 0.39
Exit Mach 0.35
Exit Angle (deg) 0
Actual Pressure Ratio 10.54
Stage Loading 0.49
Diffusion Factor 0.59
Figure 29A: HPC Catia Model
118A
ṁ - Courtney Hough
Design Results
Pressure Ratio Goal Actual
Fan 1.8 1.81
Booster 1.94 1.96
High Pressure 10.57 10.54
Total 37 37
Table 35A: Design Results
119A
ṁ - Courtney Hough
120A
HP Turbine Design Parameters
Value
Mass Flow (lbm/s) 383.31
Inlet Total Pressure (psia) 497.5
Inlet Total Temperature (R) 3098
Angular Velocity (rad/s) 1054
Number of Stages 2
Table 36A: Design Parameters
121A
ṁ - Kevin Walker
HP Turbine Design Inputs
Mean Radius (in) 15.25
Inlet Mach 0.35
Inlet Flow Angle (deg) 0
Temperature Drop
Across Turbine (R)
691
Table 37A: HP Turbine Design Inputs
Design Point (Sea Level)
Mach 0
Altitude (ft) 0
Temperature (R) 490
Table 38A: Design Point
• Blade cooling scheme
required
• Constant mean design
122A
ṁ - Kevin Walker
HP Turbine Output
Stage 1 Stage 2
Number of Rotor Blades 112 62
Number of Stator Blades 48 52
Number of Exit Guide
Vanes
- 54
Stage Loading Coefficient 1.43 1.43
Flow Coefficient 1.08 1.05
Velocity Ratio 0.59 0.59
Table 39A: HP Turbine Output
123A
ṁ - Kevin Walker
HP Turbine Design Parameters
Value
Mass Flow (lbm/s) 403.28
Inlet Total Pressure (psia) 145.8
Inlet Total Temperature (R) 2350
Angular Velocity (rad/s) 282.35
Number of Stages 5
Table 40A: Design Parameters
124A
ṁ - Kevin Walker
LP Turbine Design Inputs
Mean Radius (in) 32
Inlet Mach 0.5
Inlet Flow Angle (deg) 0
Temperature Drop
Across Turbine (R)
835
Table 41A: LP Turbine Design Inputs
• Constant mean design
125A
ṁ - Kevin Walker
LP Turbine Output
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Number of Rotor
Blades
288 248 218 142 84
Number of Stator
Blades
266 178 186 144 110
Number of Exit Guide
Vanes
- - - - 30
Stage Loading
Coefficient
2.19 2.19 2.19 2.18 1.19
Flow Coefficient 1.09 1.09 1.08 1.06 1.04
Velocity Ratio 0.48 0.48 0.48 0.48 0.48
Table 42A: LP Turbine Output
126A
ṁ - Kevin Walker
127A
• Annular
• Inter-Turbine Burner Considered
• Other combustor platforms researched, but little information
found
• Combustor designed to meet geometry of
compressor exit and turbine entrance with no
loss of airflow or pressure
128A
ṁ - Jase Heinzeroth
• Design Point: Max Dynamic Pressure at sea-level
• Chose Mach 1 (1126 ft/s)
• Ran engine test to acquire temperature and pressure values
129A
ṁ - Jase Heinzeroth
Table 43A: Station Data
High-Pressure Comp. Exit High-Pressure Turbine Entrance
Total
Pressure, psia
554 521
Total
Temperature,
°R
1630 3200
Mass Flow,
lbm/s
368 378
Mach
Number
0.35 0.35
130A
ṁ - Jase Heinzeroth
• Assumed 1 percent pressure loss over
diffuser section
• Area Ratio of diffuser optimized to 1 percent
loss
• Actual loss: 3.5 psi
131A
Combustor Inlet
# of sub-divided 9°
streams
3
Mach Number 0.07
Swirl Angle, deg 0
Total Diffuser Length, in 6.838
Overall Area Ratio 4.71
Area Ratio Flat-Wall 2.8
Area Ratio Dump 1.68
Table 44A: Diffuser Data
132A
ṁ - Jase Heinzeroth
Figure 30A: Emissions Range
133A
ṁ - Jase Heinzeroth
Summary Percentage of Total Mass Flow, lbm/s
Primary Air Flow 66.61 245.077
Cooling Air Flow 4.57 16.820
Secondary Air Flow 28.55 105.033
Dilution Air Flow 0.27 1.0196
Total air flow 100 367.95
Table 45A: Air Flows
134A
ṁ - Jase Heinzeroth
Primary Zone Design
Annulus Area, in2 75.116
Liner Height, in 4.123
Annulus Mach No. 0.114
Number of Fuel Nozzles 17
Primary Zone Length, in 3.94
Table 46A: Primary Zone
135A
ṁ - Jase Heinzeroth
Secondary Zone
CD90° 0.64
Number of Dilution Holes 457
Diameter of Dilution Holes, in 0.465
Length of Secondary Zone, in 8.246
Table 47A: Secondary Zone
136A
ṁ - Jase Heinzeroth
Dilution Zone
CD90° 0.64
Number of Dilution Holes 1
Diameter of Dilution Holes 0.626
Length of Dilution Zone 6.185
Table 48A: Dilution Zone
137A
ṁ - Jase Heinzeroth
138A
0
500
1000
1500
2000
2500HoursWorked
Date (MM/DD/YYYY)
Table: Labor Accounting Chart
Actual Hours
Projected Hours
139A
Figure 31A: Labor Accounting Chart
ṁ - Kyle Klouda
Labor Hours and Costs
Category Hours Costs
Engineering Management 261 $26,100
Engineering 778.33 $50,591
Technical 39 $1,560
Administrative 210.3 $4,206
Sub-total 1,289 $82,457
Professional Development 875.16 $43,758
Total 2,164 $126,215
Table 49A: Hours and Costs
140A
ṁ - Kyle Klouda
12%
36%
2%
40%
10%
Engineering
Management
Engineering
Technical
Professional
Development
Administrative
Figure 32A: Breakdown of Hours
141A
ṁ - Kyle Klouda
21%
40%
1%
3%
35%
Engineering
Management
Engineering
Technical
Administrative
Professional
Development
Figure 33A: Labor Hour Costs
142A
ṁ - Kyle Klouda
• Length: 29 ft
• Diameter: 14 ft
• Installed Thrust: 87,483 lbf
• Overall Compression Ratio: 37
• Max TSFC: 0.854 lbm/lbf*hr
• Fan and Core Nozzle Installation Loss of
Totals to 4.99%
143A
ṁ - Kyle Klouda
144A
Figure 34A: V-n Diagram
imber tech – Kevin Warren
V (KTAS)
nz(g’s)
145A
146A
imber tech – Kevin Warren
Figure 35A: Thrust Available Vs. Thrust Required 38k ft
• Critical phase of flight
• 2g “pull-up” maneuver simulates fire weather
• Lift = Weight
• CL required is 2.66 with 2.69 available from
wing design
147A
imber tech – Kevin Warren
Figure 36A: Max Thrust Takeoff with 4 engines
imber tech – Kevin Warren
148A
Parameter Value
Best Climb Angle 16.82 (Degrees)
Best Climb Velocity 628 (KTAS)
Table 50A: Climb Performance
imber tech – Kevin Warren
149A
• Based on Breguet’s range equation
• 4313 nm Range
150A
imber tech – Kevin Warren
Phase of Landing Distance (ft)
Obstacle Clearance (SA) 954
Free Roll (SFR) 638
Braking Roll (SB) 3405
Total Landing Distance 4997
Table 52A: Landing Distances
imber tech – Kevin Warren
151A
152A
153A
imber tech – Kevin Warren
Cost Type Per Aircraft Total (20 Aircraft)
RDT&E $587 Million $11.7 Billion
Manufacturing
Cost
$2.2 Billion $44 Billion
Cost to Customer $2.8 Billion $56 Billion
Operating Cost $430 Million $8.6 Billion
Life Cycle Cost $3.3 Billion $65 Billion
Table 53A: Cost Estimation
Figure 37A: Labor Hours
imber tech – Kevin Warren
154A
Figure 38A: Labor Hour Accounting Hours
imber tech – Kevin Warren
155A
Figure 39A: Labor Hour Accounting Cost
imber tech – Kevin Warren
156A
157A
• Structure:
• Aft door system may compromise support of tail
• Landing-gear doors are too large
• Internal structure requires further analysis
• S&C:
• Tail structure based on S&C and may require modification
to work with structure
• Engine placement needs to be analyzed for interference
• Aircraft performance characteristics require wind
tunnel testing to verify calculated data
158A
imber tech – Kevin Warren
159A

More Related Content

What's hot

UROP Proposal Advanced Aircraft Wing Structural Design and Fabrication
UROP Proposal Advanced Aircraft Wing Structural Design and FabricationUROP Proposal Advanced Aircraft Wing Structural Design and Fabrication
UROP Proposal Advanced Aircraft Wing Structural Design and FabricationLaliphat Kositchaimongkol
 
Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Francisco Davila
 
Preliminary Design of 100 Seater Aircraft
Preliminary Design of 100 Seater AircraftPreliminary Design of 100 Seater Aircraft
Preliminary Design of 100 Seater AircraftROSHAN SAH
 
Horizon I -SNA- s.shakya
Horizon I -SNA- s.shakyaHorizon I -SNA- s.shakya
Horizon I -SNA- s.shakyaSuchita Shakya
 
Fighter aircraft design adp 1
Fighter aircraft design adp 1Fighter aircraft design adp 1
Fighter aircraft design adp 1Dudekula Jamal
 
Final fighter aircraft design adp 2
Final fighter aircraft design adp 2Final fighter aircraft design adp 2
Final fighter aircraft design adp 2Dudekula Jamal
 
DESIGN AND AERODYNAMIC ANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...
DESIGN AND AERODYNAMICANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...DESIGN AND AERODYNAMICANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...
DESIGN AND AERODYNAMIC ANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...Chanderveer Singh
 
Design of fighter aircraft presentation
Design of fighter aircraft presentationDesign of fighter aircraft presentation
Design of fighter aircraft presentationDudekula Jamal
 
Aero474 01 Design example
Aero474   01 Design exampleAero474   01 Design example
Aero474 01 Design exampleMohammad Tawfik
 
JAR 23 and FAR 23 Comparison part 2
JAR 23 and FAR 23 Comparison part 2JAR 23 and FAR 23 Comparison part 2
JAR 23 and FAR 23 Comparison part 2Jio Gayon
 
SARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESarnath R
 
JAR 23 and FAR 23 Comparison
JAR 23 and FAR 23 ComparisonJAR 23 and FAR 23 Comparison
JAR 23 and FAR 23 ComparisonJio Gayon
 
Vehicle load transfer part II 2021
Vehicle load transfer part II 2021Vehicle load transfer part II 2021
Vehicle load transfer part II 2021William Harbin
 
Static analysis xyz wellhead platform portofolio
Static analysis xyz wellhead platform portofolioStatic analysis xyz wellhead platform portofolio
Static analysis xyz wellhead platform portofolioKristoforusAnggara
 
SARNATH-PROFILE-at LNT
SARNATH-PROFILE-at LNTSARNATH-PROFILE-at LNT
SARNATH-PROFILE-at LNTSarnath R
 

What's hot (20)

UROP Proposal Advanced Aircraft Wing Structural Design and Fabrication
UROP Proposal Advanced Aircraft Wing Structural Design and FabricationUROP Proposal Advanced Aircraft Wing Structural Design and Fabrication
UROP Proposal Advanced Aircraft Wing Structural Design and Fabrication
 
Aero474 Design Example
Aero474 Design ExampleAero474 Design Example
Aero474 Design Example
 
Aircraft Design Proposal 2016
Aircraft Design Proposal 2016Aircraft Design Proposal 2016
Aircraft Design Proposal 2016
 
Preliminary Design of 100 Seater Aircraft
Preliminary Design of 100 Seater AircraftPreliminary Design of 100 Seater Aircraft
Preliminary Design of 100 Seater Aircraft
 
Horizon I -SNA- s.shakya
Horizon I -SNA- s.shakyaHorizon I -SNA- s.shakya
Horizon I -SNA- s.shakya
 
Poster
PosterPoster
Poster
 
Fighter aircraft design adp 1
Fighter aircraft design adp 1Fighter aircraft design adp 1
Fighter aircraft design adp 1
 
Final fighter aircraft design adp 2
Final fighter aircraft design adp 2Final fighter aircraft design adp 2
Final fighter aircraft design adp 2
 
DESIGN AND AERODYNAMIC ANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...
DESIGN AND AERODYNAMICANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...DESIGN AND AERODYNAMICANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...
DESIGN AND AERODYNAMIC ANALYSIS OF A CAR FOR REDUCING DRAG FORCE and LIFT FOR...
 
Aircraft design project 2
Aircraft design project 2Aircraft design project 2
Aircraft design project 2
 
Design of fighter aircraft presentation
Design of fighter aircraft presentationDesign of fighter aircraft presentation
Design of fighter aircraft presentation
 
Aero474 01 Design example
Aero474   01 Design exampleAero474   01 Design example
Aero474 01 Design example
 
JAR 23 and FAR 23 Comparison part 2
JAR 23 and FAR 23 Comparison part 2JAR 23 and FAR 23 Comparison part 2
JAR 23 and FAR 23 Comparison part 2
 
Index adp 2
Index adp 2Index adp 2
Index adp 2
 
SARNATH-PROFILE-CAE
SARNATH-PROFILE-CAESARNATH-PROFILE-CAE
SARNATH-PROFILE-CAE
 
JAR 23 and FAR 23 Comparison
JAR 23 and FAR 23 ComparisonJAR 23 and FAR 23 Comparison
JAR 23 and FAR 23 Comparison
 
Vehicle load transfer part II 2021
Vehicle load transfer part II 2021Vehicle load transfer part II 2021
Vehicle load transfer part II 2021
 
Static analysis xyz wellhead platform portofolio
Static analysis xyz wellhead platform portofolioStatic analysis xyz wellhead platform portofolio
Static analysis xyz wellhead platform portofolio
 
SARNATH-PROFILE-at LNT
SARNATH-PROFILE-at LNTSARNATH-PROFILE-at LNT
SARNATH-PROFILE-at LNT
 
full report
full reportfull report
full report
 

Similar to Imber Tech Phase IV Presentation Slides A

Atlas Senior Deisgn Presentation
Atlas Senior Deisgn PresentationAtlas Senior Deisgn Presentation
Atlas Senior Deisgn PresentationSteven Polowy
 
Ship design project Final presentation
Ship design project Final presentationShip design project Final presentation
Ship design project Final presentationKifayath Chowdhury
 
Final presentation 4 19
Final presentation 4 19Final presentation 4 19
Final presentation 4 19SteveBarr1
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office andMasroor Alam
 
Design and analysis of hour bike
Design and analysis of hour bikeDesign and analysis of hour bike
Design and analysis of hour bikekailashgavare
 
Senior Design Project Final Presentation
Senior Design Project Final PresentationSenior Design Project Final Presentation
Senior Design Project Final Presentationbtpguitar723
 
ESRA Final Presentation
ESRA Final PresentationESRA Final Presentation
ESRA Final PresentationConnor Kelsay
 
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)Franco Bontempi Org Didattica
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & designGhawsudin
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3Kifayath Chowdhury
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)sufiyan shaikh
 
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...fjjsekkmdmes
 
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...fjjskekdmnsme
 
2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 
2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 

Similar to Imber Tech Phase IV Presentation Slides A (20)

Atlas Senior Deisgn Presentation
Atlas Senior Deisgn PresentationAtlas Senior Deisgn Presentation
Atlas Senior Deisgn Presentation
 
Final pre.ppt
Final pre.pptFinal pre.ppt
Final pre.ppt
 
Ship design project Final presentation
Ship design project Final presentationShip design project Final presentation
Ship design project Final presentation
 
Final presentation 4 19
Final presentation 4 19Final presentation 4 19
Final presentation 4 19
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Analysis and design of 15 storey office and
Analysis and design of 15 storey office andAnalysis and design of 15 storey office and
Analysis and design of 15 storey office and
 
Design and analysis of hour bike
Design and analysis of hour bikeDesign and analysis of hour bike
Design and analysis of hour bike
 
2nd Presentation NAME 338
2nd Presentation NAME 3382nd Presentation NAME 338
2nd Presentation NAME 338
 
Senior Design Project Final Presentation
Senior Design Project Final PresentationSenior Design Project Final Presentation
Senior Design Project Final Presentation
 
NAME 338 , Presentation 1
NAME 338 , Presentation 1NAME 338 , Presentation 1
NAME 338 , Presentation 1
 
ESRA Final Presentation
ESRA Final PresentationESRA Final Presentation
ESRA Final Presentation
 
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
CM - Jauregui - Sapienza University of Rome (60 min, part i, members modified)
 
Gantry girder Analyse & design
Gantry girder Analyse & designGantry girder Analyse & design
Gantry girder Analyse & design
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3
 
444 e
444 e444 e
444 e
 
MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)MAIN CANOPY BAJAJ HR(22.09.2016)
MAIN CANOPY BAJAJ HR(22.09.2016)
 
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
 
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
Caterpillar cat ec20 k ec25k forklift lift trucks service repair manual sna3e...
 
2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf
 
2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf2F BEAM DESIGN SUMMARY.pdf
2F BEAM DESIGN SUMMARY.pdf
 

Recently uploaded

The history of music videos a level presentation
The history of music videos a level presentationThe history of music videos a level presentation
The history of music videos a level presentationamedia6
 
Petrosains Drama Competition (PSDC).pptx
Petrosains Drama Competition (PSDC).pptxPetrosains Drama Competition (PSDC).pptx
Petrosains Drama Competition (PSDC).pptxIgnatiusAbrahamBalin
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...BarusRa
 
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...Pooja Nehwal
 
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun service
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun serviceCALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun service
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun serviceanilsa9823
 
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...babafaisel
 
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...nagunakhan
 
Chapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdfChapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdfParomita Roy
 
SD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptxSD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptxjanettecruzeiro1
 
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵anilsa9823
 
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call GirlsCBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girlsmodelanjalisharma4
 
Top Rated Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated  Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...Top Rated  Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...Call Girls in Nagpur High Profile
 
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...Yantram Animation Studio Corporation
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)amitlee9823
 
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service Bhiwandi
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service BhiwandiVIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service Bhiwandi
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service BhiwandiSuhani Kapoor
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdftbatkhuu1
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...home
 
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service Amravati
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service AmravatiVIP Call Girl Amravati Aashi 8250192130 Independent Escort Service Amravati
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service AmravatiSuhani Kapoor
 

Recently uploaded (20)

The history of music videos a level presentation
The history of music videos a level presentationThe history of music videos a level presentation
The history of music videos a level presentation
 
Petrosains Drama Competition (PSDC).pptx
Petrosains Drama Competition (PSDC).pptxPetrosains Drama Competition (PSDC).pptx
Petrosains Drama Competition (PSDC).pptx
 
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...AMBER GRAIN EMBROIDERY | Growing folklore elements |  Root-based materials, w...
AMBER GRAIN EMBROIDERY | Growing folklore elements | Root-based materials, w...
 
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...Kurla Call Girls Pooja Nehwal📞 9892124323 ✅  Vashi Call Service Available Nea...
Kurla Call Girls Pooja Nehwal📞 9892124323 ✅ Vashi Call Service Available Nea...
 
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun service
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun serviceCALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun service
CALL ON ➥8923113531 🔝Call Girls Aminabad Lucknow best Night Fun service
 
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
Kala jadu for love marriage | Real amil baba | Famous amil baba | kala jadu n...
 
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...
Nepali Escort Girl Gomti Nagar \ 9548273370 Indian Call Girls Service Lucknow...
 
Chapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdfChapter 19_DDA_TOD Policy_First Draft 2012.pdf
Chapter 19_DDA_TOD Policy_First Draft 2012.pdf
 
SD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptxSD_The MATATAG Curriculum Training Design.pptx
SD_The MATATAG Curriculum Training Design.pptx
 
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service  🧵
CALL ON ➥8923113531 🔝Call Girls Kalyanpur Lucknow best Female service 🧵
 
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call GirlsCBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
CBD Belapur Individual Call Girls In 08976425520 Panvel Only Genuine Call Girls
 
escort service sasti (*~Call Girls in Prasad Nagar Metro❤️9953056974
escort service sasti (*~Call Girls in Prasad Nagar Metro❤️9953056974escort service sasti (*~Call Girls in Prasad Nagar Metro❤️9953056974
escort service sasti (*~Call Girls in Prasad Nagar Metro❤️9953056974
 
Top Rated Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated  Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...Top Rated  Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
Top Rated Pune Call Girls Saswad ⟟ 6297143586 ⟟ Call Me For Genuine Sex Serv...
 
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...
Captivating Charm: Exploring Marseille's Hillside Villas with Our 3D Architec...
 
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance  VVIP 🍎 SER...
Call Girls Service Mukherjee Nagar @9999965857 Delhi 🫦 No Advance VVIP 🍎 SER...
 
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
Escorts Service Basapura ☎ 7737669865☎ Book Your One night Stand (Bangalore)
 
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service Bhiwandi
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service BhiwandiVIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service Bhiwandi
VIP Call Girls Bhiwandi Ananya 8250192130 Independent Escort Service Bhiwandi
 
Editorial design Magazine design project.pdf
Editorial design Magazine design project.pdfEditorial design Magazine design project.pdf
Editorial design Magazine design project.pdf
 
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
Recommendable # 971589162217 # philippine Young Call Girls in Dubai By Marina...
 
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service Amravati
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service AmravatiVIP Call Girl Amravati Aashi 8250192130 Independent Escort Service Amravati
VIP Call Girl Amravati Aashi 8250192130 Independent Escort Service Amravati
 

Imber Tech Phase IV Presentation Slides A

  • 1. 1A
  • 2. Imber- [im-ber] m (genitive imbris); 1. rain 2. a stormcloud 2A
  • 3. Kevin Warren Design Team Lead (DTL) Kelsey Kecherson Assistant DTL Jared Basile Aerodynamics/CAD Michael Browne Structures/Landing Gear Anthony Salazar Structures/Landing Gear Matthew Hanus Weight and Balance David Wilson Stability and Control Inigo Ripodas Propulsion Liaison 3A
  • 4. • Past 20 years: • 14 fatal accidents • Structural failure • Aircraft unable to maneuver in wildfire weather (up- and down-drafts) • 36 Crewmen killed 4A
  • 5. Figure 1A: Acreage Burned 5A
  • 6. • Very Large Air Tankers (VLAT) can drop as much as 12 loads of smaller aircraft. • Only 3 VLAT’s are available: • 2 DC-10-10 • 1 747-100 • Dwindling fleet of firefighting aircraft 6A
  • 7. • No purpose built engine for firefighting • Available engines will not perform in adverse weather created by wildfires • Current aircraft can not maintain proper speed and altitude during downdrafts 7A
  • 8. 8A
  • 9. • Mission Specifications and Profile • Preliminary Design Components • Labor Hour and Cost Estimations • Conclusions and Recommendations imber tech - Kevin Warren 9A
  • 10. 10A
  • 11. imber tech - Kevin Warren Main RFP Requirements: • 120,000 lb Slurry payload • 2G emergency maneuver at 150 kts • TO/Land on 7,000 ft runway • Operational Radius of 300 nm • 2500 nm ferry range • Maximum Cockpit visibility 11A
  • 12. Figure 2A: Design Point 12A
  • 13. Loaded Flight Empty Flight 1 2 3 5 7 9 4 86 Figure 3A: Mission Profile 13A
  • 14. Table 1A: Comparison Imber tech – Kevin Warren Aircraft Payload (lb) Take-Off (ft) Sorties Cruise Speed (knots) B747 170,000 8,000 1 517 DC-10 119,556 10,000 1 310 C-130 J-30 44,000 3,586 7 350 Torrent 19 120,000 7,000 3 430 14A
  • 15. 15A
  • 16. • High Wing • Ground clearance • Short Landing • Servicing • T-Tail • Engine wash • Composite Material • Lightweight imber tech – Kelsey Kecherson 16A
  • 17. • High-Cl airfoil • 2g maneuver at slurry drop • Tank for 120,000 lb of slurry • Pressurized system • Maximum pilot visibility • Safer low-level navigation imber tech – Kelsey Kecherson 17A
  • 18. • Aft door • Allows slurry tank removal • High-thrust powerplant • Designed for adverse wildfire conditions imber tech – Kelsey Kecherson 18A
  • 19. 19A
  • 20. Table 2A: Cockpit Dimensions Table 3A: Cockpit CG Location (From Nose) X-Location 7.18 ft Y-Location 0.00 ft Z-Location 17.6 ft Length 10.10 ft Width 12.11 ft Height (at seat location) 5.30 ft Seatback Angle 10 deg imber tech – Kelsey Kecherson 20A
  • 21. Table 4A: Required Pilot Vision AnglesSeatback angle 10 deg Overnose vision angle 21 deg Over-the-side vision angle, no head movement 35 deg Over-the-side vision angle, head against cockpit glass 70 deg Unobstructed vision upward/forward angle 20 deg Grazing angle 30 deg imber tech – Kelsey Kecherson 21A
  • 22. 22A
  • 23. • Based on MGTOW: 552,277 lb • 2G emergency maneuver at 150 KTAS • Required CL = 2.66 • Clean configuration at 120 KTAS • Required CL = 1.53 • MDD > 0.75 imber tech – Jared Basile 23A
  • 24. NASA SC(2)-0714 Clmax = 2.09 αstall = 18o imber tech – Jared Basile 24A
  • 25. Design Variable Chosen Value W/S (lb/ft2) 75 λ 0.6 (deg) 10 AR 9 Dependent Variable Value S (ft2) 7364 c/4 (deg) 8.45 tmax (deg) 7.7 e 0.715 b (ft) 257 Table 5A: Design Variables Imber tech – Jared Basile 25A
  • 26. -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 ClorCL α (deg) Airfoil Wing Figure 4A: 2D to 3D conversion imber tech – Jared Basile 26A
  • 27. Design Variable Chosen Value cF/c 0.25 δF 20o Swf/Sw 0.55 Table 6A: Comparison Imber tech – Jared Basile 27A
  • 28. -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 -25 -20 -15 -10 -5 0 5 10 15 20 25 CL α (deg) Wing 20 deg Flaps Figure 5A: Flapped and Unflapped CLα imber tech – Jared Basile 28A
  • 29. Figure 6A: Wing imber tech – Jared Basile 29A
  • 30. -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1.04 1.12 Cp M∞ Cp Cpcr Figure 7A: Mach Critial imber tech – Jared Basile 30A
  • 31. Design Variable Chosen Value λ 0.18 (deg) 30 AR 5.5 b (ft) 110 Dependent Variable Value S (ft2) 2200 c/4 (deg) 24.7 e 0.581 Table 7A: Comparison Imber tech – Jared Basile 31A
  • 32. -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 -32 -24 -16 -8 0 8 16 24 32 CL AOA Horizontal tail HT w/ Elevator Figure 8A: Horizontal Tail imber tech – Jared Basile 32A
  • 33. Design Variable Chosen Value λ 0.9 (deg) 30 AR 4 b (ft) 35.7 Dependent Variable Value S (ft2) 1275 c/4 (deg) 24.7 e 0.632 Table 8A: Design Variables Imber tech – Jared Basile 33A
  • 34. Figure 9A: Vertical Tail imber tech – Jared Basile -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 -32 -24 -16 -8 0 8 16 24 32 Vertical tail VT w/ Rudder 34A
  • 35. 35A
  • 36. Length = aWc a = 0.23 c = 0.50 W = 690000 lbs Fuselage Length = 191 ft Fineness Ratio 8 Inner Diameter = 23.9 ft Outer Diameter = 24.4 ft imber tech – Michael Browne 36A
  • 37. Parameters Value Mach Drag Divergence 0.8 Nose Fineness 1.5 Diameter 24.4ft Length 36.7 ft Table 9A: Nose Cone Sizing imber tech – Michael Browne 37A
  • 38. Parameters Value Diameter 24.4 ft Length 69 ft Angle 16 degrees Table 10A: Tail Cone Sizing imber tech – Michael Browne 38A
  • 39. Segment Length (ft) Cockpit 10.10 Nose 36.7 Tail Cone 69.1 Cabin 85.2 Table 11A: Segment Sizes imber tech – Michael Browne 39A
  • 40. • Frames • 20 inch spacing • Longerons • 10 inch spacing • Stringers • 8.4 inch spacing (between 7.3 and 9.5) 40A imber tech – Michael Browne
  • 41. 41A
  • 42. • Ribs • 25 inch spacing • Spars • 3 spars at 10%, 40%, and 75% wing chord • Stringers • 8 inch spacing imber tech – Anthony Salazar 42A
  • 43. Weight of Aircraft 552277 lbs nose wheels (4) 13807 lbs main wheels (32) 15533 lbs Table 12A: Estimated Weight Per Wheel Figure 10A: Landing Gear Beam 443 999 1201 43A imber tech – Anthony Salazar
  • 44. Good Year Tire Pressure (Recommended < 120) 115 Diameter 39 in Width 13 in Rolling Radius 17.7 in Table 13A: Refined Tire Sizing Figure 11A: Tire Contact Area Source: Raymer page 362, 5th Edition 44A imber tech – Anthony Salazar
  • 45. Static Loads on Tires (lbs) Max Static Load 257,640 Max Static Load (nose) 28,438 Min Static Load (nose) 26,739 Dynamic Braking Load (nose) 18,881 Table 14A: Static Loads on Tires Figure 12A: Wheel Load Geometry Source: Raymer page 359, 5th Edition imber tech – Anthony Salazar >15 Ma Mf Na Nf 45A
  • 46. Shock Absorber VT Assumption (ft/s) 10 ȠT 0.47 Ƞ 0.75 Loleo (load) (lbs) 128820 ST (in) 1.795 Doleo (main landing gear) (in) 14.36 S (in) 12.297 Doleo (nose landing gear) (in) 8.70 Ng 2 Length Oleo (in) 25.82 Table 15A: Shock Absorber Dimensions imber tech – Anthony Salazar 46A
  • 47. Tip Back Angle End of Empennage 16.6 (deg) Bogey 2 32.5 (deg) Table 16A: Torrent 19 Tip Back Angle Figure 13A: Torrent 19 Tip Criterion imber tech – Anthony Salazar 47A
  • 48. Figure 14A: Lateral Tip Over (ft) imber tech – Anthony Salazar 48A
  • 49. Ground Clearance Landing Gear to Wing 12.55 (deg) Table 17A: Ground Clearance Figure 15A: Ground Clearance imber tech – Anthony Salazar 49A 12.55°
  • 50. Figure 16A: Nose Gear Retracted Side View imber tech – Anthony Salazar 50A
  • 51. 51A
  • 52. • Raymer’s Statistical Group Weight Method • Cargo/Transport Weights Groups • Compared to Nicolai’s Method • Nicolai’s Composite Weight Reduction Factors imber tech – Matthew Hanus 52A
  • 53. Figure 17A: Composite Make-up imber tech – Matthew Hanus Al 7075-T6 Al 7475 T7351 53A
  • 54. Component Weight (lbs) Wing 76,339 Horizontal Tail 8,183 Vertical Tail 18,829 Fuselage 31,738 Main Landing Gear 17,258 Engines (4) 16,403 x 4 = 65,612 Fuel (8 tanks) 18,692.25 x 8 = 149,538 Slurry 120,000 Slurry Tank 36,000 Table 18A: Component Weights imber tech – Matthew Hanus 54A
  • 55. Figure 18A: Side View with Component CG Locations imber tech – Matthew Hanus 55A A GJD F I E C B H
  • 56. Figure 19B: Center Of Gravity Location 1: Fuel Burn – depart airport 2: Slurry Drop 3: Fuel Burn – return to airport Imber tech – Matthew Hanus 56A
  • 57. • Most aft X CG: 86.36 ft (1,037 in.) • Most forward X CG: 85.42 ft (1,025 in.) • Total X CG shift: 0.94 ft (11 in.) • Max Z CG location: 21.68 ft (260 in.) imber tech – Matthew Hanus 57A
  • 58. 58A
  • 59. imber tech – David Wilson 59A
  • 60. • Full: 0.102 • Post Slurry: 0.114 • Empty Fuel: 0.107 • Empty: 0.128 imber tech – David Wilson 60A
  • 61. Table 19A: Trim Conditions Condition Cruise to drop Ferry cruise Take off Drop (Deg) Alpha -4.77 -3.06 5.18 3.19 Ih -3.55 -3.85 -5.32 -5.87 imber tech – David Wilson 61A
  • 62. • 2G Maneuver • Cl used for drop: 1.4 • Velocity: 150 kts • Cmcl from average SM • Deflection required: 9.3 degrees • Pitch rate: 7.27 deg/sec imber tech – David Wilson 62A
  • 63. • Take off • X-distance to Rear Gear: 14 ft • Weight: 552,277 lb • Moment required: 7,731,878 ft·lb • Size chose: 30% chord • Total moment: -249,598 ft·lb imber tech – David Wilson 63A
  • 64. • Take-off • Trim: -5.32 deg • Elevator deflection: -5 deg • AOA: -6.82 deg • 2G Maneuver • Trim: -5.87 deg • Elevator deflection: -9.322 deg • AOA: -8.66 deg imber tech – David Wilson 64A
  • 65. imber tech – David Wilson 65A
  • 66. imber tech – David Wilson Figure 20B: Cnβ vs Vertical Area 66A -0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 0 500 1000 1500 2000 2500 3000 Cn B Vertical Tail Sizeβ Vertical Tail Size
  • 67. imber tech – David Wilson Table 20A: Clβ Parameter Value Dihedral 0 Wing sweep -0.000624 Wing position -0.00016 Vertical Tail -0.00121 Total (1/deg) -0.002 67A
  • 68. • Aircraft becomes more stable during drop • Elevators provide control • Vmc requirement met • Stability derivatives are stable imber tech – David Wilson 68A
  • 69. 69A
  • 70. • Used Brandt’s Method for Drag Build-Up calculations • Specifies approximations for each type of surface • Considers these areas and subtracts the areas of intersection imber tech – Inigo Ripodas 70A
  • 71. Circular Surfaces S (ft2 ) Nose Cone 1437 Nose Cone Sphere 14 Fuselage 8006 Tail Cone 3254 Engine 532 (x4) Total 14839 Table 21A: Wetted Area of Circular Surfaces imber tech – Inigo Ripodas 71A
  • 72. • Estimated Wetted Area = 37,643 ft2 • CATIA Estimated Area = 39,525 ft2 imber tech – Inigo Ripodas 72A
  • 73. Figure 21A: Total Drag imber tech – Inigo Ripodas 73A
  • 74. Figure 22A: Thrust Available and Thrust Required at Sea-Level imber tech – Inigo Ripodas 74A
  • 75. Figure 22A: Thrust Available and Thrust Required at 10,000 ft imber tech – Inigo Ripodas 75A
  • 76. Figure 22A: Thrust Available and Thrust Required at 20,000 ft imber tech – Inigo Ripodas 76A
  • 77. Figure 22A: Thrust Available and Thrust Required at 30,000 ft imber tech – Inigo Ripodas 77A
  • 78. Figure 22A: Thrust Available and Thrust Required at 40,000 ft imber tech – Inigo Ripodas 78A
  • 79. 79A
  • 80. • Similar Engines • Engine Cycle and Design Point • Mission Analysis • Engine Configuration and Layout • Inlet and Diffuser Design and Installation Loss • Nozzle Design and Installation Loss 80A ṁ - Kyle Klouda
  • 81. 81A
  • 82. Low TSFC ~ 0.553 (lbm/lbf*hr) Low Emissions/ Noise High Turbine Inlet Temperature ~ 3325o R High Weight ~ 17250 lb. 82A ṁ - Troy Kilgore
  • 83. Small frame Lightweight 3-Spool Design TSFC ~ 0.557 (lbm/lbf*hr) Sound-deadening material in inlet area 83A ṁ - Troy Kilgore
  • 84. Highly complex compressor system High TSFC ~ .63 (lbm/lbf*hr) 84A ṁ - Troy Kilgore
  • 85. Engine Model GE90-85B RB211-882/884 PW4084 Dry Weight (engine) (lb) 17250 13100 14920 Thrust(sea-level) (lb) 87400 84950 87900 TSFC(sea-level) (lbm/hr*lbf) 0.294 N.A 0.329 TSFC(cruise) (lbm/hr*lbf) 0.5526 0.557 N.A. Cruise Altitude (feet) 35000 35000 35000 Cruise Speed (Mach) 0.8 0.83 0.83 Bypass Ratio 8.4 6.1 6.41 Overall Pressure Ratio 39.3 39 34.4 Spool No. 2 3 2 Fan Stages 1 1 1 LPC Stages 3 8 6 HPC Stages 9 6 11 LPT Stages 6 5 7 HPT Stages 2 1 2 airflow (lbm/s) 3037 2640 2550 Length (inches) 204 172 191.7 Case Diameter (inches) 134 132 118.5 Fan Diameter (inches) 123 110 112 Table 22A: Researched Values 85A ṁ - Troy Kilgore
  • 86. 86A
  • 87. Flight parameters Value Chosen Mach 0.232 Altitude (ft) 10,000 Table 23A: Engine Design Points 87A ṁ - Troy Kilgore
  • 88. Design Choices Value Chosen Compressor Pressure Ratio, πc 37 Low Pressure Ratio, πLPC 3.5 Fan Pressure Ratio, πf 1.8 Bypass Ratio, α 7.5 Turbine Temperature, Tt4 (°R) 3200 Bleed Air (lbm/s) 5.9 Table 24A: Engine Cycle Choices 88A ṁ - Troy Kilgore
  • 89. Mission Legs (Sortie 1 data provided) Altitude (kft) Mach Thrust Req’d (lbf) Fuel Burn (lbf) Takeoff 7 0.232 238,730 797 Climb 10 0.48 223,067 1,238 Climb & Accel 10-38 0.48-0.75 119,927 9,052 Cruise 38 0.75 31,458 13,869 Descend & Drop Slurry 10 0.232 143,117 171 Climb & Accel 10-38 0.232-0.75 118,172 6,148 Cruise/Descend/Land 38-7 0.75-0 29,993 15,637 Total (Sortie 1) - - - 46,911 Total (Sortie 2) - - - 44,418 Total (Sortie 3) - - - 44,350 Total Fuel Burn - - - 135,679 Table 25A: Mission Fuel Burn 89A ṁ - Troy Kilgore
  • 90. Mission Legs Altitude (kft) Mach Thrust Req’d (lbf) Fuel Burned (lbf) Takeoff 7 0.232 238,730 797 Climb 7-10 0.232-0.48 240,371 1,238 Climb & Accel 10-38 0.48-0.75 119,927 9,052 Cruise 38 0.75 31,458 123,529 Descend/Land 38-7 0.75-0 31,423 1,874 Ferry Total - - - 136,490 Table 26A: Ferry Fuel Burn 90A ṁ - Troy Kilgore
  • 91. 91A
  • 92. Component Length, in Diameter, in Overall 348.02 169.51 Inlet 55 124 Fan 61.76 136 LPC 19.55 68.7 HPC 47.32 31.88 Combustor 27.45 35.98 HPT 10.15 35.16 LPT 31.14 76.52 Nozzle (from Max Diameter) 239.68 169.51 92A Table 27A: Engine Configuration ṁ - Cameron Schmitt
  • 93. 93A
  • 94. • Inlet Design • Initial Sizing • Blow-in Doors • Pressure Calculations • Resizing • Cowling Design 94A ṁ - Cameron Schmitt
  • 95. • Conventional Pitot inlet • High mass flow requirements • Minimize additive drag • Reduce free stream area mismatch 95A ṁ - Cameron Schmitt
  • 96. Table 28A: Install Losses A1 = 10033 in2 Condition M0 M1 Alt (ft) Φ(%) 2-G Drop 0.232 0.8 10000 17.67 T/O 0.2320.737 7000 16.85 Climb 10kft 0.232 0.8 10000 17.67 Climb 17kft 0.6120.833 17000 1.94 Climb 24kft 0.6580.826 24000 1.04 Climb 31kft 0.7040.815 31000 0.46 Cruse 38kft 0.750.795 38000 0.02 Climb Out 0.66 0.84 19000 1.18 D1 =113in (9.4ft) 96A ṁ - Cameron Schmitt
  • 97. Drastically reduced Additive Drag at Design Point Design Point A1 (in2) A0 (in2) M1 Dadd (lbf) Φ (%) Without Doors 10033 22198.99 0.8 10584.63 17.46 With Doors 16600 22198.99 0.364 1725.142 2.89 Auxiliary area = 6567 in2 Table 29A: Blow-in doors 97A ṁ - Cameron Schmitt
  • 98. • Exterior pressures • Cp at 15% Chord • Interior Pressures • Mach at Fan Face =0.55 98A ṁ - Cameron Schmitt
  • 99. • Increase A1 • Reduce Aux Area • Smaller Blow-In Doors • Six 754in2 Doors • 20 in long • 37.7 in wide 99A ṁ - Cameron Schmitt
  • 100. Figure 24A: Final Inlet Design 100A ṁ - Cameron Schmitt
  • 101. • Utilize Natural Laminar Flow • Minimize drag • NASA HSNLF-213 • 17.5ft Chord length 101A ṁ - Cameron Schmitt
  • 102. 102A
  • 103. Layout • Chevron nozzles • Core Plug • Thrust reversing Installation Loss • 2 Types of losses due to difference in fan and core diameter 103A ṁ - Cameron Schmitt
  • 104. • Distribute airflow into shear layer • Reduces noise 1-2dB • NBAA states any noise reduction on an engine which can be possible is required 104A
  • 105. •IC1: 14 internal chevrons •IC2: 18 internal chevrons •M1C: 14-lobed mixer •M3: 18-lobed mixer Internal Nozzles Figure 25A: Internal Nozzles (http://www.lufthansagroup.com) 105A
  • 106. Figure 26A: Noise Optimization (http://www.lufthansagroup.com) 106A
  • 107. • “Prop-wash” creates pressure drag on nozzle and turbulent flow resulting in noise • Directs flow into more streamline formation • Noise-reduction cone reduces noise 2-3dB 107A
  • 108. • Redirects fan mass flow • Angled at 45 degrees • Produces about 44% the thrust of the fan in opposite direction 108A
  • 109. • Maximum dia: 169.51 inches (14.12 feet ) • From max diameter to end of core plug: 239.68 inches (19.97 feet) 109A
  • 110. 110A
  • 111. 111A
  • 112. Initial Design Parameters Fan Booster High Pressure Mass Flow (lbm/s) 3395.80 399.32 399.32 Total Pressure (psia) 14.40 25.91 50.34 Total Temperature (R) 490.01 591.64 732.27 Angular Velocity (rad/s) 282.35 282.35 1054 Number of Stages* 1 3 10 *From similar engines Table 30A: Initial Design Parameters 112A ṁ - Courtney Hough
  • 113. Fan Design Inputs and Goals Stages 1 Pressure (psia) 14.40 Temperature Rise (R) 101.63 Tip Radius (in) 68 Angular Velocity (rad/s) 282.35 Inlet Mach 0.55 Mass Flow (lbm/s) 3395.80 Design Pressure Ratio 1.8 Table 31A: Fan Design Inputs and Goals • Constant Tip Design • Tip Speed Limit (1600 ft/s) • Titanium 113A ṁ - Courtney Hough
  • 114. Fan Output Number of Blades 23 Overall Diameter (in) 136 Tip Speed (ft/s) 1598 Hub-to-Tip Ratio 0.39 Exit Mach 0.58 Exit Angle (deg) 3.43 Actual Pressure Ratio 1.81 Stage Loading 0.49 Diffusion Factor 0.46 Table 32A: Fan Output Figure 27A: Catia Fan Model 114A ṁ - Courtney Hough
  • 115. • Constant Mean Design • Tip Speed Limit (1400 ft/s) • Inlet guide vanes • Titanium 115A ṁ - Courtney Hough
  • 116. Table 33A: Booster Compressor Output Booster Output Overall Diameter (in) 68.70 Tip Speed (ft/s) 807.23 Mean Radii (in) 32 Hub-to-Tip Ratio 0.86 Exit Mach 0.40 Exit Angle (deg) 0 Actual Pressure Ratio 1.96 Stage Loading 0.49 Diffusion Factor 0.59 Figure 28A: Catia Booster Model 116A ṁ - Courtney Hough
  • 117. • Constant Tip Design • Tip Speed Limit (1400 ft/s) • Inlet guide vanes • Similar Engines • GE90 • 10 stages • Titanium & Nickel 117A ṁ - Courtney Hough
  • 118. Table 34A: HPC Output Booster Output Overall Diameter (in) 31.88 Tip Speed (ft/s) 1400 Hub-to-Tip Ratio 0.39 Exit Mach 0.35 Exit Angle (deg) 0 Actual Pressure Ratio 10.54 Stage Loading 0.49 Diffusion Factor 0.59 Figure 29A: HPC Catia Model 118A ṁ - Courtney Hough
  • 119. Design Results Pressure Ratio Goal Actual Fan 1.8 1.81 Booster 1.94 1.96 High Pressure 10.57 10.54 Total 37 37 Table 35A: Design Results 119A ṁ - Courtney Hough
  • 120. 120A
  • 121. HP Turbine Design Parameters Value Mass Flow (lbm/s) 383.31 Inlet Total Pressure (psia) 497.5 Inlet Total Temperature (R) 3098 Angular Velocity (rad/s) 1054 Number of Stages 2 Table 36A: Design Parameters 121A ṁ - Kevin Walker
  • 122. HP Turbine Design Inputs Mean Radius (in) 15.25 Inlet Mach 0.35 Inlet Flow Angle (deg) 0 Temperature Drop Across Turbine (R) 691 Table 37A: HP Turbine Design Inputs Design Point (Sea Level) Mach 0 Altitude (ft) 0 Temperature (R) 490 Table 38A: Design Point • Blade cooling scheme required • Constant mean design 122A ṁ - Kevin Walker
  • 123. HP Turbine Output Stage 1 Stage 2 Number of Rotor Blades 112 62 Number of Stator Blades 48 52 Number of Exit Guide Vanes - 54 Stage Loading Coefficient 1.43 1.43 Flow Coefficient 1.08 1.05 Velocity Ratio 0.59 0.59 Table 39A: HP Turbine Output 123A ṁ - Kevin Walker
  • 124. HP Turbine Design Parameters Value Mass Flow (lbm/s) 403.28 Inlet Total Pressure (psia) 145.8 Inlet Total Temperature (R) 2350 Angular Velocity (rad/s) 282.35 Number of Stages 5 Table 40A: Design Parameters 124A ṁ - Kevin Walker
  • 125. LP Turbine Design Inputs Mean Radius (in) 32 Inlet Mach 0.5 Inlet Flow Angle (deg) 0 Temperature Drop Across Turbine (R) 835 Table 41A: LP Turbine Design Inputs • Constant mean design 125A ṁ - Kevin Walker
  • 126. LP Turbine Output Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Number of Rotor Blades 288 248 218 142 84 Number of Stator Blades 266 178 186 144 110 Number of Exit Guide Vanes - - - - 30 Stage Loading Coefficient 2.19 2.19 2.19 2.18 1.19 Flow Coefficient 1.09 1.09 1.08 1.06 1.04 Velocity Ratio 0.48 0.48 0.48 0.48 0.48 Table 42A: LP Turbine Output 126A ṁ - Kevin Walker
  • 127. 127A
  • 128. • Annular • Inter-Turbine Burner Considered • Other combustor platforms researched, but little information found • Combustor designed to meet geometry of compressor exit and turbine entrance with no loss of airflow or pressure 128A ṁ - Jase Heinzeroth
  • 129. • Design Point: Max Dynamic Pressure at sea-level • Chose Mach 1 (1126 ft/s) • Ran engine test to acquire temperature and pressure values 129A ṁ - Jase Heinzeroth
  • 130. Table 43A: Station Data High-Pressure Comp. Exit High-Pressure Turbine Entrance Total Pressure, psia 554 521 Total Temperature, °R 1630 3200 Mass Flow, lbm/s 368 378 Mach Number 0.35 0.35 130A ṁ - Jase Heinzeroth
  • 131. • Assumed 1 percent pressure loss over diffuser section • Area Ratio of diffuser optimized to 1 percent loss • Actual loss: 3.5 psi 131A
  • 132. Combustor Inlet # of sub-divided 9° streams 3 Mach Number 0.07 Swirl Angle, deg 0 Total Diffuser Length, in 6.838 Overall Area Ratio 4.71 Area Ratio Flat-Wall 2.8 Area Ratio Dump 1.68 Table 44A: Diffuser Data 132A ṁ - Jase Heinzeroth
  • 133. Figure 30A: Emissions Range 133A ṁ - Jase Heinzeroth
  • 134. Summary Percentage of Total Mass Flow, lbm/s Primary Air Flow 66.61 245.077 Cooling Air Flow 4.57 16.820 Secondary Air Flow 28.55 105.033 Dilution Air Flow 0.27 1.0196 Total air flow 100 367.95 Table 45A: Air Flows 134A ṁ - Jase Heinzeroth
  • 135. Primary Zone Design Annulus Area, in2 75.116 Liner Height, in 4.123 Annulus Mach No. 0.114 Number of Fuel Nozzles 17 Primary Zone Length, in 3.94 Table 46A: Primary Zone 135A ṁ - Jase Heinzeroth
  • 136. Secondary Zone CD90° 0.64 Number of Dilution Holes 457 Diameter of Dilution Holes, in 0.465 Length of Secondary Zone, in 8.246 Table 47A: Secondary Zone 136A ṁ - Jase Heinzeroth
  • 137. Dilution Zone CD90° 0.64 Number of Dilution Holes 1 Diameter of Dilution Holes 0.626 Length of Dilution Zone 6.185 Table 48A: Dilution Zone 137A ṁ - Jase Heinzeroth
  • 138. 138A
  • 139. 0 500 1000 1500 2000 2500HoursWorked Date (MM/DD/YYYY) Table: Labor Accounting Chart Actual Hours Projected Hours 139A Figure 31A: Labor Accounting Chart ṁ - Kyle Klouda
  • 140. Labor Hours and Costs Category Hours Costs Engineering Management 261 $26,100 Engineering 778.33 $50,591 Technical 39 $1,560 Administrative 210.3 $4,206 Sub-total 1,289 $82,457 Professional Development 875.16 $43,758 Total 2,164 $126,215 Table 49A: Hours and Costs 140A ṁ - Kyle Klouda
  • 143. • Length: 29 ft • Diameter: 14 ft • Installed Thrust: 87,483 lbf • Overall Compression Ratio: 37 • Max TSFC: 0.854 lbm/lbf*hr • Fan and Core Nozzle Installation Loss of Totals to 4.99% 143A ṁ - Kyle Klouda
  • 144. 144A
  • 145. Figure 34A: V-n Diagram imber tech – Kevin Warren V (KTAS) nz(g’s) 145A
  • 146. 146A imber tech – Kevin Warren Figure 35A: Thrust Available Vs. Thrust Required 38k ft
  • 147. • Critical phase of flight • 2g “pull-up” maneuver simulates fire weather • Lift = Weight • CL required is 2.66 with 2.69 available from wing design 147A imber tech – Kevin Warren
  • 148. Figure 36A: Max Thrust Takeoff with 4 engines imber tech – Kevin Warren 148A
  • 149. Parameter Value Best Climb Angle 16.82 (Degrees) Best Climb Velocity 628 (KTAS) Table 50A: Climb Performance imber tech – Kevin Warren 149A
  • 150. • Based on Breguet’s range equation • 4313 nm Range 150A imber tech – Kevin Warren
  • 151. Phase of Landing Distance (ft) Obstacle Clearance (SA) 954 Free Roll (SFR) 638 Braking Roll (SB) 3405 Total Landing Distance 4997 Table 52A: Landing Distances imber tech – Kevin Warren 151A
  • 152. 152A
  • 153. 153A imber tech – Kevin Warren Cost Type Per Aircraft Total (20 Aircraft) RDT&E $587 Million $11.7 Billion Manufacturing Cost $2.2 Billion $44 Billion Cost to Customer $2.8 Billion $56 Billion Operating Cost $430 Million $8.6 Billion Life Cycle Cost $3.3 Billion $65 Billion Table 53A: Cost Estimation
  • 154. Figure 37A: Labor Hours imber tech – Kevin Warren 154A
  • 155. Figure 38A: Labor Hour Accounting Hours imber tech – Kevin Warren 155A
  • 156. Figure 39A: Labor Hour Accounting Cost imber tech – Kevin Warren 156A
  • 157. 157A
  • 158. • Structure: • Aft door system may compromise support of tail • Landing-gear doors are too large • Internal structure requires further analysis • S&C: • Tail structure based on S&C and may require modification to work with structure • Engine placement needs to be analyzed for interference • Aircraft performance characteristics require wind tunnel testing to verify calculated data 158A imber tech – Kevin Warren
  • 159. 159A