SlideShare a Scribd company logo
1 of 10
Download to read offline
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

Modeling of the Extraction of Oil from Neem Seed using Minitab
14 Software
Usman J.G1., Okonkwo P.C2*.
1.Department of Chemical Engineering, Kaduna Polytechnic, Nigeria.
2.Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria.
*Corresponding email: chemstprom@yahoo.com
Abstract
22 factorial design technique was applied using Minitab 14 software to investigate the effect of impeller speed
and contact time on the percentage yield of oil in agitated solvent extraction of oil from neem seed. 2 levels for
each factor were considered for flat blade turbine impeller (A1) and rushton turbine impeller (A2) at confidence
level of 95% (α = .05). The maximum percentage yield was 36.86% and was obtained when impeller type A1
was operated at 84 rpm for 40 minutes contact time at 50oC extraction temperature and particle size of 0.425 –
0.710mm.The factorial analysis revealed that impeller speed, contact time and their interaction have significant
effect on the extraction yield of oil from the neem seed. The properties of the neem oil extracted were found to
be: specific gravity, 0.9111; pH, 6.5; refractive index, 1.4668; iodine value, 70.21g/g; acid value,
34.33mgKOH/g and Saponification value, 180.95 mgKOH/g. These values compare favourably with literature
values. The model equations for using A1 and A2 are Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2
and Y = 17.5734 + 0.00234X1 + 0.00898X2 + 0.0038 X1 X2 respectively.
Keywords : Neem oil, Extraction, Modeling and Minitab 14.
1.0 INTRODUCTION
Neem tree, which is also known as Azadrichta indica, is one of the best known trees in India, which is known for
its medicinal properties. Extraction of oil has been of great interest worldwide and this has been as a result of the
constant increase in the world population. The Neem oil produced cannot cater for all need of the population
which includes domestics and industrial uses [1].
Neem oil extract, which is the fatty acid-extract of Neem tree seeds, is the most widely used product of the Neem
tree. Neem seeds contain about 25 - 45% oil and provide the major source of Neem chemicals [2]. The average
composition of Neem oil is shown in Table 1.
Table 1: Average Composition of Neem Oil
Formula
Fatty acid
Linoleic acid
C18H32O2
Oleic acid
C18H34O2
Palmittic acid
C16H32O2
Stearic acid
C18H36O2
Linolenic
C18H30O2
Palmitoleic acid
C16H30O2
Source [2]. ND* = Not Determined.

Composition range
6-16%
25-54%
16-33%
9-24%
ND*
ND*

The term model, as used in this paper, is referred to the ensemble of equations which describe and interrelate the
variables or parameters of the extraction process using a designed and constructed agitated pilot solvent
extraction plant.
In this study, food grade ethanol was used for the extraction of oil from the neem seed using agitated pilot
solvent extraction plant. The effect of turbine impeller speed (mixing intensity) and contact time on percentage
yield of oil from the neem seed was investigated for 2 different impeller types. Minitab 14 software was used to
get the design of experiment (DOE), analyzed the result and obtained the model equations.
The standard properties of neem oil are shown in Table 2.

7
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

Table 2: Standard Properties of Neem Oil
Property
Odour
Specific gravity at 30oC
Refractive index at 30°C
Ph
Iodine value
Acid Value
Saponification value
Source:[1,4 and 5]

www.iiste.org

Literature Value
Garlic
0.908-0.934
1.4615-1.4705
5.7 – 6.5
65 – 80
40
175-205

Unit
g/g
mg KOH/g
mg KOH/g

Two general categories of models exist:
(i) Those based on physical theory. Mathematical models based on physical and chemical laws (e.g., mass
and energy balances, thermodynamics, chemical reaction kinetics) are frequently employed in
optimization applications. These models are conceptually attractive because a general model for any
system size can be developed even before the system is constructed.
(ii) Those based on strictly empirical descriptions. Empirical models are usually only relevant for restricted
ranges of operation and scale-up.
Typical relations for empirical models might be
Y = a0+al Xl + a2 X2 + ……...……….…………………………….………………1
Linear in the variables and coefficients
Y = a0 + al1 X12 + a12 X1 X2+ ………………………………………………...……….2
Linear in the coefficients, nonlinear in the variables (Xl, X2).
Where y = response variable, a = coefficient constant, X = operating variable.
When the model is linear in the coefficients, they can be estimated by a procedure called linear regression. If the
model is nonlinear in the coefficients, estimating them is referred to as nonlinear regression. In either case, the
simplest adequate model (with the fewest number of coefficients) should be used [3].
Agitation refers to the induced motion of a material in a specified way, usually in a circulatory pattern inside
some sort of container. Mixing is the random distribution, into and through one another, of two or more initially
separated phases. Mixing is applied to processes used to reduce the degree of non-uniformity, or gradient of a
property in a system such as concentration, viscosity, temperature and so on. Mixing is achieved by moving
material from one region to another to enhance mass and heat transfers [6].
When there are several factors in an experiment, a factorial design should be used. By factorial experiment we
mean that in each complete trial or run, all possible combinations of the levels of the factors are investigated.
When the objective is factor screening , it is usually best to keep the number of factor level low; most often two
(2) levels are used. These levels are ‘+’ and ‘-’ called ‘high’ and ‘low’ respectively. The effect of a factor is
defined as the change in response produced by a change in the level of the factor, and is the difference between
the average response at the high level and the average response at the low level. If the calculated effect is five
(5), it means that changing from high level to low level caused an average response increase of 5 units. Consider
the two factors in this work namely: impeller speed and contact time denoted as A and B respectively, with ‘a’
levels of factor A and ‘b’ levels of factor B. If the experiment is replicated n times, the observation from a twofactor factorial experiment may be described by the model:
Yijf = γ + βiX1 + βj X2 + βij (X1 X2) + єijf ………………………………………………………...........(3)
i = 1,2 …….., a
j = 1,2 …….., b
f = 1,2 ……., n
Where Yijf = response ; that is percentage Yield of oil from the Neem seed,
γ = overall mean effect, that is the average effect of all the two factors: Impeller speed and Contact time on the
yield,
βi = effect of the ith level of factor A, that is the effect of Impeller speed on the yield,
βj = effect of the jth level of factor B, that is the effect of Contact time on the yield,
βij = effect of the interaction between Impeller speed (A) and Contact time (B) on the yield,
and єijf = error component, that is generated due to effects of A and B [7].
X1 = variable representing factor A (impeller speed)
X2= variable representing factor B (contact time)
X1 X2 = variable representing the interaction between factors A and B.

8
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

METHODOLOGY
Design of Experiment (DOE)
A 22 factorial design was adopted with two-variables two-level DOE using Minitab 14 computer soft ware. The
run-by-run experimental design were shown in Tables 3 and 4 for impellers A1 and A2 respectively. The runs
were replicated twice giving a total of 8 runs (4 x 2) to minimize error for each impeller type. The two factors
and their levels considered are:
(b)
Turbine impeller speed : 37 and 84 rpm
(c)
Contact time : 20 and 40 minutes.
Table 3: DOE for the Extraction of Oil from Neem Seed Kernel for Impeller A1(Flat Blade Turbine Impeller) .
Impeller Speed (rpm)
Contact Time (min)
Run Order
1
2
3
4
5
6
7
8

84
37
37
37
37
84
84
84

20
20
20
40
40
40
40
20

Table 4: DOE for the Extraction of Oil from Neem Seed Kernel for Impeller A2 (Rushton Turbine Impeller) .
Impeller Speed (rpm)
Contact Time (min)
Run Order
1
2
3
4
5
6
7
8

84
84
37
84
37
37
37
84

20
40
40
20
20
40
20
40

Solvent Extraction
The extraction of oil was done using food grade ethanol as solvent in a pilot solvent extraction plant. The pilot
plant is mainly made up of extractor, evaporator and condensate receiver. Impeller was used for agitation in the
extractor.
The pilot plant was adequately checked and appropriate valves; V1,V2 and V3 were closed. The electrical fittings
were equally checked and ascertained to be in good conditions. The chiller was switched on and set to 0oC and
allow to work for 30 minutes to attain stability and cool the condenser; this was done to aid easy condensation of
the food grade ethanol vapour to liquid. 21.23 litres of food grade ethanol and 0.3348kg (334.8g) of ground
Neem seed kernel of particle sized 0.425 – 0.71mm were charged into the extractor.
The main switch and 50oC switch were put on. The electric heater for the extractor was switched-on and the
XMTD electronic temperature controller manufactured by XY Instrument Ltd, China was set to 50oC for a
period of time to stabilize the system at 50oC. The stability was noticed by the aid of a temperature sensor placed
in the extractor and a click short sharp sound that was heard and the temperature controller light changed from
green to red which indicates that the system is stabilized at 50oC. Once the stability was attained, the electric
motor manufactured by Brook Crompton Doncaster, England was switched-on and regulated at 84 rpm with the
aid of a speed control unit using flat blade turbine impeller (A1) which was already mounted on the shaft; mixing
and agitation commenced immediately for a period of 20 minutes. The above procedure was repeated based on
the guide obtained from Minitab 14 computer software design of experiment (DOE). The DOE are shown in
Tables 3 and 4 for impellers A1 and A2 respectively, while impellers A1 and A2 and the pilot solvent extraction
plant are shown in Plates 1-3 respectively.
Plate 3: Pilot Solvent Extraction Plant for Extracting Neem Oil from Neem Seed
After extraction, the electric heater and electric motor were switched-off and the control valve, V1 was fully
opened. The mixture flow through the reinforce rubber tube and through the inverted funnel for filtration to take

9
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

place with the aid of a stainless steel filter mesh of size 0.00001m (0.01mm) attached to the cake receiver. The
impeller shaft was disconnected from the electric motor and top of the extractor was opened and 0.424 litre of
ethanol was introduced for washing to take place through percolation. After washing, the cake receiver was
collected via the cake discharge outlet and placed in an oven. The weight of the cake was taken after every one
hour until constant weight is achieved.
The control valves V1, V2 and V3 were shut and the temperature sensor was transferred to the evaporator. The
78oC switch was switched-on and the temperature controller set to 78oC. The heating was maintained at 78oC so
that evaporation of the food grade ethanol can take place. The vapour ethanol passed through the already cooled
condenser and was collected in the ethanol condensate receiver as liquid ethanol. After 4hr 25mins of
evaporation, a sample of oil was collected via V2 and analyzed. The collected Neem oil was dried in an oven for
10 minutes to dried-off any residual food grade ethanol .The main switch was switched-off and V3 opened to
collect the recovered solvent for recycling.
RESULT AND DISCUSSION
The optimum percentage yield of oil from the Neem seed was 36.86% obtained when operating impeller A1
(Flat Blade Turbine Impeller) at 84 rpm for 40 minutes contact time; while for impeller A2 (Rushton Turbine
Impeller) under similar operating conditions have the best percentage yield of 31.25%. The difference in
percentage yield can be associated with the presence of a disc on Rushton turbine impeller which hindered the
upward flow of the mixture there by reducing the rate of leaching of the oil from the neem seed around that
region. The results show that increase in mixing intensity and contact time increases the yield for individual type
of the impellers. This is because the higher the agitation of the medium, the faster the rate of oil transfer from the
neem seed to the solvent medium and the longer the contact time, the higher the quantity of oil extracted.
The results obtained from the experiment were shown in Tables 5 and 6.
Table 5: Percentage Yield of Oil from Mixer - Extractor for Impeller Types A1 using Food Grade Ethanol as
Solvent.
Impeller speed
Contact time
Cake weight (g)
YIELD
Run order
(rpm)
(min)
(%)
1
84
20
236.64
29.32
2
37
20
253.51
24.28
3
37
20
249.04
25.62
4
37
40
242.70
27.51
5
37
40
238.98
28.62
6
84
40
211.40
36.86
7
84
40
215.68
35.58
8
84
20
234.66
29.91
Table 6: Percentage Yield of Oil from Mixer - Extractor for Impeller Types A2 using Food Grade Ethanol as
Solvent.
Run order
Impeller speed
Contact time
Cake weight (g)
YIELD
(min)
(min)
(%)
1
2
3
4
5
6
7
8

84
84
37
84
37
37
37
84

20
40
40
20
20
40
20
40

255.59
232.60
254.62
251.07
266.68
256.68
264.65
230.19

23.66
30.53
23.95
25.00
20.35
23.33
20.95
31.25

Minitab 14 software was used to analyze the results. The analysis was done using confidence level of 95% (i.e α
= .05) to determine the effects, coefficients, F and P values of the main and interactive factors. If the value in the
F column from the estimated effect and coefficient table is greater than the F value obtain from the statistical
table, such factor is significant. Using α = .05, if the value in the P column of the estimated effects and
coefficients table is less than .05, such factor is significant.
The estimation of the effect, coefficients and ANOVA were done and the results shown in Tables 7 – 10 for
impellers A1 and A2.
Table 7 shows the individual effects, coefficients and P values of the main and interactive factor. The impeller

10
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

speed have the highest individual effect of 6.4100, that is changing from high level to low level caused an
average response increase of 6.4100 units. Impeller speed, contact time and the interaction between the impeller
speed and contact time have a P values of .000, .001 and .036 respectively; these factors were all significant
because the P values were less than .05. Similarly, from Table 8, the impeller speed, contact time and the
interaction factor were all significant.
Table 7: Estimated Effects and Coefficients for Yield (coded units) for Impeller A1
Term

Effect

Coef

SE Coef

P

Constant
Impeller Speed (rpm)
Contact Time (min)
Impeller Speed (rpm)*
Contact Time (min)

6.4100
4.8600
1.7450

29.7125
3.2050
2.4300
0.8725

0.2799
0.2799
0.2799
0.2799

.000
.000
.001
.036

Table 8: Estimated Effects and Coefficients for Yield (coded units) for Impeller A2
Term

Effect

Constant
Impeller Speed (rpm)
Contact Time (min)
Impeller Speed (rpm)*
Contact Time (min)

Coef

5.4650
4.7750
1.7850

SE Coef

24.8775
2.7325
2.3875
0.8925

0.2186
0.2186
0.2186
0.2186

P
.000
.000
.000
.015

Tables 9 and 10 show the ANOVA tables for testing the significance of factors based on the F and P values. The
main factors have an F value of F2,4 = 103.24 and F2,4 = 6.94 from the statistical table. Since 103.24 > 6.94, the
main factors are significant. For the 2-way interaction factor with F values of 9.72, it is significant because its F
values is greater than F1,4 = 7.71 from the statistical table. The significance of the main factors and interaction
factor were further confirmed by the P value of .000 and .036 respectively, which are less than .05. Similarly,
from Table 10, main factors have a significant effect (F2,4 = 137.76 > F2,4 = 6.94), while the interactive factor
have significance effect (F1,4= 16.67 > F1,4 = 7.71).
Table 9: Analysis of Variance for Yield (coded units) for Impeller A1
Source
Main Effects
2-Way Interactions
Residual Error
Total

DF
2
1
4
7

Seq SS
129.415
6.090
2.507
138.013

Adj SS
129.415
6.090
2.507

Adj MS
64.7077
6.0901
0.6268

F
103.24
9.72

P
.000
.036

Table 10: Analysis of Variance for Yield (coded units) for Impeller A2
Source

DF

Main Effects
2-Way Interactions
Residual Error
Total

2
1
4
7

Seq SS

Adj SS

105.334
105.334
6.372
6.372
1.529
1.529
113.235

Adj MS

F

52.6669
6.3725
0.3823

137.76
16.67

P
.000
.015

Table 11 shows the estimated coefficients of the individual main factors and the interactive factor. The
coefficients were used to generate first order regression model equations for the full factorial model using
impellers A1 and A2 .

11
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

Table 11: Estimated Coefficients for Yield (uncoded units) for using Impellers A1 and A2
Impeller
A1
A2
Term
Coefficients
Coefficients
Constant
20.9100
17.5734
Impeller Speed (rpm)
0.02500
0.00234
Contact Time (min)
0.01838
0.00898
Impeller Speed * Contact Time
0.00371
0.00380
The model equation for using impeller A1 investigating the effect of impeller speed and contact
time is: Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2 …………………...……..…(4)
The model equation for using impeller A2 investigating the effect of impeller speed and contact
time is: Y = 17.5734 + 0.00234X1 + 0.00898X2 + 0.0038 X1 X2.………………………..…..…(5)
Where :Y= % yield
X1 = variable representing factor A (impeller speed)
X2 = variable representing factor B (contact time)
X1 X2 = variable representing the interaction between factors A and B.
Surface Plot of Yield
Figures 1 and 2 are three – dimensional surface plots, showing the plane of predicted response values generated
by the regression model at any point within the experimental region for impeller A1 and A2 respectively. The
flat nature of the surface plots show that the regression model equations are first-order model. From the surface
plots, the maximum yield can be obtained when the impeller speed and contact time are operated at their high
levels.

S urface Plot of Y IELD vs CO N TACT TIME (min), IMPELLER S PEED (rpm)

35

Y IELD

30

40
25

30
40

60

80

IM P ELL ER SP EED (r pm)

Figure 1: Surface plot of Yield for impeller A1

12

20

C O NT A C T T IM E (min)
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

S urface Plot of Y IEL D (% ) v s CO N TACT TIME (min), IMPEL LER S PEED (rpm)

32

28
Y IELD ( % )
24
40
20

30
40

60

80

C O NT A C T T IM E ( min)

20

IM P ELL ER SP EED ( r pm)

Figure 2: Surface plot of Yield for impeller A2
Model Validation
The experimental and predicted yield values are shown in Tables 12 and 13 for using impellers A1 and A2
respectively.
Table 12: Values for Experimental and Predicted Yields for using impeller A1
Run Order
Impeller Speed (rpm) Contact Time (min)
Experimental
Yield (%)
1
37
20
24.28
2
37
20
25.62
3
37
40
27.51
4
37
40
28.62
5
84
20
29.32
6
84
20
29.91
7
84
40
35.58
8
84
40
36.89

Predicted Yield
(%)
24.95
24.95
28.07
28.07
29.61
29.61
36.22
36.22

Table 13: Values for Experimental and Predicted Yields for using impeller A2
Run Order
Impeller Speed (rpm) Contact Time (min)
Experimental
Yield (%)
1
37
20
20.35
2
37
20
20.95
3
37
40
23.33
4
37
40
23.95
5
84
20
23.66
6
84
20
25.00
7
84
40
30.53
8
84
40
31.25

Predicted Yield
(%)
20.65
20.65
23.64
23.64
24.33
24.33
30.89
30.89

The model equations 4 and 5 were validated using values within the experimental limits. 45 and 56 rpm were
considered for impeller speed, while 25 and 30 minutes were considered for contact time. The validation values
are shown in Tables 14 and 15 for using impellers A1 and A2 respectively.

13
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

Table 14: Values for Validation of Model using Impeller A1
S/NO
Impeller Speed (rpm)
Contact Time (min)
1
56
25
2
45
30

Yield (%)
27.96
27.59

Table 15: Values for Validation of Model using Impeller A2
S/NO
Impeller Speed (rpm)
Contact Time (min)
Yield (%)
1
56
25
23.25
2
45
30
23.08
The percentage yield of neem oil obtained for validating the model equation 4 in Table 14 fall within the
percentage range obtained for predicted yield of 36.22% (84 rpm, 40 mins) and 24.95% (37 rpm, 20 mins) as
shown in Table 14. Therefore, the predicted model equation adequately fits the experimental values. From Table
15, the percentage yields obtained for validating the model equation 5 falls within the percentage range obtained
for predicted yield of 30.89% (84 rpm, 40 mins) and 20.65% (37 rpm, 20 mins) as shown in Table 15. Therefore,
the predicted model equation values adequately fit the experimental values.
The linear relationship between the predicted and experimental responses were shown in Figure 3 and 4 when
the predicted response was plotted against experimental response. The least square fit line passing through the
origin suggests the adequacy of the models.
40

Predicted Yield (%)

35
30
25
20
15
10
5
0
0

5

10

15

20

25

30

35

40

Experimental Yield (%)
Figure 3 : Predicted Yield Vs Experimental Yield for impeller A1
35

Predicted Yield (%)

30
25
20
15
10
5
0
0

5

10

15

20

25

Experimental Yield (%)
Figure 4: Predicted Yield Vs Experimental Yield for impeller A2

14

30

35
Chemical and Process Engineering Research
ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online)
Vol.14, 2013

www.iiste.org

CONCLUSION
Neem oil was extracted using food grade ethanol as solvent in a pilot solvent extraction plant using the DOE as
guide. Using alpha (α) = .05, the main factors : impeller speed (A) and contact time (B) and the impeller speed –
contact time interaction (AB) have significant effect on the percentage yield of oil for both impellers A1 and A2.
The highest percentage yield was 36.89% within the experimental limit. The model equations for using A1 and
A2 are: Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2 and Y = 17.5734 + 0.00234X1 + 0.00898X2 +
0.0038 X1 X2 respectively.
ACKNOWLEDGEMENT
Chemical Engineering Department, Ahmadu Bello University Zaria, Kaduna state, Nigeria.
Biochemistry Department, Ahmadu Bello University Zaria, Kaduna state, Nigeria.
Institute for Agricultural Research, Ahmadu Bello University Zaria, Kaduna state, Nigeria.
National Research Institute for Chemical Technology Zaria, Kaduna state, Nigeria.
Kaduna Polytechnic, Kaduna state, Nigeria.
REFERENCES
Kovo, A S. Application of full 42 Factorial Design for the Development and Characterization of Insecticidal
Soap from Neem Oil. 2008; Department of Chemical Engineering, Federal university of Technology, Minna,
Nigeria. Accessed 2 January 2012. Available: http://www. Lejpt.academicdirect.org/A08/29_40.htm.
Anya,U. A. Chioma, N. N. and Obinna, O. Optimized Reduction Of Free Fatty Acid Content On Neem Seed Oil,
For Biodiesel Production. Journal of Basic and Applied Chemistry. 2012;.2(4) 21-28:22
Edgar, T.F. Himmelblau, D.M. and Lasdon, L.S. Optimization of Chemical Processes. 2nd Edition McGraw-Hill
Higher Education, New York, 2001.
Anonymous. Neem uses. No date; Accessed 7 January 2012. Available: http://www. neem
uses.com/neem_oil.php.
Workneh, Wondesen. Extraction and Characterization of Essential oil from Morgosa seed. 2011; Addis Ababa
University, School of Graduate Studies, Addis Ababa institute of Technology, Department of Chemical
Engineering, Ethopia. Accessed 2 January 2012. Available: www.libsearch.com/search/soxhlet%25
McCabe, W.L. Smith, J.C. Harriott, P. Unit Operation of Chemical engineering. 5th Edition, McGraw-Hill Book
Company, Singapore; 1993.
Montgomery, D.C. Introduction to Statistical Quality Control. 5th Ediion, John Wiley and Sons, Inc, USA; 2005.

15
This academic article was published by The International Institute for Science,
Technology and Education (IISTE). The IISTE is a pioneer in the Open Access
Publishing service based in the U.S. and Europe. The aim of the institute is
Accelerating Global Knowledge Sharing.
More information about the publisher can be found in the IISTE’s homepage:
http://www.iiste.org
CALL FOR JOURNAL PAPERS
The IISTE is currently hosting more than 30 peer-reviewed academic journals and
collaborating with academic institutions around the world. There’s no deadline for
submission. Prospective authors of IISTE journals can find the submission
instruction on the following page: http://www.iiste.org/journals/
The IISTE
editorial team promises to the review and publish all the qualified submissions in a
fast manner. All the journals articles are available online to the readers all over the
world without financial, legal, or technical barriers other than those inseparable from
gaining access to the internet itself. Printed version of the journals is also available
upon request of readers and authors.
MORE RESOURCES
Book publication information: http://www.iiste.org/book/
Recent conferences: http://www.iiste.org/conference/
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische
Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial
Library , NewJour, Google Scholar

More Related Content

What's hot

Usda james zahn.doc
Usda james zahn.docUsda james zahn.doc
Usda james zahn.dockode23
 
Synthesis of Biolubricants from Non Edible Oils
Synthesis of Biolubricants from Non Edible OilsSynthesis of Biolubricants from Non Edible Oils
Synthesis of Biolubricants from Non Edible OilsIRJET Journal
 
G03702054060
G03702054060G03702054060
G03702054060theijes
 
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...CrimsonPublishersRDMS
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...CrimsonpublishersMCDA
 
Optimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological StudiesOptimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological StudiesIJRES Journal
 
Determination of physico chemical properties of castor biodiesel a potential
Determination of physico chemical properties of castor biodiesel  a potentialDetermination of physico chemical properties of castor biodiesel  a potential
Determination of physico chemical properties of castor biodiesel a potentialIAEME Publication
 
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B... A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...theijes
 
Theoritical investigations of injection pressure in a four stroke di diesel e...
Theoritical investigations of injection pressure in a four stroke di diesel e...Theoritical investigations of injection pressure in a four stroke di diesel e...
Theoritical investigations of injection pressure in a four stroke di diesel e...IAEME Publication
 
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...IRJET Journal
 
Effect of Injection Pressure on Ignition Delay and Combustion Duration of Di...
Effect of Injection Pressure on Ignition Delay and Combustion  Duration of Di...Effect of Injection Pressure on Ignition Delay and Combustion  Duration of Di...
Effect of Injection Pressure on Ignition Delay and Combustion Duration of Di...IJMER
 
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...IJERD Editor
 
B0315011015
B0315011015B0315011015
B0315011015theijes
 
Innovate to Grow_ Final Report
Innovate to Grow_ Final ReportInnovate to Grow_ Final Report
Innovate to Grow_ Final ReportGriffith Brown
 
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation Process
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation ProcessControl System Based on Fuzzy Logic in Nutmeg Oil Distillation Process
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation ProcessTELKOMNIKA JOURNAL
 

What's hot (20)

Cc36473478
Cc36473478Cc36473478
Cc36473478
 
Usda james zahn.doc
Usda james zahn.docUsda james zahn.doc
Usda james zahn.doc
 
Synthesis of Biolubricants from Non Edible Oils
Synthesis of Biolubricants from Non Edible OilsSynthesis of Biolubricants from Non Edible Oils
Synthesis of Biolubricants from Non Edible Oils
 
G03702054060
G03702054060G03702054060
G03702054060
 
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...
Crimson Publishers-Temperature Assessment and Process Optimization of Alkali ...
 
G04103948
G04103948G04103948
G04103948
 
I013155259
I013155259I013155259
I013155259
 
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
Pyroligneous Liquor Produced at Different Heating Rates in Pyrolysis of Eucal...
 
J04554954
J04554954J04554954
J04554954
 
Optimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological StudiesOptimization of Sunflower Methyl Ester and its Tribological Studies
Optimization of Sunflower Methyl Ester and its Tribological Studies
 
Determination of physico chemical properties of castor biodiesel a potential
Determination of physico chemical properties of castor biodiesel  a potentialDetermination of physico chemical properties of castor biodiesel  a potential
Determination of physico chemical properties of castor biodiesel a potential
 
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B... A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...
 A Study On The Performance And Combustion Of A Diesel Engine Fuelled With B...
 
Theoritical investigations of injection pressure in a four stroke di diesel e...
Theoritical investigations of injection pressure in a four stroke di diesel e...Theoritical investigations of injection pressure in a four stroke di diesel e...
Theoritical investigations of injection pressure in a four stroke di diesel e...
 
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...
IRJET- Development of Heterogeneous Catalyst for Transesterification Reaction...
 
Effect of Injection Pressure on Ignition Delay and Combustion Duration of Di...
Effect of Injection Pressure on Ignition Delay and Combustion  Duration of Di...Effect of Injection Pressure on Ignition Delay and Combustion  Duration of Di...
Effect of Injection Pressure on Ignition Delay and Combustion Duration of Di...
 
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...
Performance Optimization of Diesel Engine with Chicken Waste Bio-diesel Blend...
 
B0315011015
B0315011015B0315011015
B0315011015
 
Innovate to Grow_ Final Report
Innovate to Grow_ Final ReportInnovate to Grow_ Final Report
Innovate to Grow_ Final Report
 
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation Process
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation ProcessControl System Based on Fuzzy Logic in Nutmeg Oil Distillation Process
Control System Based on Fuzzy Logic in Nutmeg Oil Distillation Process
 
G04524350
G04524350G04524350
G04524350
 

Viewers also liked

Project report Final 1 without conclusion
Project report Final 1 without conclusionProject report Final 1 without conclusion
Project report Final 1 without conclusionRajesh Gupta
 
Microemulsion an alternate technology in oil extraction
Microemulsion an alternate technology in oil extractionMicroemulsion an alternate technology in oil extraction
Microemulsion an alternate technology in oil extractionAshish Gadhave
 
Advancement in neem oil extraction process
Advancement in neem oil extraction process Advancement in neem oil extraction process
Advancement in neem oil extraction process Prem Baboo
 
extraction for process calculation
extraction for process calculationextraction for process calculation
extraction for process calculationJaydrath Sindhav
 
Meet minitab tutorial
Meet minitab tutorialMeet minitab tutorial
Meet minitab tutorialshanmu31
 
Extraction of Essential Oils using Steam Distillation
Extraction of Essential Oils using Steam DistillationExtraction of Essential Oils using Steam Distillation
Extraction of Essential Oils using Steam DistillationPrathamesh Kudalkar
 
EXTRACTION OF OILS
EXTRACTION OF OILSEXTRACTION OF OILS
EXTRACTION OF OILSAsra Hameed
 
Solvent Extraction
Solvent ExtractionSolvent Extraction
Solvent ExtractionSuman Roy
 
Database design & Normalization (1NF, 2NF, 3NF)
Database design & Normalization (1NF, 2NF, 3NF)Database design & Normalization (1NF, 2NF, 3NF)
Database design & Normalization (1NF, 2NF, 3NF)Jargalsaikhan Alyeksandr
 

Viewers also liked (13)

skill
skillskill
skill
 
Project report Final 1 without conclusion
Project report Final 1 without conclusionProject report Final 1 without conclusion
Project report Final 1 without conclusion
 
Microemulsion an alternate technology in oil extraction
Microemulsion an alternate technology in oil extractionMicroemulsion an alternate technology in oil extraction
Microemulsion an alternate technology in oil extraction
 
Advancement in neem oil extraction process
Advancement in neem oil extraction process Advancement in neem oil extraction process
Advancement in neem oil extraction process
 
extraction for process calculation
extraction for process calculationextraction for process calculation
extraction for process calculation
 
Meet minitab tutorial
Meet minitab tutorialMeet minitab tutorial
Meet minitab tutorial
 
Extraction of Essential Oils using Steam Distillation
Extraction of Essential Oils using Steam DistillationExtraction of Essential Oils using Steam Distillation
Extraction of Essential Oils using Steam Distillation
 
EXTRACTION OF OILS
EXTRACTION OF OILSEXTRACTION OF OILS
EXTRACTION OF OILS
 
oil extraction
oil extractionoil extraction
oil extraction
 
Solvent Extraction
Solvent ExtractionSolvent Extraction
Solvent Extraction
 
Extraction processes
Extraction processes Extraction processes
Extraction processes
 
Database design & Normalization (1NF, 2NF, 3NF)
Database design & Normalization (1NF, 2NF, 3NF)Database design & Normalization (1NF, 2NF, 3NF)
Database design & Normalization (1NF, 2NF, 3NF)
 
PHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTIONPHYTOCHEMICAL EXTRACTION
PHYTOCHEMICAL EXTRACTION
 

Similar to Modeling of the extraction of oil from neem seed using minitab 14 software

Optimization of neem seed oil extraction process using response surface metho...
Optimization of neem seed oil extraction process using response surface metho...Optimization of neem seed oil extraction process using response surface metho...
Optimization of neem seed oil extraction process using response surface metho...Alexander Decker
 
7.aspen hysys simulationofsuspension
7.aspen hysys simulationofsuspension7.aspen hysys simulationofsuspension
7.aspen hysys simulationofsuspensiondjaalab Elbahi
 
Experimental Studies on Various Biomass using Fluidized Bed Gasifier
Experimental Studies on Various Biomass using Fluidized Bed GasifierExperimental Studies on Various Biomass using Fluidized Bed Gasifier
Experimental Studies on Various Biomass using Fluidized Bed GasifierIRJET Journal
 
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANTHYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANTijfls
 
4 combined gain scheduling and multimodel control of a reactive distillation ...
4 combined gain scheduling and multimodel control of a reactive distillation ...4 combined gain scheduling and multimodel control of a reactive distillation ...
4 combined gain scheduling and multimodel control of a reactive distillation ...nazir1988
 
Phase equilibrium feasibility studies of free fatty acids extraction from pal...
Phase equilibrium feasibility studies of free fatty acids extraction from pal...Phase equilibrium feasibility studies of free fatty acids extraction from pal...
Phase equilibrium feasibility studies of free fatty acids extraction from pal...Alexander Decker
 
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...IRJET Journal
 
Steady State Simulation of Ethyl Acetate Production using CHEMCAD
Steady State Simulation of Ethyl Acetate Production using CHEMCADSteady State Simulation of Ethyl Acetate Production using CHEMCAD
Steady State Simulation of Ethyl Acetate Production using CHEMCADIRJET Journal
 
IRJET - Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...
IRJET -  	  Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...IRJET -  	  Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...
IRJET - Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...IRJET Journal
 
Control of the humidity percentage of a bioreactor using a fuzzy controller ...
Control of the humidity percentage of a bioreactor using a fuzzy  controller ...Control of the humidity percentage of a bioreactor using a fuzzy  controller ...
Control of the humidity percentage of a bioreactor using a fuzzy controller ...IJECEIAES
 
Maxwell scientific
Maxwell scientificMaxwell scientific
Maxwell scientificAli Rakhmad
 
Extração de óleo de maracujá
Extração de óleo de maracujáExtração de óleo de maracujá
Extração de óleo de maracujáKarine Scroccaro
 
New calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCNew calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCinventionjournals
 
New calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCNew calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCinventionjournals
 
Implementing Life Cycle Assessment to Understand the Environmental and Energy...
Implementing Life Cycle Assessment to Understand the Environmental and Energy...Implementing Life Cycle Assessment to Understand the Environmental and Energy...
Implementing Life Cycle Assessment to Understand the Environmental and Energy...barkercarlock
 
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...IRJET Journal
 
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...drboon
 

Similar to Modeling of the extraction of oil from neem seed using minitab 14 software (20)

Cp4301530535
Cp4301530535Cp4301530535
Cp4301530535
 
Optimization of neem seed oil extraction process using response surface metho...
Optimization of neem seed oil extraction process using response surface metho...Optimization of neem seed oil extraction process using response surface metho...
Optimization of neem seed oil extraction process using response surface metho...
 
7.aspen hysys simulationofsuspension
7.aspen hysys simulationofsuspension7.aspen hysys simulationofsuspension
7.aspen hysys simulationofsuspension
 
Experimental Studies on Various Biomass using Fluidized Bed Gasifier
Experimental Studies on Various Biomass using Fluidized Bed GasifierExperimental Studies on Various Biomass using Fluidized Bed Gasifier
Experimental Studies on Various Biomass using Fluidized Bed Gasifier
 
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANTHYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT
 
12
1212
12
 
4 combined gain scheduling and multimodel control of a reactive distillation ...
4 combined gain scheduling and multimodel control of a reactive distillation ...4 combined gain scheduling and multimodel control of a reactive distillation ...
4 combined gain scheduling and multimodel control of a reactive distillation ...
 
Phase equilibrium feasibility studies of free fatty acids extraction from pal...
Phase equilibrium feasibility studies of free fatty acids extraction from pal...Phase equilibrium feasibility studies of free fatty acids extraction from pal...
Phase equilibrium feasibility studies of free fatty acids extraction from pal...
 
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...
Artificial Neural Network Modelling for Pressure Drop Estimation of Oil-Water...
 
Steady State Simulation of Ethyl Acetate Production using CHEMCAD
Steady State Simulation of Ethyl Acetate Production using CHEMCADSteady State Simulation of Ethyl Acetate Production using CHEMCAD
Steady State Simulation of Ethyl Acetate Production using CHEMCAD
 
Evolutionary Operation
Evolutionary OperationEvolutionary Operation
Evolutionary Operation
 
IRJET - Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...
IRJET -  	  Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...IRJET -  	  Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...
IRJET - Mono and Co-Digestion of Laminaria Digitata with Simulated Food W...
 
Control of the humidity percentage of a bioreactor using a fuzzy controller ...
Control of the humidity percentage of a bioreactor using a fuzzy  controller ...Control of the humidity percentage of a bioreactor using a fuzzy  controller ...
Control of the humidity percentage of a bioreactor using a fuzzy controller ...
 
Maxwell scientific
Maxwell scientificMaxwell scientific
Maxwell scientific
 
Extração de óleo de maracujá
Extração de óleo de maracujáExtração de óleo de maracujá
Extração de óleo de maracujá
 
New calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCNew calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPC
 
New calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPCNew calculation of thetray numbers for Debutanizer Tower in BIPC
New calculation of thetray numbers for Debutanizer Tower in BIPC
 
Implementing Life Cycle Assessment to Understand the Environmental and Energy...
Implementing Life Cycle Assessment to Understand the Environmental and Energy...Implementing Life Cycle Assessment to Understand the Environmental and Energy...
Implementing Life Cycle Assessment to Understand the Environmental and Energy...
 
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...
Optimization of Organic Rankine Cycle’s thermal efficiency based on Grey rela...
 
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...
Effective Moisture Diffusivity and Activation Energy of Tomato in Thin Layer ...
 

More from Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

More from Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Recently uploaded

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoffsammart93
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfhans926745
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsJoaquim Jorge
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Recently uploaded (20)

Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Tech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdfTech Trends Report 2024 Future Today Institute.pdf
Tech Trends Report 2024 Future Today Institute.pdf
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

Modeling of the extraction of oil from neem seed using minitab 14 software

  • 1. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org Modeling of the Extraction of Oil from Neem Seed using Minitab 14 Software Usman J.G1., Okonkwo P.C2*. 1.Department of Chemical Engineering, Kaduna Polytechnic, Nigeria. 2.Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria. *Corresponding email: chemstprom@yahoo.com Abstract 22 factorial design technique was applied using Minitab 14 software to investigate the effect of impeller speed and contact time on the percentage yield of oil in agitated solvent extraction of oil from neem seed. 2 levels for each factor were considered for flat blade turbine impeller (A1) and rushton turbine impeller (A2) at confidence level of 95% (α = .05). The maximum percentage yield was 36.86% and was obtained when impeller type A1 was operated at 84 rpm for 40 minutes contact time at 50oC extraction temperature and particle size of 0.425 – 0.710mm.The factorial analysis revealed that impeller speed, contact time and their interaction have significant effect on the extraction yield of oil from the neem seed. The properties of the neem oil extracted were found to be: specific gravity, 0.9111; pH, 6.5; refractive index, 1.4668; iodine value, 70.21g/g; acid value, 34.33mgKOH/g and Saponification value, 180.95 mgKOH/g. These values compare favourably with literature values. The model equations for using A1 and A2 are Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2 and Y = 17.5734 + 0.00234X1 + 0.00898X2 + 0.0038 X1 X2 respectively. Keywords : Neem oil, Extraction, Modeling and Minitab 14. 1.0 INTRODUCTION Neem tree, which is also known as Azadrichta indica, is one of the best known trees in India, which is known for its medicinal properties. Extraction of oil has been of great interest worldwide and this has been as a result of the constant increase in the world population. The Neem oil produced cannot cater for all need of the population which includes domestics and industrial uses [1]. Neem oil extract, which is the fatty acid-extract of Neem tree seeds, is the most widely used product of the Neem tree. Neem seeds contain about 25 - 45% oil and provide the major source of Neem chemicals [2]. The average composition of Neem oil is shown in Table 1. Table 1: Average Composition of Neem Oil Formula Fatty acid Linoleic acid C18H32O2 Oleic acid C18H34O2 Palmittic acid C16H32O2 Stearic acid C18H36O2 Linolenic C18H30O2 Palmitoleic acid C16H30O2 Source [2]. ND* = Not Determined. Composition range 6-16% 25-54% 16-33% 9-24% ND* ND* The term model, as used in this paper, is referred to the ensemble of equations which describe and interrelate the variables or parameters of the extraction process using a designed and constructed agitated pilot solvent extraction plant. In this study, food grade ethanol was used for the extraction of oil from the neem seed using agitated pilot solvent extraction plant. The effect of turbine impeller speed (mixing intensity) and contact time on percentage yield of oil from the neem seed was investigated for 2 different impeller types. Minitab 14 software was used to get the design of experiment (DOE), analyzed the result and obtained the model equations. The standard properties of neem oil are shown in Table 2. 7
  • 2. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 Table 2: Standard Properties of Neem Oil Property Odour Specific gravity at 30oC Refractive index at 30°C Ph Iodine value Acid Value Saponification value Source:[1,4 and 5] www.iiste.org Literature Value Garlic 0.908-0.934 1.4615-1.4705 5.7 – 6.5 65 – 80 40 175-205 Unit g/g mg KOH/g mg KOH/g Two general categories of models exist: (i) Those based on physical theory. Mathematical models based on physical and chemical laws (e.g., mass and energy balances, thermodynamics, chemical reaction kinetics) are frequently employed in optimization applications. These models are conceptually attractive because a general model for any system size can be developed even before the system is constructed. (ii) Those based on strictly empirical descriptions. Empirical models are usually only relevant for restricted ranges of operation and scale-up. Typical relations for empirical models might be Y = a0+al Xl + a2 X2 + ……...……….…………………………….………………1 Linear in the variables and coefficients Y = a0 + al1 X12 + a12 X1 X2+ ………………………………………………...……….2 Linear in the coefficients, nonlinear in the variables (Xl, X2). Where y = response variable, a = coefficient constant, X = operating variable. When the model is linear in the coefficients, they can be estimated by a procedure called linear regression. If the model is nonlinear in the coefficients, estimating them is referred to as nonlinear regression. In either case, the simplest adequate model (with the fewest number of coefficients) should be used [3]. Agitation refers to the induced motion of a material in a specified way, usually in a circulatory pattern inside some sort of container. Mixing is the random distribution, into and through one another, of two or more initially separated phases. Mixing is applied to processes used to reduce the degree of non-uniformity, or gradient of a property in a system such as concentration, viscosity, temperature and so on. Mixing is achieved by moving material from one region to another to enhance mass and heat transfers [6]. When there are several factors in an experiment, a factorial design should be used. By factorial experiment we mean that in each complete trial or run, all possible combinations of the levels of the factors are investigated. When the objective is factor screening , it is usually best to keep the number of factor level low; most often two (2) levels are used. These levels are ‘+’ and ‘-’ called ‘high’ and ‘low’ respectively. The effect of a factor is defined as the change in response produced by a change in the level of the factor, and is the difference between the average response at the high level and the average response at the low level. If the calculated effect is five (5), it means that changing from high level to low level caused an average response increase of 5 units. Consider the two factors in this work namely: impeller speed and contact time denoted as A and B respectively, with ‘a’ levels of factor A and ‘b’ levels of factor B. If the experiment is replicated n times, the observation from a twofactor factorial experiment may be described by the model: Yijf = γ + βiX1 + βj X2 + βij (X1 X2) + єijf ………………………………………………………...........(3) i = 1,2 …….., a j = 1,2 …….., b f = 1,2 ……., n Where Yijf = response ; that is percentage Yield of oil from the Neem seed, γ = overall mean effect, that is the average effect of all the two factors: Impeller speed and Contact time on the yield, βi = effect of the ith level of factor A, that is the effect of Impeller speed on the yield, βj = effect of the jth level of factor B, that is the effect of Contact time on the yield, βij = effect of the interaction between Impeller speed (A) and Contact time (B) on the yield, and єijf = error component, that is generated due to effects of A and B [7]. X1 = variable representing factor A (impeller speed) X2= variable representing factor B (contact time) X1 X2 = variable representing the interaction between factors A and B. 8
  • 3. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org METHODOLOGY Design of Experiment (DOE) A 22 factorial design was adopted with two-variables two-level DOE using Minitab 14 computer soft ware. The run-by-run experimental design were shown in Tables 3 and 4 for impellers A1 and A2 respectively. The runs were replicated twice giving a total of 8 runs (4 x 2) to minimize error for each impeller type. The two factors and their levels considered are: (b) Turbine impeller speed : 37 and 84 rpm (c) Contact time : 20 and 40 minutes. Table 3: DOE for the Extraction of Oil from Neem Seed Kernel for Impeller A1(Flat Blade Turbine Impeller) . Impeller Speed (rpm) Contact Time (min) Run Order 1 2 3 4 5 6 7 8 84 37 37 37 37 84 84 84 20 20 20 40 40 40 40 20 Table 4: DOE for the Extraction of Oil from Neem Seed Kernel for Impeller A2 (Rushton Turbine Impeller) . Impeller Speed (rpm) Contact Time (min) Run Order 1 2 3 4 5 6 7 8 84 84 37 84 37 37 37 84 20 40 40 20 20 40 20 40 Solvent Extraction The extraction of oil was done using food grade ethanol as solvent in a pilot solvent extraction plant. The pilot plant is mainly made up of extractor, evaporator and condensate receiver. Impeller was used for agitation in the extractor. The pilot plant was adequately checked and appropriate valves; V1,V2 and V3 were closed. The electrical fittings were equally checked and ascertained to be in good conditions. The chiller was switched on and set to 0oC and allow to work for 30 minutes to attain stability and cool the condenser; this was done to aid easy condensation of the food grade ethanol vapour to liquid. 21.23 litres of food grade ethanol and 0.3348kg (334.8g) of ground Neem seed kernel of particle sized 0.425 – 0.71mm were charged into the extractor. The main switch and 50oC switch were put on. The electric heater for the extractor was switched-on and the XMTD electronic temperature controller manufactured by XY Instrument Ltd, China was set to 50oC for a period of time to stabilize the system at 50oC. The stability was noticed by the aid of a temperature sensor placed in the extractor and a click short sharp sound that was heard and the temperature controller light changed from green to red which indicates that the system is stabilized at 50oC. Once the stability was attained, the electric motor manufactured by Brook Crompton Doncaster, England was switched-on and regulated at 84 rpm with the aid of a speed control unit using flat blade turbine impeller (A1) which was already mounted on the shaft; mixing and agitation commenced immediately for a period of 20 minutes. The above procedure was repeated based on the guide obtained from Minitab 14 computer software design of experiment (DOE). The DOE are shown in Tables 3 and 4 for impellers A1 and A2 respectively, while impellers A1 and A2 and the pilot solvent extraction plant are shown in Plates 1-3 respectively. Plate 3: Pilot Solvent Extraction Plant for Extracting Neem Oil from Neem Seed After extraction, the electric heater and electric motor were switched-off and the control valve, V1 was fully opened. The mixture flow through the reinforce rubber tube and through the inverted funnel for filtration to take 9
  • 4. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org place with the aid of a stainless steel filter mesh of size 0.00001m (0.01mm) attached to the cake receiver. The impeller shaft was disconnected from the electric motor and top of the extractor was opened and 0.424 litre of ethanol was introduced for washing to take place through percolation. After washing, the cake receiver was collected via the cake discharge outlet and placed in an oven. The weight of the cake was taken after every one hour until constant weight is achieved. The control valves V1, V2 and V3 were shut and the temperature sensor was transferred to the evaporator. The 78oC switch was switched-on and the temperature controller set to 78oC. The heating was maintained at 78oC so that evaporation of the food grade ethanol can take place. The vapour ethanol passed through the already cooled condenser and was collected in the ethanol condensate receiver as liquid ethanol. After 4hr 25mins of evaporation, a sample of oil was collected via V2 and analyzed. The collected Neem oil was dried in an oven for 10 minutes to dried-off any residual food grade ethanol .The main switch was switched-off and V3 opened to collect the recovered solvent for recycling. RESULT AND DISCUSSION The optimum percentage yield of oil from the Neem seed was 36.86% obtained when operating impeller A1 (Flat Blade Turbine Impeller) at 84 rpm for 40 minutes contact time; while for impeller A2 (Rushton Turbine Impeller) under similar operating conditions have the best percentage yield of 31.25%. The difference in percentage yield can be associated with the presence of a disc on Rushton turbine impeller which hindered the upward flow of the mixture there by reducing the rate of leaching of the oil from the neem seed around that region. The results show that increase in mixing intensity and contact time increases the yield for individual type of the impellers. This is because the higher the agitation of the medium, the faster the rate of oil transfer from the neem seed to the solvent medium and the longer the contact time, the higher the quantity of oil extracted. The results obtained from the experiment were shown in Tables 5 and 6. Table 5: Percentage Yield of Oil from Mixer - Extractor for Impeller Types A1 using Food Grade Ethanol as Solvent. Impeller speed Contact time Cake weight (g) YIELD Run order (rpm) (min) (%) 1 84 20 236.64 29.32 2 37 20 253.51 24.28 3 37 20 249.04 25.62 4 37 40 242.70 27.51 5 37 40 238.98 28.62 6 84 40 211.40 36.86 7 84 40 215.68 35.58 8 84 20 234.66 29.91 Table 6: Percentage Yield of Oil from Mixer - Extractor for Impeller Types A2 using Food Grade Ethanol as Solvent. Run order Impeller speed Contact time Cake weight (g) YIELD (min) (min) (%) 1 2 3 4 5 6 7 8 84 84 37 84 37 37 37 84 20 40 40 20 20 40 20 40 255.59 232.60 254.62 251.07 266.68 256.68 264.65 230.19 23.66 30.53 23.95 25.00 20.35 23.33 20.95 31.25 Minitab 14 software was used to analyze the results. The analysis was done using confidence level of 95% (i.e α = .05) to determine the effects, coefficients, F and P values of the main and interactive factors. If the value in the F column from the estimated effect and coefficient table is greater than the F value obtain from the statistical table, such factor is significant. Using α = .05, if the value in the P column of the estimated effects and coefficients table is less than .05, such factor is significant. The estimation of the effect, coefficients and ANOVA were done and the results shown in Tables 7 – 10 for impellers A1 and A2. Table 7 shows the individual effects, coefficients and P values of the main and interactive factor. The impeller 10
  • 5. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org speed have the highest individual effect of 6.4100, that is changing from high level to low level caused an average response increase of 6.4100 units. Impeller speed, contact time and the interaction between the impeller speed and contact time have a P values of .000, .001 and .036 respectively; these factors were all significant because the P values were less than .05. Similarly, from Table 8, the impeller speed, contact time and the interaction factor were all significant. Table 7: Estimated Effects and Coefficients for Yield (coded units) for Impeller A1 Term Effect Coef SE Coef P Constant Impeller Speed (rpm) Contact Time (min) Impeller Speed (rpm)* Contact Time (min) 6.4100 4.8600 1.7450 29.7125 3.2050 2.4300 0.8725 0.2799 0.2799 0.2799 0.2799 .000 .000 .001 .036 Table 8: Estimated Effects and Coefficients for Yield (coded units) for Impeller A2 Term Effect Constant Impeller Speed (rpm) Contact Time (min) Impeller Speed (rpm)* Contact Time (min) Coef 5.4650 4.7750 1.7850 SE Coef 24.8775 2.7325 2.3875 0.8925 0.2186 0.2186 0.2186 0.2186 P .000 .000 .000 .015 Tables 9 and 10 show the ANOVA tables for testing the significance of factors based on the F and P values. The main factors have an F value of F2,4 = 103.24 and F2,4 = 6.94 from the statistical table. Since 103.24 > 6.94, the main factors are significant. For the 2-way interaction factor with F values of 9.72, it is significant because its F values is greater than F1,4 = 7.71 from the statistical table. The significance of the main factors and interaction factor were further confirmed by the P value of .000 and .036 respectively, which are less than .05. Similarly, from Table 10, main factors have a significant effect (F2,4 = 137.76 > F2,4 = 6.94), while the interactive factor have significance effect (F1,4= 16.67 > F1,4 = 7.71). Table 9: Analysis of Variance for Yield (coded units) for Impeller A1 Source Main Effects 2-Way Interactions Residual Error Total DF 2 1 4 7 Seq SS 129.415 6.090 2.507 138.013 Adj SS 129.415 6.090 2.507 Adj MS 64.7077 6.0901 0.6268 F 103.24 9.72 P .000 .036 Table 10: Analysis of Variance for Yield (coded units) for Impeller A2 Source DF Main Effects 2-Way Interactions Residual Error Total 2 1 4 7 Seq SS Adj SS 105.334 105.334 6.372 6.372 1.529 1.529 113.235 Adj MS F 52.6669 6.3725 0.3823 137.76 16.67 P .000 .015 Table 11 shows the estimated coefficients of the individual main factors and the interactive factor. The coefficients were used to generate first order regression model equations for the full factorial model using impellers A1 and A2 . 11
  • 6. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org Table 11: Estimated Coefficients for Yield (uncoded units) for using Impellers A1 and A2 Impeller A1 A2 Term Coefficients Coefficients Constant 20.9100 17.5734 Impeller Speed (rpm) 0.02500 0.00234 Contact Time (min) 0.01838 0.00898 Impeller Speed * Contact Time 0.00371 0.00380 The model equation for using impeller A1 investigating the effect of impeller speed and contact time is: Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2 …………………...……..…(4) The model equation for using impeller A2 investigating the effect of impeller speed and contact time is: Y = 17.5734 + 0.00234X1 + 0.00898X2 + 0.0038 X1 X2.………………………..…..…(5) Where :Y= % yield X1 = variable representing factor A (impeller speed) X2 = variable representing factor B (contact time) X1 X2 = variable representing the interaction between factors A and B. Surface Plot of Yield Figures 1 and 2 are three – dimensional surface plots, showing the plane of predicted response values generated by the regression model at any point within the experimental region for impeller A1 and A2 respectively. The flat nature of the surface plots show that the regression model equations are first-order model. From the surface plots, the maximum yield can be obtained when the impeller speed and contact time are operated at their high levels. S urface Plot of Y IELD vs CO N TACT TIME (min), IMPELLER S PEED (rpm) 35 Y IELD 30 40 25 30 40 60 80 IM P ELL ER SP EED (r pm) Figure 1: Surface plot of Yield for impeller A1 12 20 C O NT A C T T IM E (min)
  • 7. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org S urface Plot of Y IEL D (% ) v s CO N TACT TIME (min), IMPEL LER S PEED (rpm) 32 28 Y IELD ( % ) 24 40 20 30 40 60 80 C O NT A C T T IM E ( min) 20 IM P ELL ER SP EED ( r pm) Figure 2: Surface plot of Yield for impeller A2 Model Validation The experimental and predicted yield values are shown in Tables 12 and 13 for using impellers A1 and A2 respectively. Table 12: Values for Experimental and Predicted Yields for using impeller A1 Run Order Impeller Speed (rpm) Contact Time (min) Experimental Yield (%) 1 37 20 24.28 2 37 20 25.62 3 37 40 27.51 4 37 40 28.62 5 84 20 29.32 6 84 20 29.91 7 84 40 35.58 8 84 40 36.89 Predicted Yield (%) 24.95 24.95 28.07 28.07 29.61 29.61 36.22 36.22 Table 13: Values for Experimental and Predicted Yields for using impeller A2 Run Order Impeller Speed (rpm) Contact Time (min) Experimental Yield (%) 1 37 20 20.35 2 37 20 20.95 3 37 40 23.33 4 37 40 23.95 5 84 20 23.66 6 84 20 25.00 7 84 40 30.53 8 84 40 31.25 Predicted Yield (%) 20.65 20.65 23.64 23.64 24.33 24.33 30.89 30.89 The model equations 4 and 5 were validated using values within the experimental limits. 45 and 56 rpm were considered for impeller speed, while 25 and 30 minutes were considered for contact time. The validation values are shown in Tables 14 and 15 for using impellers A1 and A2 respectively. 13
  • 8. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org Table 14: Values for Validation of Model using Impeller A1 S/NO Impeller Speed (rpm) Contact Time (min) 1 56 25 2 45 30 Yield (%) 27.96 27.59 Table 15: Values for Validation of Model using Impeller A2 S/NO Impeller Speed (rpm) Contact Time (min) Yield (%) 1 56 25 23.25 2 45 30 23.08 The percentage yield of neem oil obtained for validating the model equation 4 in Table 14 fall within the percentage range obtained for predicted yield of 36.22% (84 rpm, 40 mins) and 24.95% (37 rpm, 20 mins) as shown in Table 14. Therefore, the predicted model equation adequately fits the experimental values. From Table 15, the percentage yields obtained for validating the model equation 5 falls within the percentage range obtained for predicted yield of 30.89% (84 rpm, 40 mins) and 20.65% (37 rpm, 20 mins) as shown in Table 15. Therefore, the predicted model equation values adequately fit the experimental values. The linear relationship between the predicted and experimental responses were shown in Figure 3 and 4 when the predicted response was plotted against experimental response. The least square fit line passing through the origin suggests the adequacy of the models. 40 Predicted Yield (%) 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 Experimental Yield (%) Figure 3 : Predicted Yield Vs Experimental Yield for impeller A1 35 Predicted Yield (%) 30 25 20 15 10 5 0 0 5 10 15 20 25 Experimental Yield (%) Figure 4: Predicted Yield Vs Experimental Yield for impeller A2 14 30 35
  • 9. Chemical and Process Engineering Research ISSN 2224-7467 (Paper) ISSN 2225-0913 (Online) Vol.14, 2013 www.iiste.org CONCLUSION Neem oil was extracted using food grade ethanol as solvent in a pilot solvent extraction plant using the DOE as guide. Using alpha (α) = .05, the main factors : impeller speed (A) and contact time (B) and the impeller speed – contact time interaction (AB) have significant effect on the percentage yield of oil for both impellers A1 and A2. The highest percentage yield was 36.89% within the experimental limit. The model equations for using A1 and A2 are: Y= 20.9100 + 0.02500X1 + 0.01838X2 + 0.00371 X1 X2 and Y = 17.5734 + 0.00234X1 + 0.00898X2 + 0.0038 X1 X2 respectively. ACKNOWLEDGEMENT Chemical Engineering Department, Ahmadu Bello University Zaria, Kaduna state, Nigeria. Biochemistry Department, Ahmadu Bello University Zaria, Kaduna state, Nigeria. Institute for Agricultural Research, Ahmadu Bello University Zaria, Kaduna state, Nigeria. National Research Institute for Chemical Technology Zaria, Kaduna state, Nigeria. Kaduna Polytechnic, Kaduna state, Nigeria. REFERENCES Kovo, A S. Application of full 42 Factorial Design for the Development and Characterization of Insecticidal Soap from Neem Oil. 2008; Department of Chemical Engineering, Federal university of Technology, Minna, Nigeria. Accessed 2 January 2012. Available: http://www. Lejpt.academicdirect.org/A08/29_40.htm. Anya,U. A. Chioma, N. N. and Obinna, O. Optimized Reduction Of Free Fatty Acid Content On Neem Seed Oil, For Biodiesel Production. Journal of Basic and Applied Chemistry. 2012;.2(4) 21-28:22 Edgar, T.F. Himmelblau, D.M. and Lasdon, L.S. Optimization of Chemical Processes. 2nd Edition McGraw-Hill Higher Education, New York, 2001. Anonymous. Neem uses. No date; Accessed 7 January 2012. Available: http://www. neem uses.com/neem_oil.php. Workneh, Wondesen. Extraction and Characterization of Essential oil from Morgosa seed. 2011; Addis Ababa University, School of Graduate Studies, Addis Ababa institute of Technology, Department of Chemical Engineering, Ethopia. Accessed 2 January 2012. Available: www.libsearch.com/search/soxhlet%25 McCabe, W.L. Smith, J.C. Harriott, P. Unit Operation of Chemical engineering. 5th Edition, McGraw-Hill Book Company, Singapore; 1993. Montgomery, D.C. Introduction to Statistical Quality Control. 5th Ediion, John Wiley and Sons, Inc, USA; 2005. 15
  • 10. This academic article was published by The International Institute for Science, Technology and Education (IISTE). The IISTE is a pioneer in the Open Access Publishing service based in the U.S. and Europe. The aim of the institute is Accelerating Global Knowledge Sharing. More information about the publisher can be found in the IISTE’s homepage: http://www.iiste.org CALL FOR JOURNAL PAPERS The IISTE is currently hosting more than 30 peer-reviewed academic journals and collaborating with academic institutions around the world. There’s no deadline for submission. Prospective authors of IISTE journals can find the submission instruction on the following page: http://www.iiste.org/journals/ The IISTE editorial team promises to the review and publish all the qualified submissions in a fast manner. All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Printed version of the journals is also available upon request of readers and authors. MORE RESOURCES Book publication information: http://www.iiste.org/book/ Recent conferences: http://www.iiste.org/conference/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar