SlideShare a Scribd company logo
1 of 10
Download to read offline
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
23
Effect of Different Phosphorus Levels on Growth and Yield of
Wheat under Water Stress Conditions
Muhammad Zahid Mumtaz1*
Muhammad Aslam2
Moazzam Jamil1
Maqshoof Ahmad1
1.University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur,
Pakistan
2.Agronomic Research Station, Bahawalpur, Punjab, Pakistan
*
Corresponding author email: zahidses@gmail.com
Abstract
Water stress and low phosphorus availability are the limiting factors for growth and yield of wheat. Five
different phosphorus levels (P = 0, 30, 60, 90, 120 kg ha-1
) with three water stress levels (I1 = well-irrigated, I2 =
water stress at reproductive stage and I3 = water stress both at vegetative + reproductive stages) were applied to
check their effects on growth and yield of wheat. Higher application of phosphorus with optimum irrigation
showed significant effect on growth of wheat. Higher phosphorus application rate compensate the effect of water
stress conditions both at vegetative and reproductive stages. Drought stress at vegetative + reproductive stages
was more drastically affected as compared to stress at reproductive stage. Lower phosphorus application rate
with water stress caused maximum reduction in plant height, number of tillers, spike length, number of grains
spike-1
, 1000 grains weight, grain yield and straw yield. It was concluded that application of phosphorus at
higher rate could compensate drastic effect of water stress. On overall performance, application of phosphorus at
the rate of 120 kg ha-1
showed better results under water stress conditions as compared to other phosphorus
levels.
Keywords: - wheat, water stress, phosphorus, growth, yield
INTRODUCTION
Water shortage and phosphorus deficiency are among major abiotic stresses that limit the productivity
of cereals (Usman, 2013; Yu et al., 2013). Applying Irrigation and fertilizer to crop is vital for enhancing crops
yield (Clarke et al., 1990; Recio et al., 1999). Water shortage often causes nutrient deficiency particularly
phosphorus (Haefele et al., 2006). In most of arid and semi-arid regions of the world, there is limited available
rainfall water for wheat (Jafar et al., 2007).
Phosphorus plays an important function in plant physiology. It utilizes sugar and starch and involved in
transfer of energy. It strengthen the straw and increase flower formation and fruit production (Anon., 1988).
When it applied in soil it becomes fixed in soil soon after its application that limits that crop growth (Mandal and
Khan, 1972). Application of phosphorus enhances drought tolerance in plant. It also stimulates root growth and
photosynthesis (Singh and Sale, 2000). Application of fertilizer in dry land improve yield and increases the soil
water usage (Li et al., 2001).
Plant growth depends on several factors, among which water is much important (Kanety et al., 2014). It
reduces the fruit abscission at earlier growth stage (Buttar et al., 2014). Irrigation has a positive effect on growth
of wheat (Kanety et al., 2014). Higher application of irrigation to plants can increase the growth and yield
(Ahadiyat et al., 2014; Buttar et al., 2014). Wheat mostly absorbed water 0-60 cm from soil (Li et al., 2010).
Application of irrigation at earlier growth stage of wheat can enhance plant height, number of tillers (Usman,
2013) and grain yield (Tahir et al., 2006; Usman, 2013; Yousaf et al., 2014). Plant physiological and metabolic
functions become reduced even at small reduction in water availability (Din et al., 2011). Plant height was also
significantly affected by water shortage (Specht et al., 2001) and 50% reduction in plant height was observed in
previous studies (Heuer and Nadler, 1995). Application of phosphorus fertilizer produces taller plants (Cheema
et al., 2001).
Fertilizers are also important to enhance the crop yield but in some case it decreases the yield due to
shortage of irrigation (Li et al., 2001; Rusan et al., 2005; Usman, 2013). Integrated effect of phosphorus and
irrigation causes increase in grains weight might be due to production of maximum number of grains. Higher
phosphorus application rates enhanced the grain size which increases the grain weight (Hossain et al., 1996;
Turk and Tawaha, 2002). Water stress causes reduction in grain weight and grain yield (Chimenti et al., 2002;
Erdem et al., 2006; Usman, 2013). Integrated use also improves the nutrient uptake (Yousaf et al., 2014). Due to
water shortage grain yield become reduced (Ahadiyat et al., 2014). Grain yield has a correlation with number of
spikes in all stages of growth (Guendouz et al., 2014). Usman (2013) reported 26% increased in grain yield
through the application of irrigation.
Irrigation is necessary for crop growth because of evaporation from plant demands more water to
supply (Li et al., 2001; Rusan et al., 2005). For wheat growth and development soil moisture is needed in the
root zone. Soil moisture tension becomes increase due to the reduction in soil moisture content in soil (Arora et
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
24
al., 2007). The phosphorus that remained in the soil is important for long term phosphorus management practices.
Phosphorus fertilizer recovery is low because of its conversion into unavailable forms of phosphorus that cannot
be taken up by plants (Osborne and Rengel, 2002; Wang et al., 2005).
The overall irrigation scheduling can be changed significantly depending on phosphorus application
(Rizzo et al., 1992). As a management strategy, fertilizer application and water absorption from soil water
profile has been focused from long period of time to achieve higher yield (Tavakkoli and Oweis, 2004; Oweis
and Hachum, 2006). In low water availability role of fertilizers is limited. Increasing crop yield depends on
improvement of water availability (Li et al., 1998; Usman, 2013). Improvement in soil water availability also
improved the fertilizers use efficiency. Keeping in view the above fact, present study was designed to evaluate
the effect of different phosphorus levels on growth and yield parameters of wheat at vegetative and reproductive
stages.
MATERIALS AND METHODS
Field study was conducted at Research Area of Regional Agriculture Research Station Bahawalpur,
Pakistan by using split plot design with three replications. Five phosphorus levels (P1 = 0 kg ha-1
, P2 = 30 kg ha-1
,
P3 = 60 kg ha-1
, P4 = 90 kg ha-1
, P5 = 120 kg ha-1
) with three water stress levels (I1 = well-irrigated, I2 = water
stress at reproductive stage and I3 = water stress at vegetative + reproductive stages) were applied. Wheat variety
(Aas-2011) was used as a test crop in this experiment. Well prepared soil was made to grow wheat crop at the
rate of 125 kg ha-1
. Plot size was 8m × 1.8m.
All phosphorus and potassium doses were applied at the time of sowing. Nitrogen was applied at three
split doses. DAP was used as a phosphorus source whereas, nitrogen and potassium were applied in the form of
urea and sulphate of potash (SOP). Irrigation was stopped at the stages of vegetative and reproductive growth to
maintain drought stress. Other agronomic practices were done to maintain the crop growth. At the time of
physical maturity crop was harvested and the data regarding growth and yield parameters was taken.
Ten plants from each plot were select and their average plant height and spike length was taken with
meter rod. From those randomly selected plants number of spikes plant-1
were taken. The spikes were threshed
manually and grains were counted to take the data of number of grains spike-1
. 1000 grains were selected from
each plot and their weight was taken. The total grain and straw weight was recorded from ach plot and was
expressed in terms of t ha-1
.
The data was analyzed statistically and treatment means was compared by employing LSD test at 5%
probability level (Steel et al., 1997).
RESULTS
Plant height: - Data regarding the plant height revealed that plant height become increase with increasing
phosphorus application rate (table 1). Highest plant height (92 cm) was observed in well irrigated field
conditions with the application of 120 kg ha-1
phosphorus. This application rate also showed better plant height
in water stress at vegetative + reproductive stage (87 cm) and reproductive stages (90 cm). In control phosphorus
(P = 0 kg ha-1
) shortest plant height was observed in well irrigated as well as in water stress at vegetative and
reproductive stages. Better results were obtained in well irrigated field whereas water stress at vegetative +
reproductive stages reported lowest plant height as compared to reproductive stage.
Spike length: - Results of analysis of variance showed significantly maximum spike length with the application
of phosphorus at the rate of 120 kg ha-1
in well irrigated conditions (table 1). With this application rate, water
stress at vegetative and reproductive stages also reported better spike length as compared to other phosphorus
application rate. Minimum spike length was observed in well irrigated as well as in water stress at vegetative and
reproductive stages without phosphorus (P = 0 kg ha-1
). Shortest spike length was observed in water stress at
vegetative + reproductive stage followed by reproductive stages. Better results were obtained in well irrigated
field where increased spike length was observed with increasing phosphorus application rate.
Number of tillers plant-1
: - In the present study phosphorus application showed enhanced number of tillers
plant-1
under well irrigated field and water stress conditions (table 2). Phosphorus application rate at 120 kg ha-1
showed maximum number of tillers plant-1
under well irrigated field as well as under water stress conditions
(figure 1). Vegetative + reproductive stage showed more sensitivity with respect to number of tillers plant-1
as
compared to reproductive stage. Minimum number of tillers plant-1
was observed with control phosphorus (P = 0
kg ha-1
) in well irrigated as well as in water stress at vegetative and reproductive stages.
Number of grains spike-1
: - The data regarding number of grains spike-1
is shown in table 2. Mean comparison
showed that with the application phosphorus at the rate of 120 kg ha-1
showed significantly maximum number of
grains spike-1
(37) whereas in control phosphorus lowest number of grains spike-1
(29) was obtained under well
irrigated field conditions. Phosphorus application rate at 120 kg ha-1
also showed better results under water stress
at vegetative and reproductive stages. It showed 30 and 34 number of grains spike-1
under water stress at
vegetative + reproductive and reproductive stages respectively. Control phosphorus application showed lowest
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
25
number of grains spike-1
under water stress as compared to other phosphorus application rate.
1000 grains weight: - Variation in 1000 grain weight was observed with the application of different phosphorus
