SlideShare a Scribd company logo
1 of 14
Download to read offline
LLNL-PRES-XXXXXX
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
Fokker-Planck Modeling of Heat
Conduction in NIF Hohlraums
HEDP Summer Student Presentation
25 August 2015
LLNL-PRES-676532
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
2
Thanks to
•  Andy Cook and Summer Student Program
•  D. J. Strozzi (LLNL) – mentor
•  A. Tableman, B. Winjum (UCLA) – much help with OSHUN
•  I. Heinz (LLNL) – computer support
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
3
Motivation
§  Electron heat conduction: long-standing issue in inertial fusion and
laser-produced plasmas
§  Local treatment for collision-dominated, short mean-free-path
plasma: Spitzer and Härm, Phys. Rev. 1953
§  Heat flux reduced from Spitzer-Härm by:
•  Non-locality: electrons with v=(2-4) thermal speed carry flux.
Less collisional than thermals. Become “de-localized,” no net flux
•  Return current instability: bulk electrons drift relative to ions
—  Triggers ion-acoustic instability
—  Recent interest on NIF and Omega: C. Thomas, M. Rosen
•  Magnetic fields: reduce heat flux across field
( )
3
... heat flux thermal conductivity
2
e e e
d
n T T
dt
κ κ= ∇ ⋅ + ≡ ∇ = ≡Q Q
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
4
Relevance to NIF
§  Understanding heat flux is crucial to understanding ICF experiments
§  Electron Flux Limit f
•  Traditional “kludge” to match experimental data:
§  Pre-2009, low (x-ray) flux model
•  XSN atomic physics
•  f=0.05
§  Post-2009, high flux model (M. Rosen et al., High Energy Density
Physics, 2011) to match NIF data
•  DCA atomic physics
•  f=0.15
Q = min{ f *ne
me
vTe
3
, QSpitzer−H!!arm
}
Goal of this work:
Fokker-Planck modeling of heat flux in NIF hohlraums
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
5
Kinetic Theory
§  Distribution function: f(x, v) = density of particles at phase-space
location (x, v)
§  Boltzmann equation: governs evolution of f for weak particle
correlations (for experts: f2 = f1* f1 molecular chaos assumption)
§  Fokker-Planck equation: small-angle scattering limit of
Boltzmann equation
§  Collisions entail many, small, independent momentum kicks,
e.g. weakly-coupled plasma (fails for strong coupling)
∂f
∂t
+ v⋅∇f +
q
m
E+
v×B
c
⋅∇v f =
δ f
δt collisions
δ f
δt collisions
= −
∂
∂v
⋅ f Δv%& '(+
1
2
∂
∂v
∂
∂v
: f ΔvΔv%& '(
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
6
§  Developed by M. Tzoufras, maintained at UCLA by Prof. W. Mori’s
group
§  We use 1D relativistic Python version, kinetic electrons, fixed ions:
§  Spherical harmonic expansion in velocity space:
§  Collision Operators:
•  Electron-ion: immobile ions; pitch-angle scattering, or Lorentz gas:
damping rate increases with L mode number
•  Electron-electron (self collisions): included, complicated…
OSHUN: Vlasov-Fokker-Planck code
∂fe
∂t
+ v⋅∇fe −
eE
me
⋅∇v fe = Cee +Cei
v = v(cosϕ sinθ,sinϕ sinθ,cosθ)fe (r,v,t) = fl
m
m=−l
l
∑ (r,v,t)Pl
m
(cosθ)eimϕ
l=0
∞
∑
δ f
δt collisions
=υpa
∂µ
(1−µ2
)∂µ
f#
$
%
& → Cei
[ fl
m
]=
δ fl
m
δt ei
= −l(l +1)
ni
Γei
2v3
fl
m
E = E(z)ˆz
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
7
§  Fluid variables: velocity moments of distribution
§  Fluid equations: moments of Boltzmann equation
Fluid Description, e.g. rad-hydro codes
Number density: n = f d3
∫ v
Drift velocity: u =
1
n
v∫ f d3
v
Temperature: T =
m
3n
| v − u |2
∫ f d3
v
Heat Flux: Q = (v − u)
m
2
| v − u |2
f d3
∫ v
Continuity Equation (n=0):
∂n
∂t
+ ∇⋅(nu) = 0
Momentum Transfer Equation (n=1): mn
∂
∂t
+ v⋅∇
$
%
&
'
(
)v = qn(E+ v×B)− ∇p+ R
Energy Transfer Equation (n=2):
∂
∂t
nmv2
2
+
3nkT
2
$
%
&
'
(
)− nqE⋅v + ∇⋅Q =
∂
∂t
nmv2
2
$
%
&
'
(
)
collisions
vn
f d3
v∫
Subject of
this work
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
8
Spitzer-Härm Theory of Heat Flux
§  Local theory: mean free path << gradient scale lengths
§  Diffusive approximation: keep L=0,1:
§  Linearize f1 << f0, steady state d/dt=0, neglect e-e collisions here:
§  Steady-state: E field develops, so no net current
0 1
2
0 3/2
1 1
( , ) ( , ) ( , )
( , ) exp / 2 Maxwellian, ( ), ( ) vary in z
( , ) ( )cos
e
e e e e
e
f z f v z f z
n
f v z m v T n z T z
T
f z F v θ
= +
⎡ ⎤∝ −⎣ ⎦
=
v v
v
0 0
1z
z
f feE
v f
z m v
υ
∂ ∂
− ≅
∂ ∂
1
0
5
0
2
e e e
e
T dn dTE
J E
t en dz e dz
ε −∂
= − = → = − −
∂
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
9
Spitzer-Härm heat flux carried by electrons
with vz = (2-4)x thermal speed
f0
f1
f0 + f1
qz0
qz0 + qz1
qz1
( )z x yf dv dv f= ∫ v
2
( )
2
z
x y z
z
q m
dv dv v v f
v
∂
=
∂ ∫ v
eT∇
Heat flux from f0(vz > 0) and f0(vz < 0) cancel.
Heat flux from f1 symmetric à net flux = red curve
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
10
Clinical non-local test with OSHUN:
Epperlein-Short1 Test
§  Significant non-local reduction in thermal conductivity for steep
temperature gradients
§  Why is L = 1 different? Likely code setup issue in Python version
1E. Epperlein and R. Short, Phys. Fluids B (1991)
Spitzer-Härm result
Non-local
reduction in κ
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
11
Application to NIF: Rugby-shaped
Hohlraum
§  Lasnex simulation by Peter
Amendt; peak-laser power
§  We study heat conduction
along the green path
Capsule:
Ablator & fusion fuel
Helium
Plasma
Gold wall
NIF Hohlraum
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
12
NIF Results: Hohlraum Profile
1-D NIF Profile for OSHUN
Non-locality Parameter
λmfp
Te
dTe
dz
Non-locality
should be minor
Non-locality could
be significant
LEH
Goldwall
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
13
NIF Results: thermal conductivity
L = 2
L = 3
L = 4
Conductivity does not vary with
more L-modes
Spitzer-Härm Value
LEH:
Non-local
reduction
Gold wall:
Exceeds
Spitzer-Härm
Reflecting (non-periodic) boundaries
dx, dp, dt
dx/2, dp, dt
dx, dp/2, dt
dx, dp, dt/2
Grid size: Converged w.r.t. dx, dp
Slight dependence on dt
Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx
14
Conclusions
•  OSHUN gives well-known non-local reduction of heat conduction with
steep temperature gradients
•  1D OSHUN runs on NIF profiles:
•  computationally cheap: less than 100 CPU-hours
•  Non-local reduction in heat conductivity in entrance hole
•  Exceeds Spitzer-Härm inside hohlraum - reflecting boundaries?
•  Mobile ions: capability being developed in OSHUN
•  Allow study of return current instability
•  2D simulations
•  Gold wall conditions
Future Work

More Related Content

What's hot (19)

Electrostatics
ElectrostaticsElectrostatics
Electrostatics
 
Biermann clusters
Biermann clustersBiermann clusters
Biermann clusters
 
Lecture 14 maxwell-boltzmann distribution. heat capacities
Lecture 14   maxwell-boltzmann distribution. heat capacitiesLecture 14   maxwell-boltzmann distribution. heat capacities
Lecture 14 maxwell-boltzmann distribution. heat capacities
 
Thermodynamics lecture 9
Thermodynamics lecture 9Thermodynamics lecture 9
Thermodynamics lecture 9
 
The monoatomic ideal gas
The monoatomic ideal gasThe monoatomic ideal gas
The monoatomic ideal gas
 
Thermodynamics, part 8
Thermodynamics, part 8Thermodynamics, part 8
Thermodynamics, part 8
 
Thermodynamics lecture 8
Thermodynamics lecture 8Thermodynamics lecture 8
Thermodynamics lecture 8
 
Free convection
Free convectionFree convection
Free convection
 
Heat transaction
Heat transaction Heat transaction
Heat transaction
 
Chapter 1(terms and definition)
Chapter 1(terms and definition)Chapter 1(terms and definition)
Chapter 1(terms and definition)
 
Clausius - Clapeyron Equation
Clausius - Clapeyron EquationClausius - Clapeyron Equation
Clausius - Clapeyron Equation
 
Metr3210 clausius-clapeyron
Metr3210 clausius-clapeyronMetr3210 clausius-clapeyron
Metr3210 clausius-clapeyron
 
Chapter 2
Chapter 2 Chapter 2
Chapter 2
 
Einestein model density of states
Einestein model density of statesEinestein model density of states
Einestein model density of states
 
Finite Volume Method For Predicting Radiant Heat Transfer
Finite Volume Method For Predicting Radiant Heat TransferFinite Volume Method For Predicting Radiant Heat Transfer
Finite Volume Method For Predicting Radiant Heat Transfer
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Dulong and Petit Law of Specific Heat
Dulong and Petit Law of Specific HeatDulong and Petit Law of Specific Heat
Dulong and Petit Law of Specific Heat
 
Clausius-clapeyron Equation
Clausius-clapeyron EquationClausius-clapeyron Equation
Clausius-clapeyron Equation
 
DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
DULONG PETIT LAW OF SPECIFIC HEAT College ppt (2)
 

Viewers also liked

อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโล
อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโลอนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโล
อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโลThamma Dlife
 
เมตตาของหลวงปู่
เมตตาของหลวงปู่เมตตาของหลวงปู่
เมตตาของหลวงปู่Thamma Dlife
 
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)Thamma Dlife
 
ชีวิตใหม่
ชีวิตใหม่ชีวิตใหม่
ชีวิตใหม่Thamma Dlife
 
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโล
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโลอนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโล
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโลThamma Dlife
 
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)MySQL 15 March Presentation (MySQL Tech Tour Istanbul)
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)Okcan Yasin Saygılı
 

Viewers also liked (10)

อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโล
อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโลอนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโล
อนิจจัง ทุกขัง อนัตตา หลวงปู่บุญมี โชติปาโล
 
เมตตาของหลวงปู่
เมตตาของหลวงปู่เมตตาของหลวงปู่
เมตตาของหลวงปู่
 
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)
พระภาวนาวิศาลเถร (หลวงปุ่บุญมี โชติปาโล)
 
ชีวิตใหม่
ชีวิตใหม่ชีวิตใหม่
ชีวิตใหม่
 
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโล
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโลอนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโล
อนุสรณ์งานออกเมรุ ฯ หลวงปู่บุญมี โชติปาโล
 
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)MySQL 15 March Presentation (MySQL Tech Tour Istanbul)
MySQL 15 March Presentation (MySQL Tech Tour Istanbul)
 
Let's Start MySQL
Let's Start MySQLLet's Start MySQL
Let's Start MySQL
 
Exadata Cloud Service Overview(v2)
Exadata Cloud Service Overview(v2) Exadata Cloud Service Overview(v2)
Exadata Cloud Service Overview(v2)
 
MySQL Rises with JSON Support
MySQL Rises with JSON SupportMySQL Rises with JSON Support
MySQL Rises with JSON Support
 
Simple Way for MySQL to NoSQL
Simple Way for MySQL to NoSQLSimple Way for MySQL to NoSQL
Simple Way for MySQL to NoSQL
 

Similar to Dublin- Talk 8.25.15 Final

BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfDrSanjaySingh13
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overviewClaudio Attaccalite
 
Propagation of electron-acoustic excitations in the presence of suprathermal ...
Propagation of electron-acoustic excitations in the presence of suprathermal ...Propagation of electron-acoustic excitations in the presence of suprathermal ...
Propagation of electron-acoustic excitations in the presence of suprathermal ...Ashkbiz Danehkar
 
slides_cedric_weber_1.pdf
slides_cedric_weber_1.pdfslides_cedric_weber_1.pdf
slides_cedric_weber_1.pdfsasdude1
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry NotesSueyin Lee
 
Pairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterPairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterAlex Quadros
 
Aling Michael - EUREKA Poster - 2
Aling Michael - EUREKA Poster - 2Aling Michael - EUREKA Poster - 2
Aling Michael - EUREKA Poster - 2Michael Aling
 
Julian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfJulian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfssuser836d21
 
Atomic structure part 3/3
Atomic structure part 3/3Atomic structure part 3/3
Atomic structure part 3/3Chris Sonntag
 
Statistica theromodynamics
Statistica theromodynamicsStatistica theromodynamics
Statistica theromodynamicsRaguM6
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazottonipslab
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdfShotosroyRoyTirtho
 
Application of Ordinary Differential Equation in civil engineering
Application of Ordinary Differential Equation in civil engineeringApplication of Ordinary Differential Equation in civil engineering
Application of Ordinary Differential Equation in civil engineeringEngr Mir Noor Ahmed Langove
 

Similar to Dublin- Talk 8.25.15 Final (20)

BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
NANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - TemperatureNANO266 - Lecture 10 - Temperature
NANO266 - Lecture 10 - Temperature
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
Propagation of electron-acoustic excitations in the presence of suprathermal ...
Propagation of electron-acoustic excitations in the presence of suprathermal ...Propagation of electron-acoustic excitations in the presence of suprathermal ...
Propagation of electron-acoustic excitations in the presence of suprathermal ...
 
slides_cedric_weber_1.pdf
slides_cedric_weber_1.pdfslides_cedric_weber_1.pdf
slides_cedric_weber_1.pdf
 
Electrochemistry Notes
Electrochemistry NotesElectrochemistry Notes
Electrochemistry Notes
 
Pairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear MatterPairing and Symmetries in Nuclear Matter
Pairing and Symmetries in Nuclear Matter
 
Riconda_Catarina.pptx
Riconda_Catarina.pptxRiconda_Catarina.pptx
Riconda_Catarina.pptx
 
Aling Michael - EUREKA Poster - 2
Aling Michael - EUREKA Poster - 2Aling Michael - EUREKA Poster - 2
Aling Michael - EUREKA Poster - 2
 
Neutron EDM and Dressed Spin
Neutron EDM and Dressed SpinNeutron EDM and Dressed Spin
Neutron EDM and Dressed Spin
 
Julian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdfJulian_Toronto_cifar_2012.pdf
Julian_Toronto_cifar_2012.pdf
 
final_exam
final_examfinal_exam
final_exam
 
Unit 2
Unit 2Unit 2
Unit 2
 
Atomic structure part 3/3
Atomic structure part 3/3Atomic structure part 3/3
Atomic structure part 3/3
 
Statistica theromodynamics
Statistica theromodynamicsStatistica theromodynamics
Statistica theromodynamics
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf2012-01-Neese-LigandFieldTheory.pdf
2012-01-Neese-LigandFieldTheory.pdf
 
Application of Ordinary Differential Equation in civil engineering
Application of Ordinary Differential Equation in civil engineeringApplication of Ordinary Differential Equation in civil engineering
Application of Ordinary Differential Equation in civil engineering
 
Hartree fock theory
Hartree fock theoryHartree fock theory
Hartree fock theory
 

Dublin- Talk 8.25.15 Final

  • 1. LLNL-PRES-XXXXXX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Fokker-Planck Modeling of Heat Conduction in NIF Hohlraums HEDP Summer Student Presentation 25 August 2015 LLNL-PRES-676532
  • 2. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 2 Thanks to •  Andy Cook and Summer Student Program •  D. J. Strozzi (LLNL) – mentor •  A. Tableman, B. Winjum (UCLA) – much help with OSHUN •  I. Heinz (LLNL) – computer support
  • 3. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 3 Motivation §  Electron heat conduction: long-standing issue in inertial fusion and laser-produced plasmas §  Local treatment for collision-dominated, short mean-free-path plasma: Spitzer and Härm, Phys. Rev. 1953 §  Heat flux reduced from Spitzer-Härm by: •  Non-locality: electrons with v=(2-4) thermal speed carry flux. Less collisional than thermals. Become “de-localized,” no net flux •  Return current instability: bulk electrons drift relative to ions —  Triggers ion-acoustic instability —  Recent interest on NIF and Omega: C. Thomas, M. Rosen •  Magnetic fields: reduce heat flux across field ( ) 3 ... heat flux thermal conductivity 2 e e e d n T T dt κ κ= ∇ ⋅ + ≡ ∇ = ≡Q Q
  • 4. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 4 Relevance to NIF §  Understanding heat flux is crucial to understanding ICF experiments §  Electron Flux Limit f •  Traditional “kludge” to match experimental data: §  Pre-2009, low (x-ray) flux model •  XSN atomic physics •  f=0.05 §  Post-2009, high flux model (M. Rosen et al., High Energy Density Physics, 2011) to match NIF data •  DCA atomic physics •  f=0.15 Q = min{ f *ne me vTe 3 , QSpitzer−H!!arm } Goal of this work: Fokker-Planck modeling of heat flux in NIF hohlraums
  • 5. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 5 Kinetic Theory §  Distribution function: f(x, v) = density of particles at phase-space location (x, v) §  Boltzmann equation: governs evolution of f for weak particle correlations (for experts: f2 = f1* f1 molecular chaos assumption) §  Fokker-Planck equation: small-angle scattering limit of Boltzmann equation §  Collisions entail many, small, independent momentum kicks, e.g. weakly-coupled plasma (fails for strong coupling) ∂f ∂t + v⋅∇f + q m E+ v×B c ⋅∇v f = δ f δt collisions δ f δt collisions = − ∂ ∂v ⋅ f Δv%& '(+ 1 2 ∂ ∂v ∂ ∂v : f ΔvΔv%& '(
  • 6. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 6 §  Developed by M. Tzoufras, maintained at UCLA by Prof. W. Mori’s group §  We use 1D relativistic Python version, kinetic electrons, fixed ions: §  Spherical harmonic expansion in velocity space: §  Collision Operators: •  Electron-ion: immobile ions; pitch-angle scattering, or Lorentz gas: damping rate increases with L mode number •  Electron-electron (self collisions): included, complicated… OSHUN: Vlasov-Fokker-Planck code ∂fe ∂t + v⋅∇fe − eE me ⋅∇v fe = Cee +Cei v = v(cosϕ sinθ,sinϕ sinθ,cosθ)fe (r,v,t) = fl m m=−l l ∑ (r,v,t)Pl m (cosθ)eimϕ l=0 ∞ ∑ δ f δt collisions =υpa ∂µ (1−µ2 )∂µ f# $ % & → Cei [ fl m ]= δ fl m δt ei = −l(l +1) ni Γei 2v3 fl m E = E(z)ˆz
  • 7. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 7 §  Fluid variables: velocity moments of distribution §  Fluid equations: moments of Boltzmann equation Fluid Description, e.g. rad-hydro codes Number density: n = f d3 ∫ v Drift velocity: u = 1 n v∫ f d3 v Temperature: T = m 3n | v − u |2 ∫ f d3 v Heat Flux: Q = (v − u) m 2 | v − u |2 f d3 ∫ v Continuity Equation (n=0): ∂n ∂t + ∇⋅(nu) = 0 Momentum Transfer Equation (n=1): mn ∂ ∂t + v⋅∇ $ % & ' ( )v = qn(E+ v×B)− ∇p+ R Energy Transfer Equation (n=2): ∂ ∂t nmv2 2 + 3nkT 2 $ % & ' ( )− nqE⋅v + ∇⋅Q = ∂ ∂t nmv2 2 $ % & ' ( ) collisions vn f d3 v∫ Subject of this work
  • 8. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 8 Spitzer-Härm Theory of Heat Flux §  Local theory: mean free path << gradient scale lengths §  Diffusive approximation: keep L=0,1: §  Linearize f1 << f0, steady state d/dt=0, neglect e-e collisions here: §  Steady-state: E field develops, so no net current 0 1 2 0 3/2 1 1 ( , ) ( , ) ( , ) ( , ) exp / 2 Maxwellian, ( ), ( ) vary in z ( , ) ( )cos e e e e e e f z f v z f z n f v z m v T n z T z T f z F v θ = + ⎡ ⎤∝ −⎣ ⎦ = v v v 0 0 1z z f feE v f z m v υ ∂ ∂ − ≅ ∂ ∂ 1 0 5 0 2 e e e e T dn dTE J E t en dz e dz ε −∂ = − = → = − − ∂
  • 9. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 9 Spitzer-Härm heat flux carried by electrons with vz = (2-4)x thermal speed f0 f1 f0 + f1 qz0 qz0 + qz1 qz1 ( )z x yf dv dv f= ∫ v 2 ( ) 2 z x y z z q m dv dv v v f v ∂ = ∂ ∫ v eT∇ Heat flux from f0(vz > 0) and f0(vz < 0) cancel. Heat flux from f1 symmetric à net flux = red curve
  • 10. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 10 Clinical non-local test with OSHUN: Epperlein-Short1 Test §  Significant non-local reduction in thermal conductivity for steep temperature gradients §  Why is L = 1 different? Likely code setup issue in Python version 1E. Epperlein and R. Short, Phys. Fluids B (1991) Spitzer-Härm result Non-local reduction in κ
  • 11. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 11 Application to NIF: Rugby-shaped Hohlraum §  Lasnex simulation by Peter Amendt; peak-laser power §  We study heat conduction along the green path Capsule: Ablator & fusion fuel Helium Plasma Gold wall NIF Hohlraum
  • 12. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 12 NIF Results: Hohlraum Profile 1-D NIF Profile for OSHUN Non-locality Parameter λmfp Te dTe dz Non-locality should be minor Non-locality could be significant LEH Goldwall
  • 13. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 13 NIF Results: thermal conductivity L = 2 L = 3 L = 4 Conductivity does not vary with more L-modes Spitzer-Härm Value LEH: Non-local reduction Gold wall: Exceeds Spitzer-Härm Reflecting (non-periodic) boundaries dx, dp, dt dx/2, dp, dt dx, dp/2, dt dx, dp, dt/2 Grid size: Converged w.r.t. dx, dp Slight dependence on dt
  • 14. Lawrence Livermore National Laboratory LLNL-PRES-xxxxxx 14 Conclusions •  OSHUN gives well-known non-local reduction of heat conduction with steep temperature gradients •  1D OSHUN runs on NIF profiles: •  computationally cheap: less than 100 CPU-hours •  Non-local reduction in heat conductivity in entrance hole •  Exceeds Spitzer-Härm inside hohlraum - reflecting boundaries? •  Mobile ions: capability being developed in OSHUN •  Allow study of return current instability •  2D simulations •  Gold wall conditions Future Work