and water stress levels (table 3). Increased in 1000 grains weight was report by phosphorus application at 120 kg
ha-1
under well irrigated and water stress at vegetative and reproductive stages. It showed 48 g, 44 g and 40 g of
1000 grains weight respectively. It was also observed that water stress badly affect 1000 grains weight especially
at vegetative and reproductive stages. Minimum 1000 grains weight was observed by control phosphorus
application in all the drought level. Under water stress more sensitivity was observed in vegetative stage with
respect to 1000 grains weight as compared to reproductive stage.
Grain yield: - It was revealed that grain yield become increase with increasing phosphorus application rate
(figure 2). With the application of 120 kg ha-1
phosphorus, maximum grain yield (3.24 t ha-1
) was observed in
well irrigated field conditions (table 3). This application rate also showed better grain yield in water stress at
vegetative + reproductive (1.79 t ha-1
) and reproductive stages (2.60 t ha-1
). Control phosphorus (P = 0 kg ha-1
)
reported lowest grain yield under well irrigated as well as in water stress. Better results were obtained in well
irrigated field whereas water stress at vegetative stages and reproductive stages showed greater loss in grain
yield.
Straw yield: - In case of straw yield, under well irrigated field conditions data showed that with the application
phosphorus at the rate of 120 kg ha-1
showed significantly maximum straw yield (5.25 t ha-1
) whereas in control
phosphorus lowest straw yield (3.27 t ha-1
) was obtained. Under water stress at vegetative and reproductive
stages, it also showed better results. It showed 3.32 t ha-1
and 4.17 t ha-1
straw yields under water stress
respectively. Without phosphorus application, lowest straw yield under water stress was observed as compared
to other phosphorus application rate. Water stress drastically affects the straw yield both at vegetative and
reproductive stages.
DISCUSSION
Water stress at vegetative and reproductive stages significantly decreased the plant height and spike
length. Reason could be reduction in elongation and extension of cell which reduced plant tissue development
and growth. Tahir et al. (2006) reported 53% reduction in plant height and spike length. They also reported
increase in plant height and spike length with increasing amount of irrigation. Water stress reduced growth
through disturbing the balance of reactive oxygen species and antioxidant defense. Reactive oxygen species
become accumulate which cause oxidative stress in protein and membrane lipids. Water stress also affects
photochemical and enzymatic activities in plants (Usman, 2013). Higher application rate of phosphorus resulted
in taller plant. Cheema et al. (2001) also described the increase in plant height and spike length with the
application of phosphorus fertilizers.
Phosphorus in water stress conditions increased the number of tillers plant-1
. More phosphorus
application at early flowering stage compensates the drastic effect of phosphorus (Ahmadi and Bahrani, 2009;
Usman, 2013). Our results are similar to Rao et al. (2013) and Usman (2013) who reported reduction in number
of tillers plant-1
due to water shortage. Increase in phosphorus application with optimum irrigation at critical
growth stages showed increase in number of tillers. Results of Turk and Tawaha (2001) and Khan et al. (2002)
supported our findings who reported greater number of tillers with phosphorus band application. Qadir et al.
(1999) reported reduced number of tillers due to water stress which causes the reduction in grain yield.
Increase in phosphorus and irrigation application cause increased in number of tillers, grain spike-1
and
grain weight. It could be due to higher phosphorus application rate which causes increased in grain size which
ultimately increases number of tillers, grain spike-1
and grain weight (Usman, 2013). Qadir et al. (1999) reported
reduced grain weight and grains spike-1
which causes the reduction in grain yield of wheat due to water stress.
Hossain et al. (1996) and Turk and Tawaha (2002) also reported higher 1000 grain weight and number of tiller
with higher phosphorus application in groundnut. Our results are also according to the finding of Maqsood et al.
(2002) who observed maximum tillers, grains spike, 1000 grain weight and grain yield. Similar results were also
reported by Chimenti et al. (2002) and Erdem et al. (2006) who indicated lower grain weight with increasing
water stress. Qadir et al. (1999), Rao et al. (2013) and Usman, (2013) reported the reduction in number of tillers,
grain spike-1
and 1000 grain weight.
It was observed that grain and straw yield increased significantly as irrigation and P application rate
increases. Reduction in number of tiller, number of grains spike-1
and 1000 grain weight due to water stress also
causes the reduction in grain yield (Qadir et al., 1999; Usman, 2013). The reason could also be due to nutrient
deficiency, low phosphorus solubility which caused reduction in biomass (Haefele et al., 2006; Ismail et al.,
2007; Yu et al., 2013). Rathke et al. (2005) also reported lower yield without fertilizer application. Similar
results were also reported by Kang et al. (2002), Zhang et al. (2008) and Jiang et al. (2012). Increased in grain
and straw yields were observed due to increased irrigation levels by Reddi and Reddi (1995). Turk and Tawaha
(2001) and Ahadiyat et al., (2014) also reported higher grain and straw yield with phosphorus application.
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
26
CONCLUSION
Present study evaluates five phosphorus and three water stress levels for growth and yield of wheat.
Application of phosphorus at the rate of 120 kg ha-1
showed better crop productivity in well irrigation as well as
in water stress at vegetative and reproductive stages. Water stress drastically affects the critical growth stages of
wheat. It was recommended to apply higher rate of phosphorus to compensate the drastic effect of wheat stress.
REFERENCES
Ahadiyat, Y.R. P. Hidayat and U. Susanto. 2014. Drought tolerance, phosphorus efficiency and yield characters
of upland rice lines. Emir. Journal of Food and Agriculture 26(1): 25-34.
Ahmadi. M. and M.J. Bahrani. 2009. Yield and yield components of rapeseed as influenced by water stress at
different growth stages and nitrogen levels. American Eurasian Journal of Agricultural and
Environmental Science 5(6): 755-761.
Anonymous. 1988. Better crops with plant food. PPI, Atlanta, USA, pp. 26.
Arora, V.K., H. Singh and B. Singh. 2007. Analyzing wheat productivity responses to climatic, irrigation and
fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES -Wheat model.
Agricultural Water Management 94(1-3): 22-30.
Buttar, G.S., H.S. Thind, K.S. Sekhon, B.S. Sidhu and K. Anureet. 2014. Effect of quality of irrigation water and
nitrogen levels applied through trickle irrigation on yield and water use efficiency of tomato under
semi-arid environment. Indian Journal of Horticulture 71(1): 72-76.
Cheema, M.A., M.A. Malik, A. Hussain, S.H. Shah and S.M.A Basra. 2001. Effects of time and rate of nitrogen
and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.).
Journal of Agronomic Crop Science 186: 103-110.
Chimenti, C.A., J. Pearson and A.J. Hall. 2002. Osmotic adjustment and yield maintenance under drought in
sunflower. Field Crops Research 75: 235-246.
Clarke, J.M., C.A. Campbell, H.W. Cutforth, R.M. Depauw and G.E. Winkleman. 1990. Nitrogen and
phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment, and
cultivar yield and protein levels. Canadian Journal of Plant Science 70: 965-977.
Din, J., S.U. Khan, I. Ali and A.R. Gurmani. 2011. Physiological and agronomic response of canola varieties to
water stress. Journal of Animal and Plant Science 21(1): 78-82.
Erdem. T., Y. Erdem, A.H. Orta and H. Okursoy. 2006. Use of a crop water stress index for scheduling the
irrigation of sunflower (Helianthus annuus L.). Turk Journal of Agricultural and Forest 30: 11-20.
Guendouz, A., M. Djoudi, S. Guessoum, K. Maamri, A. Hannachi, Z. Fellahi and M. Hafsi. 2014. Genotypic and
phenotypic correlations among yield and yield components in durum wheat (Triticum durum Desf.)
under different water treatments in Eastern Algeria. Annual Research and Review in Biology 4(2): 432-
442.
Haefele, S.M., K. Naklang, D. Harnpichitvitaya, S. Jearakongman, E. Skulkhu and P. Romyen. 2006. Factors
affecting rice yield and fertilizer response in rainfed lowland of Northeast Thailand. Field Crop
Research 98: 39-51.
Heuer, B. and A. Nadler. 1995. Growth, development and yield of potatoes under salinity and water deficit.
Australian Journal of Agricultural Research 46: 1477-1486.
Hossain, M.A., S. Begum, A.K.M.M. Rahman, S. Arabinda and A.B.M. Salahuddin. 1996. Growth analysis of
mustard and rapeseed in relation to grain filling period and yield potential. Journal of Agricultural
Research 34: 59-369.
Ismail, A.M., S. Heuer, M.J. Thompson and M. Wissuwa. 2007. Genetic and genomic approaches to develop rice
germplasm for problem soils. Plant Molecular Biology 65: 547-570.
Jafar, M.S., M.H.E Slam, A.S.R. Amir, N. Ghorban and Z.Ghasem. 2007. The effects of water deficit during
growth stages of canola (Brassicca napus L.). American Eurasian Journal of Agriculture and
Environmental Science 2 (4): 417-422.
Jiang, J., Z.L. Huo, S.Y. Feng and C.B. Zhang, 2012. Effect of irrigation amount and water salinity on water
consumption and water productivity of spring wheat in North-west China. Field Crops Research 137:
78-88.
Kanety, T., A. Naor, A. Gips, U. Dicken, J.H. Lemcoff and S. Cohen. 2014. Irrigation influences on growth,
yield, and water use of persimmon trees. Irrigation Science 32(1): 1-13.
Kang, S.Z., L. Zhang, Y.L. Liang, X.T. Hu, H.J. Cai and B.J. Gu. 2002. Effects of limited irrigation on yield and
water use efficiency of winter wheat in the Loess Plateau of China. Agriculture Water Management 55:
203-216.
Khan, M.B., H. Ali and M. Asif. 2002. The response of different irrigation levels to growth and yield of different
wheat (Triticum aestivum L.) cultivars. Journal of Research (Science) 13(1): 71-75.
Kliewer, W.M., B.M. Freeman and C. Hosssom. 1983. Effect of irrigation, crop level and potassium fertilization
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
27
on carignane vines. I. Degree of water stress and effect on growth and yield. American Journal of
Enology and Viticulture 34(3): 186-196.
Li, F.M., J. Cao and T.C. Wang. 1998. Influence of phosphorus supply pattern in soil on the yield of spring of
wheat. Journal of plant Nutrition 21(9): 1921-1932.
Li, F.M., Q.H. Song, H.S. Liu, F.R. Li and X.L. Liu. 2001. Effects of pro-sowing irrigation and phosphorus
application on water use and yield of spring wheat under semi-arid conditions. Agricultural Water
Management 49: 173-183.
Li, Q., B. Dong, Y. Qiao, M. Liu and J. Zhang. 2010. Root growth, available soil water, and water-use efficiency
of winter wheat under different irrigation regimes applied at different growth stages in North China.
Agricultural Water Management 97: 1676-1682.
Mandal, L.N. and S.K. Khan. 1972. Release of phosphorus from insoluble phosphatic materials in acidic low
land rice soils. Journal of Indian Society of Soil Science 20: 19-25.
Maqsood, M., A. Ali, Z. Aslam, M. Saeed and S. Ahmad. 2002. Effect of irrigation and nitrogen levels on grain
yield and quality of wheat. International Journal of Agriculture and Biology 4(1): 164-165.
Osborne, L.D. and Z. Rengel. 2002. Screening cereals for genotypic variation in efficiency of phosphorus uptake
and utilization. Australian Journal of Agricultural Research 53: 295-303.
Oweis, T. and A. Hachum. 2006. Water harvesting and supplemental irrigation for improved water productivity
of dry farming systems in West Asia and North Africa. Agricultural Water Management 80: 57-73.
Qadir, G., M. Saeed and M.A. Cheema. 1999. Effect of water stress on growth and yield performance of four
wheat cultivars. Pakistan Journal of Biological Science 2(1): 236-239.
Rao, S.S., P.L. Regar, S.P.S. Tanwar and Y.V. Singh. 2013. Wheat yield response to line source sprinkler
irrigation and soil management practices on medium-textured shallow soils of arid environment.
Irrigation Science 31: 1-13.
Rathke, G.W., O. Christen and W. Diepenbrok. 2005. Effect of nitrogen source and rate on productivity and
quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops
Research 94(2): 103-113.
Recio, B., F. Rubio, J. Lomban and J. Ibanez. 1999. An econometric irrigated crop allocation model for
analyzing the impact of water restriction policies. Agricultural Water Management 42: 47-63.
Reddi, G.H.S. and T.Y. Reddi. 1995. Irrigation of principle crops. In: Efficient Use of Irrigation Water 2nd
ed.,
Kalyani Publisher, New Delhi. pp. 229-259.
Rizzo, V., A. Castrignano, V.D. Bari and Z. Romito. 1992. A new generalized concept of crop coefficient for the
use in a crop at incomplete soil covers stage. In: proceedings of second ESA congress, Warwick
University, UK., July 25-29, Pp. 200-201.
Rusan, M.M., A. Battikhi and S. Zuraiqi. 2005. Enhancement of nitrogen and water use efficiency by optimizing
the combination of soil, crop and nitrogen management,” in Management of Nutrients and Water in
Rainfed Arid and Semi-arid Areas for Increasing Crop Production Pp. 155-177.
Singh, D.K. and P.W.G. Sale. 2000. Growth and potentially conductivity of white clover roots in dry soil with
increasing phosphorus supply and defoliation frequency. Agronomy Journal 92: 868-874.
Specht, J.E., K . Chase, M. Macrander, G.L. Graef, J. Chung, J.P. Markwell, M. Germann, J.H. Orf and K.G.
Lark. 2001. Soybean response to water. A QTL analysis of drought tolerance. Crop Science 41: 493-
509.
Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A Biometrical
Approach. 3rd ed. McGraw Hill Co., New York, USA.
Tahir, M.H.N., S. Bashir and A. Bibi. 2006. Genetic potenial of canola (Brassica napus) varieties under water
stress conditions. Caderno de pesquisa Sér Bio Santa Cruz do Sul 18(2): 127-135.
Tavakkoli, A.R. and T. Oweis. 2004. The role of supplemental irrigation and nitrogen in producing bread wheat
in the highlands of Iran. Agricultural Water Management 65: 225-236.
Turk, M.A. and A.M. Tawaha. 2002. Impact of seedling rate, seeding date, rate and method of phosphorus
application in faba bean (Vicia faba L. Minor) in the absence of moisture stress. Biotechnology and
Agronomic Society and Environment 6: 171-178.
Usman, K. 2013. Effect of phosphorus and irrigation levels on yield, water productivity, phosphorus use
efficiency and income of Lowland rice in Northwest Pakistan. Rice Science 20(1): 61-72.
Wang, Q.R., J.Y. Li, Z.S. Li and P. Christie. 2005. Screening Chinese wheat germplasm for phosphorus
efficiency in calcareous soils. Journal of Plant Nutrition 28: 489-505.
Yousaf, M., S. Fahad, A.N. Shah, M. Shaaban, M.J. Khan, S.A.I. Sabiel, S.A.I. Ali, Y. Wang and K.A. Osman.
2014. The effect of nitrogen application rates and timings of first irrigation on wheat growth and yield.
Journal of Agricultural Innovations and Research 2(4): 645-653.
Yu, W., C. Shu-yun, N. Tang-yuan, T. Shen-zhong and L. Zeng-jia. 2013. Coupling Effects of Irrigation and
Phosphorus Fertilizer Applications on Phosphorus Uptake and Use Efficiency of Winter Wheat. Journal
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
28
of Integrative Agriculture 12(2): 263-272
Zhang, X.Y., S.Y. Chen, H.Y. Sun, D. Pei and Y.M. Wang. 2008. Dry matter, harvest index, grain yield and
water use efficiency as affected by water supply in winter wheat. Irrigation Science 27: 1-10.
Table 1:- Effect of phosphorus levels on plant height and spike length under water stress
Drought levels Phosphorus levels Plant height (cm) Spike length (cm)
Well-irrigated
P0 = 0 kg ha-1
85.0 ± 0.57 10.9 ± 0.31
P1 = 30 kg ha-1
88.0 ± 0.84 11.2 ± 0.33
P2 = 60 kg ha-1
89.0 ± 0.52 11.9 ± 0.34
P3 = 90 kg ha-1
90.0 ± 0.85 12.8 ± 0.17
P4 = 120 kg ha-1
92.0 ± 0.44 13.2 ± 0.44
Water stress at
reproductive stage
P0 = 0 kg ha-1
84.3 ± 0.33 10.5 ± 0.51
P1 = 30 kg ha-1
85.0 ± 0.66 10.9 ± 0.57
P2 = 60 kg ha-1
87.0 ± 0.75 11.2 ± 0.07
P3 = 90 kg ha-1
88.5 ± 0.33 11.5 ± 0.50
P4 = 120 kg ha-1
90.0 ± 0.67 12.2 ± 0.54
Water stress at
vegetative stage +
reproductive stage
P0 = 0 kg ha-1
83.0 ± 0.82 10.1 ± 0.49
P1 = 30 kg ha-1
83.5 ± 0.48 10.4 ± 0.17
P2 = 60 kg ha-1
84.7 ± 0.58 10.6 ± 0.53
P3 = 90 kg ha-1
86.0 ± 0.66 10.9 ± 0.33
P4 = 120 kg ha-1
87.5 ± 0.62 11.1 ± 0.17
LSD (p≤0.05) 3.409 1.237
Table 2:- Effect of phosphorus levels on number of tillers and grains under water stress
Drought levels Phosphorus levels Number of tillers m-2
Number of grains spike-1
Well-irrigated
P0 = 0 kg ha-1
103 ± 0.33 29 ± 0.93
P1 = 30 kg ha-1
105 ± 0.62 30 ± 0.83
P2 = 60 kg ha-1
109 ± 0.72 33 ± 1.31
P3 = 90 kg ha-1
112 ± 0.57 35 ± 1.43
P4 = 120 kg ha-1
114 ± 0.40 37 ± 1.22
Water stress at
reproductive stage
P0 = 0 kg ha-1
101 ± 0.57 26 ± 1.22
P1 = 30 kg ha-1
103 ± 0.82 29 ± 1.93
P2 = 60 kg ha-1
105 ± 0.66 31 ± 1.72
P3 = 90 kg ha-1
108 ± 0.35 32 ± 1.26
P4 = 120 kg ha-1
109 ± 0.80 34 ± 0.57
Water stress at
vegetative stage +
reproductive stage
P0 = 0 kg ha-1
100 ± 0.73 23 ± 1.20
P1 = 30 kg ha-1
101 ± 0.57 25 ± 0.48
P2 = 60 kg ha-1
103 ± 0.33 26 ± 0.88
P3 = 90 kg ha-1
106 ± 0.57 28 ± 0.94
P4 = 120 kg ha-1
108 ± 0.59 30 ± 1.18
LSD (p≤0.05) 2.299 4.474
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
29
Table 3:- Effect of phosphorus levels on yield component of wheat under water stress
Drought levels Phosphorus levels
1000 grain
weight (g)
Grain yield
(t ha-1
)
Straw yield
(t ha-1
)
Well-irrigated
P0 = 0 kg ha-1
40.50 ± 0.89 1.68 ± 0.07 3.27 ± 0.18
P1 = 30 kg ha-1
41.60 ± 1.37 2.16 ± 0.04 3.71 ± 0.12
P2 = 60 kg ha-1
42.40 ± 0.68 2.54 ± 0.11 4.49 ± 0.13
P3 = 90 kg ha-1
46.12 ± 1.24 2.85 ± 0.08 4.70 ± 0.12
P4 = 120 kg ha-1
48.50 ± 0.77 3.24 ± 0.10 5.25 ± 0.15
Water stress at
reproductive
stage
P0 = 0 kg ha-1
38.72 ± 0.22 1.39 ± 0.09 2.93 ± 0.19
P1 = 30 kg ha-1
40.26 ± 0.99 1.75 ± 0.06 3.24 ± 0.16
P2 = 60 kg ha-1
41.40 ± 0.83 1.98 ± 0.09 3.59 ± 0.20
P3 = 90 kg ha-1
43.58 ± 1.22 2.26 ± 0.07 3.95 ± 0.16
P4 = 120 kg ha-1
44.21 ± 061 2.60 ± 0.03 4.17 ± 0.13
Water stress at
vegetative stage +
reproductive
stage
P0 = 0 kg ha-1
30.50 ± 0.55 1.15 ± 0.07 2.42 ± 0.17
P1 = 30 kg ha-1
32.60 ± 1.16 1.29 ± 0.04 2.68 ± 0.12
P2 = 60 kg ha-1
38.73 ± 1.51 1.44 ± 0.08 2.94 ± 0.11
P3 = 90 kg ha-1
40.47 ± 0.99 1.59 ± 0.05 3.15 ± 0.20
P4 = 120 kg ha-1
40.47 ± 0.79 1.79 ± 0.07 3.32 ± 0.19
LSD (p≤0.05) 3.424 0.293 0.064
Figure 1: - Effect of different phosphorus levels on number of tillers m-2
of wheat
Journal of Environment and Earth Science www.iiste.org
ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online)
Vol.4, No.19, 2014
30
Figure 2: - Effect of different phosphorus levels on grain yield of wheat
Business, Economics, Finance and Management Journals PAPER SUBMISSION EMAIL
European Journal of Business and Management EJBM@iiste.org
Research Journal of Finance and Accounting RJFA@iiste.org
Journal of Economics and Sustainable Development JESD@iiste.org
Information and Knowledge Management IKM@iiste.org
Journal of Developing Country Studies DCS@iiste.org
Industrial Engineering Letters IEL@iiste.org
Physical Sciences, Mathematics and Chemistry Journals PAPER SUBMISSION EMAIL
Journal of Natural Sciences Research JNSR@iiste.org
Journal of Chemistry and Materials Research CMR@iiste.org
Journal of Mathematical Theory and Modeling MTM@iiste.org
Advances in Physics Theories and Applications APTA@iiste.org
Chemical and Process Engineering Research CPER@iiste.org
Engineering, Technology and Systems Journals PAPER SUBMISSION EMAIL
Computer Engineering and Intelligent Systems CEIS@iiste.org
Innovative Systems Design and Engineering ISDE@iiste.org
Journal of Energy Technologies and Policy JETP@iiste.org
Information and Knowledge Management IKM@iiste.org
Journal of Control Theory and Informatics CTI@iiste.org
Journal of Information Engineering and Applications JIEA@iiste.org
Industrial Engineering Letters IEL@iiste.org
Journal of Network and Complex Systems NCS@iiste.org
Environment, Civil, Materials Sciences Journals PAPER SUBMISSION EMAIL
Journal of Environment and Earth Science JEES@iiste.org
Journal of Civil and Environmental Research CER@iiste.org
Journal of Natural Sciences Research JNSR@iiste.org
Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL
Advances in Life Science and Technology ALST@iiste.org
Journal of Natural Sciences Research JNSR@iiste.org
Journal of Biology, Agriculture and Healthcare JBAH@iiste.org
Journal of Food Science and Quality Management FSQM@iiste.org
Journal of Chemistry and Materials Research CMR@iiste.org
Education, and other Social Sciences PAPER SUBMISSION EMAIL
Journal of Education and Practice JEP@iiste.org
Journal of Law, Policy and Globalization JLPG@iiste.org
Journal of New Media and Mass Communication NMMC@iiste.org
Journal of Energy Technologies and Policy JETP@iiste.org
Historical Research Letter HRL@iiste.org
Public Policy and Administration Research PPAR@iiste.org
International Affairs and Global Strategy IAGS@iiste.org
Research on Humanities and Social Sciences RHSS@iiste.org
Journal of Developing Country Studies DCS@iiste.org
Journal of Arts and Design Studies ADS@iiste.org
The IISTE is a pioneer in the Open-Access hosting service and academic event management.
The aim of the firm is Accelerating Global Knowledge Sharing.
More information about the firm can be found on the homepage:
http://www.iiste.org
CALL FOR JOURNAL PAPERS
There are more than 30 peer-reviewed academic journals hosted under the hosting platform.
Prospective authors of journals can find the submission instruction on the following
page: http://www.iiste.org/journals/ All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than those
inseparable from gaining access to the internet itself. Paper version of the journals is also
available upon request of readers and authors.
MORE RESOURCES
Book publication information: http://www.iiste.org/book/
IISTE Knowledge Sharing Partners
EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek
EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

More Related Content

What's hot

Influence of sokoto phosphate rock on some soil properties and the growth and...
Influence of sokoto phosphate rock on some soil properties and the growth and...Influence of sokoto phosphate rock on some soil properties and the growth and...
Influence of sokoto phosphate rock on some soil properties and the growth and...Alexander Decker
 
Dry matter accumulation in maize as influenced by row
Dry matter accumulation in maize as influenced by rowDry matter accumulation in maize as influenced by row
Dry matter accumulation in maize as influenced by rowAlexander Decker
 
15_paper_ijcas
15_paper_ijcas15_paper_ijcas
15_paper_ijcasDago Noel
 
Fsc 506-need based nutrition,-splits and time of nutrients application
Fsc 506-need based nutrition,-splits and time of nutrients applicationFsc 506-need based nutrition,-splits and time of nutrients application
Fsc 506-need based nutrition,-splits and time of nutrients applicationPanchaal Bhattacharjee
 
Soil health deterioration: cause and remedies
Soil health deterioration: cause and remediesSoil health deterioration: cause and remedies
Soil health deterioration: cause and remediesSharad Sharma
 
Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...Innspub Net
 
Fertilizer management in vegetable crops
Fertilizer management in vegetable cropsFertilizer management in vegetable crops
Fertilizer management in vegetable cropsansar 1310
 
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)Rahul Raj Tandon
 
Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Alexander Decker
 
11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...Alexander Decker
 
Evaluating the effect of humic acid on the yield of three varieties of potato...
Evaluating the effect of humic acid on the yield of three varieties of potato...Evaluating the effect of humic acid on the yield of three varieties of potato...
Evaluating the effect of humic acid on the yield of three varieties of potato...Journal of Research in Biology
 
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...IJEAB
 

What's hot (20)

Artigo seminario quimica
Artigo seminario quimicaArtigo seminario quimica
Artigo seminario quimica
 
Influence of sokoto phosphate rock on some soil properties and the growth and...
Influence of sokoto phosphate rock on some soil properties and the growth and...Influence of sokoto phosphate rock on some soil properties and the growth and...
Influence of sokoto phosphate rock on some soil properties and the growth and...
 
Dry matter accumulation in maize as influenced by row
Dry matter accumulation in maize as influenced by rowDry matter accumulation in maize as influenced by row
Dry matter accumulation in maize as influenced by row
 
15_paper_ijcas
15_paper_ijcas15_paper_ijcas
15_paper_ijcas
 
Fsc 506-need based nutrition,-splits and time of nutrients application
Fsc 506-need based nutrition,-splits and time of nutrients applicationFsc 506-need based nutrition,-splits and time of nutrients application
Fsc 506-need based nutrition,-splits and time of nutrients application
 
Soil health deterioration: cause and remedies
Soil health deterioration: cause and remediesSoil health deterioration: cause and remedies
Soil health deterioration: cause and remedies
 
Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...Effects of salinity stress on growth, Water use efficiency and biomass partit...
Effects of salinity stress on growth, Water use efficiency and biomass partit...
 
Fertilizer management in vegetable crops
Fertilizer management in vegetable cropsFertilizer management in vegetable crops
Fertilizer management in vegetable crops
 
Soil and Water Management towards Doubling Farmer’s Income
Soil and Water Management towards Doubling Farmer’s IncomeSoil and Water Management towards Doubling Farmer’s Income
Soil and Water Management towards Doubling Farmer’s Income
 
RECENT DIGNOSTIC TECHNIQUES AND AMELIORATIVE MEASURES OF NUTRIENTS DEFICIENCI...
RECENT DIGNOSTIC TECHNIQUES AND AMELIORATIVE MEASURES OF NUTRIENTS DEFICIENCI...RECENT DIGNOSTIC TECHNIQUES AND AMELIORATIVE MEASURES OF NUTRIENTS DEFICIENCI...
RECENT DIGNOSTIC TECHNIQUES AND AMELIORATIVE MEASURES OF NUTRIENTS DEFICIENCI...
 
Influence of foliar application of micronutrients on pulses
Influence of foliar application of micronutrients on pulsesInfluence of foliar application of micronutrients on pulses
Influence of foliar application of micronutrients on pulses
 
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)
Role of Sulphur in Oilseed Crops - By Rahul Raj Tandon (IGKV Raipur, C.G)
 
Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...Combined application of organic and inorganic fertilizers to increase yield o...
Combined application of organic and inorganic fertilizers to increase yield o...
 
11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...11.combined application of organic and inorganic fertilizers to increase yiel...
11.combined application of organic and inorganic fertilizers to increase yiel...
 
Benefits of Intercropping Legumes with Cereals
Benefits of Intercropping Legumes  with CerealsBenefits of Intercropping Legumes  with Cereals
Benefits of Intercropping Legumes with Cereals
 
Evaluating the effect of humic acid on the yield of three varieties of potato...
Evaluating the effect of humic acid on the yield of three varieties of potato...Evaluating the effect of humic acid on the yield of three varieties of potato...
Evaluating the effect of humic acid on the yield of three varieties of potato...
 
Vikram synopsis of pg research programme
Vikram  synopsis of pg research  programmeVikram  synopsis of pg research  programme
Vikram synopsis of pg research programme
 
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...
Physiological Role of Humic Acid, Amino Acids and Nitrogen Fertilizer on Grow...
 
Soil Health And Nutrient Budgeting As Influenced By Different Cropping Sequen...
Soil Health And Nutrient Budgeting As Influenced By Different Cropping Sequen...Soil Health And Nutrient Budgeting As Influenced By Different Cropping Sequen...
Soil Health And Nutrient Budgeting As Influenced By Different Cropping Sequen...
 
Siderophore: Secretion of Bacteria as a Chelating Agent
Siderophore: Secretion of Bacteria as a Chelating AgentSiderophore: Secretion of Bacteria as a Chelating Agent
Siderophore: Secretion of Bacteria as a Chelating Agent
 

Similar to Effect of different phosphorus levels on growth and yield of wheat under water stress conditions

Effects of different irrigation and fertilization treatments on growth and yi...
Effects of different irrigation and fertilization treatments on growth and yi...Effects of different irrigation and fertilization treatments on growth and yi...
Effects of different irrigation and fertilization treatments on growth and yi...Premier Publishers
 
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Agriculture Journal IJOEAR
 
11.the response of haricot bean to phosphorus application on ultisols at arek...
11.the response of haricot bean to phosphorus application on ultisols at arek...11.the response of haricot bean to phosphorus application on ultisols at arek...
11.the response of haricot bean to phosphorus application on ultisols at arek...Alexander Decker
 
The response of haricot bean to phosphorus application on ultisols at areka, ...
The response of haricot bean to phosphorus application on ultisols at areka, ...The response of haricot bean to phosphorus application on ultisols at areka, ...
The response of haricot bean to phosphorus application on ultisols at areka, ...Alexander Decker
 
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...Organic and inorganic nutrient sources influeced growth, flowering, fruition,...
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...Innspub Net
 
Applications of Super absorbants in Horticulture by Y. Pooja
Applications of Super absorbants in Horticulture by Y. PoojaApplications of Super absorbants in Horticulture by Y. Pooja
Applications of Super absorbants in Horticulture by Y. PoojaPoojaHorti
 
Drip Fertigation in Sweet Pepper: A Review
Drip Fertigation in Sweet Pepper: A ReviewDrip Fertigation in Sweet Pepper: A Review
Drip Fertigation in Sweet Pepper: A ReviewIJERA Editor
 
Foliar nutrition in Sorghum.pptx
Foliar nutrition in Sorghum.pptxFoliar nutrition in Sorghum.pptx
Foliar nutrition in Sorghum.pptxCharmingrunner1998
 
ANST-20-23.pdf12314444444444444444444444
ANST-20-23.pdf12314444444444444444444444ANST-20-23.pdf12314444444444444444444444
ANST-20-23.pdf12314444444444444444444444Irfan Ali
 
Evaluation of sesame (sesamum indicum) for optimum nitrogen
Evaluation of sesame (sesamum indicum) for optimum nitrogenEvaluation of sesame (sesamum indicum) for optimum nitrogen
Evaluation of sesame (sesamum indicum) for optimum nitrogenAlexander Decker
 
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Innspub Net
 
Effect of regulated deficit irrigation on growth and yield of sorghum
Effect of regulated deficit irrigation on growth and yield of sorghumEffect of regulated deficit irrigation on growth and yield of sorghum
Effect of regulated deficit irrigation on growth and yield of sorghumAlexander Decker
 
Principles of fertilizer application by vijay ambast
Principles of fertilizer application by vijay ambastPrinciples of fertilizer application by vijay ambast
Principles of fertilizer application by vijay ambastVijay Ambast
 
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...Premier Publishers
 
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...Alexander Decker
 
Determination of soil p for optimum durum wheat production in ada抋, akaki and...
Determination of soil p for optimum durum wheat production in ada抋, akaki and...Determination of soil p for optimum durum wheat production in ada抋, akaki and...
Determination of soil p for optimum durum wheat production in ada抋, akaki and...Alexander Decker
 
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...11.determination of soil p for optimum durum wheat production in ada抋, akaki ...
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...Alexander Decker
 
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...iosrjce
 
Effect of planting pattern, plant density and integration of zeoponix and che...
Effect of planting pattern, plant density and integration of zeoponix and che...Effect of planting pattern, plant density and integration of zeoponix and che...
Effect of planting pattern, plant density and integration of zeoponix and che...Innspub Net
 
Aboveground to root biomass ratios in pea and vetch after treatment with orga...
Aboveground to root biomass ratios in pea and vetch after treatment with orga...Aboveground to root biomass ratios in pea and vetch after treatment with orga...
Aboveground to root biomass ratios in pea and vetch after treatment with orga...GJESM Publication
 

Similar to Effect of different phosphorus levels on growth and yield of wheat under water stress conditions (20)

Effects of different irrigation and fertilization treatments on growth and yi...
Effects of different irrigation and fertilization treatments on growth and yi...Effects of different irrigation and fertilization treatments on growth and yi...
Effects of different irrigation and fertilization treatments on growth and yi...
 
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
Utilization of Marginal Soils with Application of Phosphorus and Ethephon for...
 
11.the response of haricot bean to phosphorus application on ultisols at arek...
11.the response of haricot bean to phosphorus application on ultisols at arek...11.the response of haricot bean to phosphorus application on ultisols at arek...
11.the response of haricot bean to phosphorus application on ultisols at arek...
 
The response of haricot bean to phosphorus application on ultisols at areka, ...
The response of haricot bean to phosphorus application on ultisols at areka, ...The response of haricot bean to phosphorus application on ultisols at areka, ...
The response of haricot bean to phosphorus application on ultisols at areka, ...
 
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...Organic and inorganic nutrient sources influeced growth, flowering, fruition,...
Organic and inorganic nutrient sources influeced growth, flowering, fruition,...
 
Applications of Super absorbants in Horticulture by Y. Pooja
Applications of Super absorbants in Horticulture by Y. PoojaApplications of Super absorbants in Horticulture by Y. Pooja
Applications of Super absorbants in Horticulture by Y. Pooja
 
Drip Fertigation in Sweet Pepper: A Review
Drip Fertigation in Sweet Pepper: A ReviewDrip Fertigation in Sweet Pepper: A Review
Drip Fertigation in Sweet Pepper: A Review
 
Foliar nutrition in Sorghum.pptx
Foliar nutrition in Sorghum.pptxFoliar nutrition in Sorghum.pptx
Foliar nutrition in Sorghum.pptx
 
ANST-20-23.pdf12314444444444444444444444
ANST-20-23.pdf12314444444444444444444444ANST-20-23.pdf12314444444444444444444444
ANST-20-23.pdf12314444444444444444444444
 
Evaluation of sesame (sesamum indicum) for optimum nitrogen
Evaluation of sesame (sesamum indicum) for optimum nitrogenEvaluation of sesame (sesamum indicum) for optimum nitrogen
Evaluation of sesame (sesamum indicum) for optimum nitrogen
 
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...Productivity of some forage grasses under foliar sprinkler irrigation and fol...
Productivity of some forage grasses under foliar sprinkler irrigation and fol...
 
Effect of regulated deficit irrigation on growth and yield of sorghum
Effect of regulated deficit irrigation on growth and yield of sorghumEffect of regulated deficit irrigation on growth and yield of sorghum
Effect of regulated deficit irrigation on growth and yield of sorghum
 
Principles of fertilizer application by vijay ambast
Principles of fertilizer application by vijay ambastPrinciples of fertilizer application by vijay ambast
Principles of fertilizer application by vijay ambast
 
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...
Maize Phenology and Crop Stand in Response to Mulching and Furrow Irrigation ...
 
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...
The response of haricot bean (phaseolus vulgaris l) varieties to phosphorus l...
 
Determination of soil p for optimum durum wheat production in ada抋, akaki and...
Determination of soil p for optimum durum wheat production in ada抋, akaki and...Determination of soil p for optimum durum wheat production in ada抋, akaki and...
Determination of soil p for optimum durum wheat production in ada抋, akaki and...
 
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...11.determination of soil p for optimum durum wheat production in ada抋, akaki ...
11.determination of soil p for optimum durum wheat production in ada抋, akaki ...
 
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...
Effect of Drip Irrigation and Fertilizer Management on Capsicum (Capsicum Ann...
 
Effect of planting pattern, plant density and integration of zeoponix and che...
Effect of planting pattern, plant density and integration of zeoponix and che...Effect of planting pattern, plant density and integration of zeoponix and che...
Effect of planting pattern, plant density and integration of zeoponix and che...
 
Aboveground to root biomass ratios in pea and vetch after treatment with orga...
Aboveground to root biomass ratios in pea and vetch after treatment with orga...Aboveground to root biomass ratios in pea and vetch after treatment with orga...
Aboveground to root biomass ratios in pea and vetch after treatment with orga...
 

More from Alexander Decker

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Alexander Decker
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inAlexander Decker
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesAlexander Decker
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksAlexander Decker
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dAlexander Decker
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceAlexander Decker
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifhamAlexander Decker
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaAlexander Decker
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenAlexander Decker
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksAlexander Decker
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget forAlexander Decker
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabAlexander Decker
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...Alexander Decker
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalAlexander Decker
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesAlexander Decker
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbAlexander Decker
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloudAlexander Decker
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveragedAlexander Decker
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenyaAlexander Decker
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health ofAlexander Decker
 

More from Alexander Decker (20)

Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...Abnormalities of hormones and inflammatory cytokines in women affected with p...
Abnormalities of hormones and inflammatory cytokines in women affected with p...
 
A validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale inA validation of the adverse childhood experiences scale in
A validation of the adverse childhood experiences scale in
 
A usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websitesA usability evaluation framework for b2 c e commerce websites
A usability evaluation framework for b2 c e commerce websites
 
A universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banksA universal model for managing the marketing executives in nigerian banks
A universal model for managing the marketing executives in nigerian banks
 
A unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized dA unique common fixed point theorems in generalized d
A unique common fixed point theorems in generalized d
 
A trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistanceA trends of salmonella and antibiotic resistance
A trends of salmonella and antibiotic resistance
 
A transformational generative approach towards understanding al-istifham
A transformational  generative approach towards understanding al-istifhamA transformational  generative approach towards understanding al-istifham
A transformational generative approach towards understanding al-istifham
 
A time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibiaA time series analysis of the determinants of savings in namibia
A time series analysis of the determinants of savings in namibia
 
A therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school childrenA therapy for physical and mental fitness of school children
A therapy for physical and mental fitness of school children
 
A theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banksA theory of efficiency for managing the marketing executives in nigerian banks
A theory of efficiency for managing the marketing executives in nigerian banks
 
A systematic evaluation of link budget for
A systematic evaluation of link budget forA systematic evaluation of link budget for
A systematic evaluation of link budget for
 
A synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjabA synthetic review of contraceptive supplies in punjab
A synthetic review of contraceptive supplies in punjab
 
A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...A synthesis of taylor’s and fayol’s management approaches for managing market...
A synthesis of taylor’s and fayol’s management approaches for managing market...
 
A survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incrementalA survey paper on sequence pattern mining with incremental
A survey paper on sequence pattern mining with incremental
 
A survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniquesA survey on live virtual machine migrations and its techniques
A survey on live virtual machine migrations and its techniques
 
A survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo dbA survey on data mining and analysis in hadoop and mongo db
A survey on data mining and analysis in hadoop and mongo db
 
A survey on challenges to the media cloud
A survey on challenges to the media cloudA survey on challenges to the media cloud
A survey on challenges to the media cloud
 
A survey of provenance leveraged
A survey of provenance leveragedA survey of provenance leveraged
A survey of provenance leveraged
 
A survey of private equity investments in kenya
A survey of private equity investments in kenyaA survey of private equity investments in kenya
A survey of private equity investments in kenya
 
A study to measures the financial health of
A study to measures the financial health ofA study to measures the financial health of
A study to measures the financial health of
 

Effect of different phosphorus levels on growth and yield of wheat under water stress conditions

  • 1. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 23 Effect of Different Phosphorus Levels on Growth and Yield of Wheat under Water Stress Conditions Muhammad Zahid Mumtaz1* Muhammad Aslam2 Moazzam Jamil1 Maqshoof Ahmad1 1.University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan 2.Agronomic Research Station, Bahawalpur, Punjab, Pakistan * Corresponding author email: zahidses@gmail.com Abstract Water stress and low phosphorus availability are the limiting factors for growth and yield of wheat. Five different phosphorus levels (P = 0, 30, 60, 90, 120 kg ha-1 ) with three water stress levels (I1 = well-irrigated, I2 = water stress at reproductive stage and I3 = water stress both at vegetative + reproductive stages) were applied to check their effects on growth and yield of wheat. Higher application of phosphorus with optimum irrigation showed significant effect on growth of wheat. Higher phosphorus application rate compensate the effect of water stress conditions both at vegetative and reproductive stages. Drought stress at vegetative + reproductive stages was more drastically affected as compared to stress at reproductive stage. Lower phosphorus application rate with water stress caused maximum reduction in plant height, number of tillers, spike length, number of grains spike-1 , 1000 grains weight, grain yield and straw yield. It was concluded that application of phosphorus at higher rate could compensate drastic effect of water stress. On overall performance, application of phosphorus at the rate of 120 kg ha-1 showed better results under water stress conditions as compared to other phosphorus levels. Keywords: - wheat, water stress, phosphorus, growth, yield INTRODUCTION Water shortage and phosphorus deficiency are among major abiotic stresses that limit the productivity of cereals (Usman, 2013; Yu et al., 2013). Applying Irrigation and fertilizer to crop is vital for enhancing crops yield (Clarke et al., 1990; Recio et al., 1999). Water shortage often causes nutrient deficiency particularly phosphorus (Haefele et al., 2006). In most of arid and semi-arid regions of the world, there is limited available rainfall water for wheat (Jafar et al., 2007). Phosphorus plays an important function in plant physiology. It utilizes sugar and starch and involved in transfer of energy. It strengthen the straw and increase flower formation and fruit production (Anon., 1988). When it applied in soil it becomes fixed in soil soon after its application that limits that crop growth (Mandal and Khan, 1972). Application of phosphorus enhances drought tolerance in plant. It also stimulates root growth and photosynthesis (Singh and Sale, 2000). Application of fertilizer in dry land improve yield and increases the soil water usage (Li et al., 2001). Plant growth depends on several factors, among which water is much important (Kanety et al., 2014). It reduces the fruit abscission at earlier growth stage (Buttar et al., 2014). Irrigation has a positive effect on growth of wheat (Kanety et al., 2014). Higher application of irrigation to plants can increase the growth and yield (Ahadiyat et al., 2014; Buttar et al., 2014). Wheat mostly absorbed water 0-60 cm from soil (Li et al., 2010). Application of irrigation at earlier growth stage of wheat can enhance plant height, number of tillers (Usman, 2013) and grain yield (Tahir et al., 2006; Usman, 2013; Yousaf et al., 2014). Plant physiological and metabolic functions become reduced even at small reduction in water availability (Din et al., 2011). Plant height was also significantly affected by water shortage (Specht et al., 2001) and 50% reduction in plant height was observed in previous studies (Heuer and Nadler, 1995). Application of phosphorus fertilizer produces taller plants (Cheema et al., 2001). Fertilizers are also important to enhance the crop yield but in some case it decreases the yield due to shortage of irrigation (Li et al., 2001; Rusan et al., 2005; Usman, 2013). Integrated effect of phosphorus and irrigation causes increase in grains weight might be due to production of maximum number of grains. Higher phosphorus application rates enhanced the grain size which increases the grain weight (Hossain et al., 1996; Turk and Tawaha, 2002). Water stress causes reduction in grain weight and grain yield (Chimenti et al., 2002; Erdem et al., 2006; Usman, 2013). Integrated use also improves the nutrient uptake (Yousaf et al., 2014). Due to water shortage grain yield become reduced (Ahadiyat et al., 2014). Grain yield has a correlation with number of spikes in all stages of growth (Guendouz et al., 2014). Usman (2013) reported 26% increased in grain yield through the application of irrigation. Irrigation is necessary for crop growth because of evaporation from plant demands more water to supply (Li et al., 2001; Rusan et al., 2005). For wheat growth and development soil moisture is needed in the root zone. Soil moisture tension becomes increase due to the reduction in soil moisture content in soil (Arora et
  • 2. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 24 al., 2007). The phosphorus that remained in the soil is important for long term phosphorus management practices. Phosphorus fertilizer recovery is low because of its conversion into unavailable forms of phosphorus that cannot be taken up by plants (Osborne and Rengel, 2002; Wang et al., 2005). The overall irrigation scheduling can be changed significantly depending on phosphorus application (Rizzo et al., 1992). As a management strategy, fertilizer application and water absorption from soil water profile has been focused from long period of time to achieve higher yield (Tavakkoli and Oweis, 2004; Oweis and Hachum, 2006). In low water availability role of fertilizers is limited. Increasing crop yield depends on improvement of water availability (Li et al., 1998; Usman, 2013). Improvement in soil water availability also improved the fertilizers use efficiency. Keeping in view the above fact, present study was designed to evaluate the effect of different phosphorus levels on growth and yield parameters of wheat at vegetative and reproductive stages. MATERIALS AND METHODS Field study was conducted at Research Area of Regional Agriculture Research Station Bahawalpur, Pakistan by using split plot design with three replications. Five phosphorus levels (P1 = 0 kg ha-1 , P2 = 30 kg ha-1 , P3 = 60 kg ha-1 , P4 = 90 kg ha-1 , P5 = 120 kg ha-1 ) with three water stress levels (I1 = well-irrigated, I2 = water stress at reproductive stage and I3 = water stress at vegetative + reproductive stages) were applied. Wheat variety (Aas-2011) was used as a test crop in this experiment. Well prepared soil was made to grow wheat crop at the rate of 125 kg ha-1 . Plot size was 8m × 1.8m. All phosphorus and potassium doses were applied at the time of sowing. Nitrogen was applied at three split doses. DAP was used as a phosphorus source whereas, nitrogen and potassium were applied in the form of urea and sulphate of potash (SOP). Irrigation was stopped at the stages of vegetative and reproductive growth to maintain drought stress. Other agronomic practices were done to maintain the crop growth. At the time of physical maturity crop was harvested and the data regarding growth and yield parameters was taken. Ten plants from each plot were select and their average plant height and spike length was taken with meter rod. From those randomly selected plants number of spikes plant-1 were taken. The spikes were threshed manually and grains were counted to take the data of number of grains spike-1 . 1000 grains were selected from each plot and their weight was taken. The total grain and straw weight was recorded from ach plot and was expressed in terms of t ha-1 . The data was analyzed statistically and treatment means was compared by employing LSD test at 5% probability level (Steel et al., 1997). RESULTS Plant height: - Data regarding the plant height revealed that plant height become increase with increasing phosphorus application rate (table 1). Highest plant height (92 cm) was observed in well irrigated field conditions with the application of 120 kg ha-1 phosphorus. This application rate also showed better plant height in water stress at vegetative + reproductive stage (87 cm) and reproductive stages (90 cm). In control phosphorus (P = 0 kg ha-1 ) shortest plant height was observed in well irrigated as well as in water stress at vegetative and reproductive stages. Better results were obtained in well irrigated field whereas water stress at vegetative + reproductive stages reported lowest plant height as compared to reproductive stage. Spike length: - Results of analysis of variance showed significantly maximum spike length with the application of phosphorus at the rate of 120 kg ha-1 in well irrigated conditions (table 1). With this application rate, water stress at vegetative and reproductive stages also reported better spike length as compared to other phosphorus application rate. Minimum spike length was observed in well irrigated as well as in water stress at vegetative and reproductive stages without phosphorus (P = 0 kg ha-1 ). Shortest spike length was observed in water stress at vegetative + reproductive stage followed by reproductive stages. Better results were obtained in well irrigated field where increased spike length was observed with increasing phosphorus application rate. Number of tillers plant-1 : - In the present study phosphorus application showed enhanced number of tillers plant-1 under well irrigated field and water stress conditions (table 2). Phosphorus application rate at 120 kg ha-1 showed maximum number of tillers plant-1 under well irrigated field as well as under water stress conditions (figure 1). Vegetative + reproductive stage showed more sensitivity with respect to number of tillers plant-1 as compared to reproductive stage. Minimum number of tillers plant-1 was observed with control phosphorus (P = 0 kg ha-1 ) in well irrigated as well as in water stress at vegetative and reproductive stages. Number of grains spike-1 : - The data regarding number of grains spike-1 is shown in table 2. Mean comparison showed that with the application phosphorus at the rate of 120 kg ha-1 showed significantly maximum number of grains spike-1 (37) whereas in control phosphorus lowest number of grains spike-1 (29) was obtained under well irrigated field conditions. Phosphorus application rate at 120 kg ha-1 also showed better results under water stress at vegetative and reproductive stages. It showed 30 and 34 number of grains spike-1 under water stress at vegetative + reproductive and reproductive stages respectively. Control phosphorus application showed lowest
  • 3. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 25 number of grains spike-1 under water stress as compared to other phosphorus application rate. 1000 grains weight: - Variation in 1000 grain weight was observed with the application of different phosphorus and water stress levels (table 3). Increased in 1000 grains weight was report by phosphorus application at 120 kg ha-1 under well irrigated and water stress at vegetative and reproductive stages. It showed 48 g, 44 g and 40 g of 1000 grains weight respectively. It was also observed that water stress badly affect 1000 grains weight especially at vegetative and reproductive stages. Minimum 1000 grains weight was observed by control phosphorus application in all the drought level. Under water stress more sensitivity was observed in vegetative stage with respect to 1000 grains weight as compared to reproductive stage. Grain yield: - It was revealed that grain yield become increase with increasing phosphorus application rate (figure 2). With the application of 120 kg ha-1 phosphorus, maximum grain yield (3.24 t ha-1 ) was observed in well irrigated field conditions (table 3). This application rate also showed better grain yield in water stress at vegetative + reproductive (1.79 t ha-1 ) and reproductive stages (2.60 t ha-1 ). Control phosphorus (P = 0 kg ha-1 ) reported lowest grain yield under well irrigated as well as in water stress. Better results were obtained in well irrigated field whereas water stress at vegetative stages and reproductive stages showed greater loss in grain yield. Straw yield: - In case of straw yield, under well irrigated field conditions data showed that with the application phosphorus at the rate of 120 kg ha-1 showed significantly maximum straw yield (5.25 t ha-1 ) whereas in control phosphorus lowest straw yield (3.27 t ha-1 ) was obtained. Under water stress at vegetative and reproductive stages, it also showed better results. It showed 3.32 t ha-1 and 4.17 t ha-1 straw yields under water stress respectively. Without phosphorus application, lowest straw yield under water stress was observed as compared to other phosphorus application rate. Water stress drastically affects the straw yield both at vegetative and reproductive stages. DISCUSSION Water stress at vegetative and reproductive stages significantly decreased the plant height and spike length. Reason could be reduction in elongation and extension of cell which reduced plant tissue development and growth. Tahir et al. (2006) reported 53% reduction in plant height and spike length. They also reported increase in plant height and spike length with increasing amount of irrigation. Water stress reduced growth through disturbing the balance of reactive oxygen species and antioxidant defense. Reactive oxygen species become accumulate which cause oxidative stress in protein and membrane lipids. Water stress also affects photochemical and enzymatic activities in plants (Usman, 2013). Higher application rate of phosphorus resulted in taller plant. Cheema et al. (2001) also described the increase in plant height and spike length with the application of phosphorus fertilizers. Phosphorus in water stress conditions increased the number of tillers plant-1 . More phosphorus application at early flowering stage compensates the drastic effect of phosphorus (Ahmadi and Bahrani, 2009; Usman, 2013). Our results are similar to Rao et al. (2013) and Usman (2013) who reported reduction in number of tillers plant-1 due to water shortage. Increase in phosphorus application with optimum irrigation at critical growth stages showed increase in number of tillers. Results of Turk and Tawaha (2001) and Khan et al. (2002) supported our findings who reported greater number of tillers with phosphorus band application. Qadir et al. (1999) reported reduced number of tillers due to water stress which causes the reduction in grain yield. Increase in phosphorus and irrigation application cause increased in number of tillers, grain spike-1 and grain weight. It could be due to higher phosphorus application rate which causes increased in grain size which ultimately increases number of tillers, grain spike-1 and grain weight (Usman, 2013). Qadir et al. (1999) reported reduced grain weight and grains spike-1 which causes the reduction in grain yield of wheat due to water stress. Hossain et al. (1996) and Turk and Tawaha (2002) also reported higher 1000 grain weight and number of tiller with higher phosphorus application in groundnut. Our results are also according to the finding of Maqsood et al. (2002) who observed maximum tillers, grains spike, 1000 grain weight and grain yield. Similar results were also reported by Chimenti et al. (2002) and Erdem et al. (2006) who indicated lower grain weight with increasing water stress. Qadir et al. (1999), Rao et al. (2013) and Usman, (2013) reported the reduction in number of tillers, grain spike-1 and 1000 grain weight. It was observed that grain and straw yield increased significantly as irrigation and P application rate increases. Reduction in number of tiller, number of grains spike-1 and 1000 grain weight due to water stress also causes the reduction in grain yield (Qadir et al., 1999; Usman, 2013). The reason could also be due to nutrient deficiency, low phosphorus solubility which caused reduction in biomass (Haefele et al., 2006; Ismail et al., 2007; Yu et al., 2013). Rathke et al. (2005) also reported lower yield without fertilizer application. Similar results were also reported by Kang et al. (2002), Zhang et al. (2008) and Jiang et al. (2012). Increased in grain and straw yields were observed due to increased irrigation levels by Reddi and Reddi (1995). Turk and Tawaha (2001) and Ahadiyat et al., (2014) also reported higher grain and straw yield with phosphorus application.
  • 4. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 26 CONCLUSION Present study evaluates five phosphorus and three water stress levels for growth and yield of wheat. Application of phosphorus at the rate of 120 kg ha-1 showed better crop productivity in well irrigation as well as in water stress at vegetative and reproductive stages. Water stress drastically affects the critical growth stages of wheat. It was recommended to apply higher rate of phosphorus to compensate the drastic effect of wheat stress. REFERENCES Ahadiyat, Y.R. P. Hidayat and U. Susanto. 2014. Drought tolerance, phosphorus efficiency and yield characters of upland rice lines. Emir. Journal of Food and Agriculture 26(1): 25-34. Ahmadi. M. and M.J. Bahrani. 2009. Yield and yield components of rapeseed as influenced by water stress at different growth stages and nitrogen levels. American Eurasian Journal of Agricultural and Environmental Science 5(6): 755-761. Anonymous. 1988. Better crops with plant food. PPI, Atlanta, USA, pp. 26. Arora, V.K., H. Singh and B. Singh. 2007. Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES -Wheat model. Agricultural Water Management 94(1-3): 22-30. Buttar, G.S., H.S. Thind, K.S. Sekhon, B.S. Sidhu and K. Anureet. 2014. Effect of quality of irrigation water and nitrogen levels applied through trickle irrigation on yield and water use efficiency of tomato under semi-arid environment. Indian Journal of Horticulture 71(1): 72-76. Cheema, M.A., M.A. Malik, A. Hussain, S.H. Shah and S.M.A Basra. 2001. Effects of time and rate of nitrogen and phosphorus application on the growth and the seed and oil yields of canola (Brassica napus L.). Journal of Agronomic Crop Science 186: 103-110. Chimenti, C.A., J. Pearson and A.J. Hall. 2002. Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Research 75: 235-246. Clarke, J.M., C.A. Campbell, H.W. Cutforth, R.M. Depauw and G.E. Winkleman. 1990. Nitrogen and phosphorus uptake, translocation, and utilization efficiency of wheat in relation to environment, and cultivar yield and protein levels. Canadian Journal of Plant Science 70: 965-977. Din, J., S.U. Khan, I. Ali and A.R. Gurmani. 2011. Physiological and agronomic response of canola varieties to water stress. Journal of Animal and Plant Science 21(1): 78-82. Erdem. T., Y. Erdem, A.H. Orta and H. Okursoy. 2006. Use of a crop water stress index for scheduling the irrigation of sunflower (Helianthus annuus L.). Turk Journal of Agricultural and Forest 30: 11-20. Guendouz, A., M. Djoudi, S. Guessoum, K. Maamri, A. Hannachi, Z. Fellahi and M. Hafsi. 2014. Genotypic and phenotypic correlations among yield and yield components in durum wheat (Triticum durum Desf.) under different water treatments in Eastern Algeria. Annual Research and Review in Biology 4(2): 432- 442. Haefele, S.M., K. Naklang, D. Harnpichitvitaya, S. Jearakongman, E. Skulkhu and P. Romyen. 2006. Factors affecting rice yield and fertilizer response in rainfed lowland of Northeast Thailand. Field Crop Research 98: 39-51. Heuer, B. and A. Nadler. 1995. Growth, development and yield of potatoes under salinity and water deficit. Australian Journal of Agricultural Research 46: 1477-1486. Hossain, M.A., S. Begum, A.K.M.M. Rahman, S. Arabinda and A.B.M. Salahuddin. 1996. Growth analysis of mustard and rapeseed in relation to grain filling period and yield potential. Journal of Agricultural Research 34: 59-369. Ismail, A.M., S. Heuer, M.J. Thompson and M. Wissuwa. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65: 547-570. Jafar, M.S., M.H.E Slam, A.S.R. Amir, N. Ghorban and Z.Ghasem. 2007. The effects of water deficit during growth stages of canola (Brassicca napus L.). American Eurasian Journal of Agriculture and Environmental Science 2 (4): 417-422. Jiang, J., Z.L. Huo, S.Y. Feng and C.B. Zhang, 2012. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in North-west China. Field Crops Research 137: 78-88. Kanety, T., A. Naor, A. Gips, U. Dicken, J.H. Lemcoff and S. Cohen. 2014. Irrigation influences on growth, yield, and water use of persimmon trees. Irrigation Science 32(1): 1-13. Kang, S.Z., L. Zhang, Y.L. Liang, X.T. Hu, H.J. Cai and B.J. Gu. 2002. Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agriculture Water Management 55: 203-216. Khan, M.B., H. Ali and M. Asif. 2002. The response of different irrigation levels to growth and yield of different wheat (Triticum aestivum L.) cultivars. Journal of Research (Science) 13(1): 71-75. Kliewer, W.M., B.M. Freeman and C. Hosssom. 1983. Effect of irrigation, crop level and potassium fertilization
  • 5. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 27 on carignane vines. I. Degree of water stress and effect on growth and yield. American Journal of Enology and Viticulture 34(3): 186-196. Li, F.M., J. Cao and T.C. Wang. 1998. Influence of phosphorus supply pattern in soil on the yield of spring of wheat. Journal of plant Nutrition 21(9): 1921-1932. Li, F.M., Q.H. Song, H.S. Liu, F.R. Li and X.L. Liu. 2001. Effects of pro-sowing irrigation and phosphorus application on water use and yield of spring wheat under semi-arid conditions. Agricultural Water Management 49: 173-183. Li, Q., B. Dong, Y. Qiao, M. Liu and J. Zhang. 2010. Root growth, available soil water, and water-use efficiency of winter wheat under different irrigation regimes applied at different growth stages in North China. Agricultural Water Management 97: 1676-1682. Mandal, L.N. and S.K. Khan. 1972. Release of phosphorus from insoluble phosphatic materials in acidic low land rice soils. Journal of Indian Society of Soil Science 20: 19-25. Maqsood, M., A. Ali, Z. Aslam, M. Saeed and S. Ahmad. 2002. Effect of irrigation and nitrogen levels on grain yield and quality of wheat. International Journal of Agriculture and Biology 4(1): 164-165. Osborne, L.D. and Z. Rengel. 2002. Screening cereals for genotypic variation in efficiency of phosphorus uptake and utilization. Australian Journal of Agricultural Research 53: 295-303. Oweis, T. and A. Hachum. 2006. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agricultural Water Management 80: 57-73. Qadir, G., M. Saeed and M.A. Cheema. 1999. Effect of water stress on growth and yield performance of four wheat cultivars. Pakistan Journal of Biological Science 2(1): 236-239. Rao, S.S., P.L. Regar, S.P.S. Tanwar and Y.V. Singh. 2013. Wheat yield response to line source sprinkler irrigation and soil management practices on medium-textured shallow soils of arid environment. Irrigation Science 31: 1-13. Rathke, G.W., O. Christen and W. Diepenbrok. 2005. Effect of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crops Research 94(2): 103-113. Recio, B., F. Rubio, J. Lomban and J. Ibanez. 1999. An econometric irrigated crop allocation model for analyzing the impact of water restriction policies. Agricultural Water Management 42: 47-63. Reddi, G.H.S. and T.Y. Reddi. 1995. Irrigation of principle crops. In: Efficient Use of Irrigation Water 2nd ed., Kalyani Publisher, New Delhi. pp. 229-259. Rizzo, V., A. Castrignano, V.D. Bari and Z. Romito. 1992. A new generalized concept of crop coefficient for the use in a crop at incomplete soil covers stage. In: proceedings of second ESA congress, Warwick University, UK., July 25-29, Pp. 200-201. Rusan, M.M., A. Battikhi and S. Zuraiqi. 2005. Enhancement of nitrogen and water use efficiency by optimizing the combination of soil, crop and nitrogen management,” in Management of Nutrients and Water in Rainfed Arid and Semi-arid Areas for Increasing Crop Production Pp. 155-177. Singh, D.K. and P.W.G. Sale. 2000. Growth and potentially conductivity of white clover roots in dry soil with increasing phosphorus supply and defoliation frequency. Agronomy Journal 92: 868-874. Specht, J.E., K . Chase, M. Macrander, G.L. Graef, J. Chung, J.P. Markwell, M. Germann, J.H. Orf and K.G. Lark. 2001. Soybean response to water. A QTL analysis of drought tolerance. Crop Science 41: 493- 509. Steel, R.G.D., J.H. Torrie and D.A. Dickey. 1997. Principles and Procedures of Statistics: A Biometrical Approach. 3rd ed. McGraw Hill Co., New York, USA. Tahir, M.H.N., S. Bashir and A. Bibi. 2006. Genetic potenial of canola (Brassica napus) varieties under water stress conditions. Caderno de pesquisa Sér Bio Santa Cruz do Sul 18(2): 127-135. Tavakkoli, A.R. and T. Oweis. 2004. The role of supplemental irrigation and nitrogen in producing bread wheat in the highlands of Iran. Agricultural Water Management 65: 225-236. Turk, M.A. and A.M. Tawaha. 2002. Impact of seedling rate, seeding date, rate and method of phosphorus application in faba bean (Vicia faba L. Minor) in the absence of moisture stress. Biotechnology and Agronomic Society and Environment 6: 171-178. Usman, K. 2013. Effect of phosphorus and irrigation levels on yield, water productivity, phosphorus use efficiency and income of Lowland rice in Northwest Pakistan. Rice Science 20(1): 61-72. Wang, Q.R., J.Y. Li, Z.S. Li and P. Christie. 2005. Screening Chinese wheat germplasm for phosphorus efficiency in calcareous soils. Journal of Plant Nutrition 28: 489-505. Yousaf, M., S. Fahad, A.N. Shah, M. Shaaban, M.J. Khan, S.A.I. Sabiel, S.A.I. Ali, Y. Wang and K.A. Osman. 2014. The effect of nitrogen application rates and timings of first irrigation on wheat growth and yield. Journal of Agricultural Innovations and Research 2(4): 645-653. Yu, W., C. Shu-yun, N. Tang-yuan, T. Shen-zhong and L. Zeng-jia. 2013. Coupling Effects of Irrigation and Phosphorus Fertilizer Applications on Phosphorus Uptake and Use Efficiency of Winter Wheat. Journal
  • 6. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 28 of Integrative Agriculture 12(2): 263-272 Zhang, X.Y., S.Y. Chen, H.Y. Sun, D. Pei and Y.M. Wang. 2008. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat. Irrigation Science 27: 1-10. Table 1:- Effect of phosphorus levels on plant height and spike length under water stress Drought levels Phosphorus levels Plant height (cm) Spike length (cm) Well-irrigated P0 = 0 kg ha-1 85.0 ± 0.57 10.9 ± 0.31 P1 = 30 kg ha-1 88.0 ± 0.84 11.2 ± 0.33 P2 = 60 kg ha-1 89.0 ± 0.52 11.9 ± 0.34 P3 = 90 kg ha-1 90.0 ± 0.85 12.8 ± 0.17 P4 = 120 kg ha-1 92.0 ± 0.44 13.2 ± 0.44 Water stress at reproductive stage P0 = 0 kg ha-1 84.3 ± 0.33 10.5 ± 0.51 P1 = 30 kg ha-1 85.0 ± 0.66 10.9 ± 0.57 P2 = 60 kg ha-1 87.0 ± 0.75 11.2 ± 0.07 P3 = 90 kg ha-1 88.5 ± 0.33 11.5 ± 0.50 P4 = 120 kg ha-1 90.0 ± 0.67 12.2 ± 0.54 Water stress at vegetative stage + reproductive stage P0 = 0 kg ha-1 83.0 ± 0.82 10.1 ± 0.49 P1 = 30 kg ha-1 83.5 ± 0.48 10.4 ± 0.17 P2 = 60 kg ha-1 84.7 ± 0.58 10.6 ± 0.53 P3 = 90 kg ha-1 86.0 ± 0.66 10.9 ± 0.33 P4 = 120 kg ha-1 87.5 ± 0.62 11.1 ± 0.17 LSD (p≤0.05) 3.409 1.237 Table 2:- Effect of phosphorus levels on number of tillers and grains under water stress Drought levels Phosphorus levels Number of tillers m-2 Number of grains spike-1 Well-irrigated P0 = 0 kg ha-1 103 ± 0.33 29 ± 0.93 P1 = 30 kg ha-1 105 ± 0.62 30 ± 0.83 P2 = 60 kg ha-1 109 ± 0.72 33 ± 1.31 P3 = 90 kg ha-1 112 ± 0.57 35 ± 1.43 P4 = 120 kg ha-1 114 ± 0.40 37 ± 1.22 Water stress at reproductive stage P0 = 0 kg ha-1 101 ± 0.57 26 ± 1.22 P1 = 30 kg ha-1 103 ± 0.82 29 ± 1.93 P2 = 60 kg ha-1 105 ± 0.66 31 ± 1.72 P3 = 90 kg ha-1 108 ± 0.35 32 ± 1.26 P4 = 120 kg ha-1 109 ± 0.80 34 ± 0.57 Water stress at vegetative stage + reproductive stage P0 = 0 kg ha-1 100 ± 0.73 23 ± 1.20 P1 = 30 kg ha-1 101 ± 0.57 25 ± 0.48 P2 = 60 kg ha-1 103 ± 0.33 26 ± 0.88 P3 = 90 kg ha-1 106 ± 0.57 28 ± 0.94 P4 = 120 kg ha-1 108 ± 0.59 30 ± 1.18 LSD (p≤0.05) 2.299 4.474
  • 7. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 29 Table 3:- Effect of phosphorus levels on yield component of wheat under water stress Drought levels Phosphorus levels 1000 grain weight (g) Grain yield (t ha-1 ) Straw yield (t ha-1 ) Well-irrigated P0 = 0 kg ha-1 40.50 ± 0.89 1.68 ± 0.07 3.27 ± 0.18 P1 = 30 kg ha-1 41.60 ± 1.37 2.16 ± 0.04 3.71 ± 0.12 P2 = 60 kg ha-1 42.40 ± 0.68 2.54 ± 0.11 4.49 ± 0.13 P3 = 90 kg ha-1 46.12 ± 1.24 2.85 ± 0.08 4.70 ± 0.12 P4 = 120 kg ha-1 48.50 ± 0.77 3.24 ± 0.10 5.25 ± 0.15 Water stress at reproductive stage P0 = 0 kg ha-1 38.72 ± 0.22 1.39 ± 0.09 2.93 ± 0.19 P1 = 30 kg ha-1 40.26 ± 0.99 1.75 ± 0.06 3.24 ± 0.16 P2 = 60 kg ha-1 41.40 ± 0.83 1.98 ± 0.09 3.59 ± 0.20 P3 = 90 kg ha-1 43.58 ± 1.22 2.26 ± 0.07 3.95 ± 0.16 P4 = 120 kg ha-1 44.21 ± 061 2.60 ± 0.03 4.17 ± 0.13 Water stress at vegetative stage + reproductive stage P0 = 0 kg ha-1 30.50 ± 0.55 1.15 ± 0.07 2.42 ± 0.17 P1 = 30 kg ha-1 32.60 ± 1.16 1.29 ± 0.04 2.68 ± 0.12 P2 = 60 kg ha-1 38.73 ± 1.51 1.44 ± 0.08 2.94 ± 0.11 P3 = 90 kg ha-1 40.47 ± 0.99 1.59 ± 0.05 3.15 ± 0.20 P4 = 120 kg ha-1 40.47 ± 0.79 1.79 ± 0.07 3.32 ± 0.19 LSD (p≤0.05) 3.424 0.293 0.064 Figure 1: - Effect of different phosphorus levels on number of tillers m-2 of wheat
  • 8. Journal of Environment and Earth Science www.iiste.org ISSN 2224-3216 (Paper) ISSN 2225-0948 (Online) Vol.4, No.19, 2014 30 Figure 2: - Effect of different phosphorus levels on grain yield of wheat
  • 9. Business, Economics, Finance and Management Journals PAPER SUBMISSION EMAIL European Journal of Business and Management EJBM@iiste.org Research Journal of Finance and Accounting RJFA@iiste.org Journal of Economics and Sustainable Development JESD@iiste.org Information and Knowledge Management IKM@iiste.org Journal of Developing Country Studies DCS@iiste.org Industrial Engineering Letters IEL@iiste.org Physical Sciences, Mathematics and Chemistry Journals PAPER SUBMISSION EMAIL Journal of Natural Sciences Research JNSR@iiste.org Journal of Chemistry and Materials Research CMR@iiste.org Journal of Mathematical Theory and Modeling MTM@iiste.org Advances in Physics Theories and Applications APTA@iiste.org Chemical and Process Engineering Research CPER@iiste.org Engineering, Technology and Systems Journals PAPER SUBMISSION EMAIL Computer Engineering and Intelligent Systems CEIS@iiste.org Innovative Systems Design and Engineering ISDE@iiste.org Journal of Energy Technologies and Policy JETP@iiste.org Information and Knowledge Management IKM@iiste.org Journal of Control Theory and Informatics CTI@iiste.org Journal of Information Engineering and Applications JIEA@iiste.org Industrial Engineering Letters IEL@iiste.org Journal of Network and Complex Systems NCS@iiste.org Environment, Civil, Materials Sciences Journals PAPER SUBMISSION EMAIL Journal of Environment and Earth Science JEES@iiste.org Journal of Civil and Environmental Research CER@iiste.org Journal of Natural Sciences Research JNSR@iiste.org Life Science, Food and Medical Sciences PAPER SUBMISSION EMAIL Advances in Life Science and Technology ALST@iiste.org Journal of Natural Sciences Research JNSR@iiste.org Journal of Biology, Agriculture and Healthcare JBAH@iiste.org Journal of Food Science and Quality Management FSQM@iiste.org Journal of Chemistry and Materials Research CMR@iiste.org Education, and other Social Sciences PAPER SUBMISSION EMAIL Journal of Education and Practice JEP@iiste.org Journal of Law, Policy and Globalization JLPG@iiste.org Journal of New Media and Mass Communication NMMC@iiste.org Journal of Energy Technologies and Policy JETP@iiste.org Historical Research Letter HRL@iiste.org Public Policy and Administration Research PPAR@iiste.org International Affairs and Global Strategy IAGS@iiste.org Research on Humanities and Social Sciences RHSS@iiste.org Journal of Developing Country Studies DCS@iiste.org Journal of Arts and Design Studies ADS@iiste.org
  • 10. The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing. More information about the firm can be found on the homepage: http://www.iiste.org CALL FOR JOURNAL PAPERS There are more than 30 peer-reviewed academic journals hosted under the hosting platform. Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors. MORE RESOURCES Book publication information: http://www.iiste.org/book/ IISTE Knowledge Sharing Partners EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar