SlideShare a Scribd company logo
1 of 14
Download to read offline
Drip Irrigation Guide
A Case Study at Berggren Demonstration Farm
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
By  the  University  of  Oregon’s  Environmental  Leadership  Program  
Sustainable  Farms  Team:  
Ashleigh  Angel,  Alex  Burgdorfer,  Maddie  Cheek,  Brady  Chiongbian,  Will  
Dickerson,  Wilson  Hui,  Zoe  Lavier,  Rena  Nenot  and  Emma  Porricolo    
  
  
  
  
  
  
Table  of  Contents  
  
1. Introduction  to  Drip  Irrigation  (pg.  2)  
  
2. Oregon  Water  Law  (pg.  2-­3)  
  
3. Varying  Methods  of  Drip  Irrigation:  A  Case  Study  of  Berggren  Farm  (pg.  4)  
  
4. Calculating  Energy  and  Water  Needs  for  Your  System  (pg.  4-­5)  
  
5. Pump  Calculations  and  Introduction  to  Variable  Frequency  Drives  (pg.  5-­6)  
  
6. Drip  Irrigation  Design  and  Costs  (pg.  6-­9)  
  
7. Paying  for  Your  Drip  Irrigation  Project  (pg.  9-­11)  
  
8. Conclusion  (pg.  11-­12)  
  
9. Acknowledgments  (pg.  12-­13)  
  
Figures    
  
Table  1:  Contact  information  for  various  resources  we  used  in  designing  the  drip  system  for  
BDF.    
  
Figure  1:  DripWorks  drip  tape  estimator  calculates  flow  rate  (GPH)  for  specific  drip  irrigation  
systems  depending  upon  numbers  of  beds,  drip  tape  lines,  and  row  length.     
  
Table  2:  Detailed  graph  of  the  cost  of  all  the  materials  needed  for  drip  irrigation  system.     
  
Figure  2:  Drip  irrigation  plan  with  specified  crops  and  materials  needed,  generated  on  Dripworks  
Garden  Planner.  
  
  
  
  
  
  
  
  
1  
1.  Introduction  to  Drip  Irrigation  
    
Recent climate conditions have negatively influenced agricultural production due to                             
increased droughts throughout the United States. In 2015, an estimated 82% of the state of                                            
California experienced an ‘extreme drought’, resulting in $1.5 billion of drought related                                   
farm-­loss and 17,000 agricultural jobs lost statewide . Furthermore, warming weather has                                   1
severely limited snowpack percentages in Oregon -­ in 2015 Oregon received a concerning 6% of                                            
average snowpack levels . Consequently, the governor of Oregon declared 15 counties as                                   2
drought stricken. As climate change continues to impact the quantity and quality of water it will                                               
be vital for agricultural farmers to adapt to the environmental conditions and adopt more                                         
effective  water  management  practices.    
   Drip-­irrigation is considered a Best Management Practice (BMP) because of its ability to                                      
efficiently and economically irrigate agricultural crops. The process of drip-­irrigation allows                                
water to be applied directly to the base of the plant through a matrix of tubes and valves and then                                                           
slowly filter through the root structure, thereby minimizing the total quantity of water needed in                                            
order to effectively irrigate the plants. This ‘more crop per drop’ method is a useful water                                               
management practice because it is more likely to provide sufficient irrigation for agricultural                                      
fields in comparison to other irrigation practices during times of reduced water availability, such                                         
is the case in many parts of California. In certain instances, drip irrigation has reduced water                                               
consumption by an impressive 70% in comparison to other irrigation practices, such as flood                                         
irrigation   .     3
According to the University of Rhode Island, the following bullet points demonstrate the                                      
various  benefits  of  the  Best  Management  Practice-­  drip  irrigation.     
  
Benefits  of  drip  irrigation:  
● Prevents  disease  by  minimizing  water  contact  with  the  leaves,  stems,  and  fruit  of  plants  
● Allows  the  rows  between  plants  to  remain  dry,  improving  access  and  reducing  weed  
growth  
● Saves  time,  money,  and  water  because  the  system  is  so  efficient  
● Decreases  labor  
● Increases  effectiveness  on  uneven  ground  
● Reduces  leaching  of  water  and  nutrients  below  the  root  zone     4
  
2.  Oregon  Water  Law  
  
It is important to consider what kind of access rights you have to your water resource                                               
before planning a drip irrigation system. Your access rights will impact your ability to install a                                               
drip irrigation system and may affect the availability of cost-­share and other funding. Water                                         
rights in Oregon are regulated by Oregon’s water laws. ‘Water Rights In Oregon;; An                                         
Introduction To Oregon’s water laws’, or Aqua Book, is a document available on the website                                            
1
  http://www.bloomberg.com/news/articles/2014-­08-­11/california-­drought-­transforms-­global-­food-­market  
2
  http://www.nrcs.usda.gov/wps/portal/nrcs/detail/or/home/?cid=nrcs142p2_046169  
3
.  ​http://www.rainbird.com/documents/corporate/iuow/iuow_whitepapers.pdf-­​  “Rain  Bird”  
4
  http://www.uri.edu/ce/healthylandscapes/dripirrigation.htm  -­  ‘Drip  Irrigation  for  the  Home  Garden.’  
2  
Oregon.gov. It summarizes laws regulating water in the state of Oregon and provides four bases                                            
for  water  use:    
-­ Water  may  be  used  only  for  beneficial  purpose  without  waste.  
-­ The oldest water right holder takes the priority over the new rights holder water supply in                                               
case  of  shortage.    
-­ A water right is attached to the land where it is established;; if the land is sold, the water                                                        
right  goes  with  the  land  to  the  new  owner.    
-­ A  water  right  must  be  used  at  least  once  every  five  years  to  remain  valid.    
  
Water  rights  principle  in  Oregon  
  
● Under Oregon’s water code, all water is publicly owned. Therefore, individuals need a                                      
permit  to  use  it,  even  when  the  water  passes  through  their  property.     
● Water rights in Oregon function according to the Prior Appropriation Doctrine                                
established February 24, 1909. This doctrine states that the first person to obtain water                                         
rights has the priority of usage above the junior water rights holder, and so on for the next                                                     
oldest until all water rights are satisfied or until there is no more water available. This                                               
means in case of droughts the older water rights holders takes priority over the youngest                                            
ones. This contrasts with the Riparian doctrine, usually applied on the East Coast, where                                         
landowners  have  a  right  over  the  water  flowing  through  their  land.     
  
Acquiring,  transferring  and  ending  terminating  or  relinquishing  water  rights  
  
There  are  three  steps  in  the  process  of  obtaining  water  rights:  
1. Applying  to  the  Water  Resources  Department  (WRD)  for  a  permit  to  use  water.  
2. Once the permit is granted, the applicant must construct a water system and start using                                            
water.  
3. The permit holder must hire a certified water rights examiner to complete a survey of                                            
water use and submit a report about how and where water is being used to the WRD. If                                                     
use is in compliance with the provision of the permit, a water right certificate will be                                               
issued  based  on  the  report.    
  
Water rights are restricted to the conditions, place of diversion, and type of use, described                                            
in the report written by the water rights examiner. To transfer a water right, the holder must file a                                                        
transfer application with the WRD to change one or more of the conditions of its right. For the                                                     
transfer  to  be  granted,  the  WRD  needs  to  be  sure  it  will  not  affect  the  water  rights  of  others.    
A water right remains valid as long as it is used without a lapse of five or more                                                     
consecutive years. If unused for five years or more, the water right is considered forfeited and is                                                  
subject to cancellation. Cancellation requires a legal process to determine if the period of                                         
non-­use occurred unless 15 years have passed since the period of non-­use. Once cancelled, the                                            
landowner  must  apply  for  new  water  rights  through  the  usual  process.  
Applying for water rights or affirming your rights are still valid is an important part of                                               
deciding  your  next  step  to  implement  a  drip  irrigation  system.    
  
  
3  
3.  Varying  Methods  of  Drip  Irrigation:  A  Case  Study  of  Berggren  Farm  
  
An  effective  drip  irrigation  system  on  a  farm  is  tailored  to  the  constraints  and  needs  of  the  
climate,  soil  type,  and  the  farm’s  production  crops.  The  first  step  in  designing  a  drip  irrigation  
system  is  determining  which  drip  tape  (high,  medium,  or  low  flow)  has  the  emission  rates  that  
will  best  suit  the  soil  type.  Information  on  the  soil  and  climate  type  can  be  found  online  at  the  
USDA  Web  Soil  Survey.     5
Berggren  Demonstration  Farm  Case  Study:  
Berggren  lower  field:  #95  soil  ‘Newberg  fine  sandy  loam’  
·∙​                ​Mean  annual  precipitation:  40-­60  inches  
·∙​                ​Frost-­free  period:  165  to  210  days  
·∙​                ​Landform:  flood  plains  
·∙​                ​Farmland  classification:  prime  farmland    
  
These  are  the  conditions  for  the  production  field  at  Berggren  Demonstration  Farm  (BDF),  a  
30-­acre  farm  outside  of  Walterville,  Oregon.  You  can  use  the  considerations  for  this  site-­specific  
study  to  assess  your  own  needs  and  constraints  regarding  implementing  a  drip  irrigation  system.     
  
4.  Calculating  Energy  and  Water  Needs  for  Your  System  
  
When  designing  a  drip  irrigation  system,  energy  and  water  conservation  are  usually  the  
first  considerations.  Our  team  initially  set  out  to  utilize  gravitational  force  to  power  our  system  
through  an  elevated  water  tank  located  above  Berggren’s  vegetable  garden,  but  the  local  
geography  proved  incapable  of  fulfilling  the  system’s  pressure  requirements.  This  led  to  a  full  
reconsideration  of  our  system  design,  as  our  new  system  required  an  optimized  pump  able  to  
supply  correct  pressure  and  flow  directly  to  the  drip  lines.  
Calculating  the  necessary  flow  and  pressure  within  the  drip  system  itself  can  be  done  
easily  with  simple  algebra.  DripWorks,  an  irrigation  supply  company,  has  readily  available  
calculators  on  their  website  (​http://www.dripworks.com/category/calculators​)  that  allow  for  
quick,  accurate  measurements.  If  you  already  have  a  pump,  use  DripWorks’  flow  estimator  
calculator  to  understand  the  flow  available  for  your  system.  If  you  will  later  optimize  a  pump  for  
the  system  you  design,  go  directly  to  their  drip  tape  estimator  to  compute  the  flow  rate  and  
zoning  requirements.  
   Once  the  system’s  requirements  are  calculated,  a  pump  must  be  optimized  to  fulfill  these  
needs.  An  existing  pump  may  be  retrofitted  using  a  variable  frequency  drive,  discussed  in  more  
detail  in  Section  5,  but  designing  the  system  prior  to  purchasing  a  pump  is  highly  recommended.  
You  will  first  need  to  understand  the  most  suitable  pump  type  for  your  water  resource.    
Many  options  –  such  as  end-­suction  centrifugal,  submersible,  turbine,  booster,  and  jet  
pumps  -­  exist  that  are  best-­suited  for  varying  conditions  exist.  While  calculating  optimal  pump  
specifications  is  possible  prior  to  purchasing  a  new  pump,  variance  between  pump  manufacturers  
may  lead  to  miscalculations  in  practice  as  two  pumps  with  the  exact  same  horsepower  may  have  
widely  varying  flows  and  pressures.  It  is  best  to  contact  a  local  pump  dealer  who  will  be  able  to  
5
USDA  Web  Soil  Survey:  http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm  
4  
discuss  the  many  options  available.  Pacific  Ag  Systems  Inc.  is  a  great  resource  for  Oregonian  
farmers,  and  other  options  exist  nationally  such  as  Sprinkler  Warehouse .  6
  
Table  1:  Contact  information  for  various  resources  we  used  in  designing  the  drip  system  for  
BDF.    
Categories   Organization   Phone/E-­mail   Website  
General  drip  
system  guidance  
and  calculators  
Dripworks   (800)  522  3747  
  
support@dripworks.com  
www.dripworks.com  
  
Local  organization  
specializing  in  drip  
system  design  and  
installation  
Pacific  Ag  Systems  Inc.   (541)  998  1983  
  
aknox@pacag.com  
www.pacag.com/    
Irrigation  Supplies   Sprinkler  Warehouse   (281)  500  9800   www.sprinklerwarehouse.com  
Government  
resource  for  
general  
conservation  
practices  
National  Resource  
Conservation  Service    
  (​Lane  County  District  
Conservationist  Tom  
Burnham)  
(541)  465  6443  
  
tom.burnham@or.usda.gov    
www.nrcs.usda.gov/    
Water  rights   WaterMaster   (541)  382  3620   www.oregon.gov/OWRD/page
s/index.aspx  
Soil  maps  and  data  
from  the  National  
Cooperative  Soil  
Survey  
Web  Soil  Survey  
(Portland  State  Office)  
(503)  414  3261   www.websoilsurvey.sc.egov.us
da.gov  
    
  
5.  Pump  Calculations  and  Introduction  to  Variable  Frequency  Drives    
  
This  section  will  provide  information  on  how  to  determine  a  pump  to  fit  in  the  system.    
We  also  provide  a  brief    cost  comparison  on  Variable  Frequency  Drives  (VFD)  and  a  fixed  speed  motor  
for  a  year.  
After  designing  the  system,  the  next  step  will  be  to  determine  which  pump  will  fit  into  your  drip  
irrigation  system.  You  will  need  to  find  out  the  flow  rate  you  need  for  the  drip  tapes.  For  example,  40  
Gallon  Per  Hour  (GPH)  is  needed  for  every  100  feet  of  drip  tape  at  a  pressure  of  8  pressure  per  inch  (PSI)  
for  high  flow  t-­tape  (GPH  varies  by  the  type  of  drip  tape).  Given  a  field  125  ft.  in  length,  the  necessary  
flow  rate  is  calculated  as  follows:  40  GPH/100  feet  x  12,500  feet  of  tape  =  5,000  GPH.  
Therefore,  the  maximum  flow  rate  of  the  pump  should  be  more  than  5000  GPH.  
6
  ​http://www.sprinklerwarehouse.com  
5  
 
Relationship  between  pressure  (PSI),  flow  rate  and  horsepower :  7
● Pressure  (PSI)  =  Force  (lbs)  /  Unit  Area  (square  inch)  
● Flow  Rate  (GPH)  =  Volume  (gallons)  /  Unit  Time  (hour)  
● Horsepower  =  [Pressure  (psi)  x  Flow  rate  (GPH)]  /  1714  
    
In  order  to  retrofit  an  existing  pump  to  optimally  supply  the  necessary  pressure  and  flow  rate  for  a  
planned  irrigation  system,  a  VFD  may  be  used  in  order  to  adjust  power  delivery  to  the  pump’s  motor.  If  
you  already  own  a  pump,  this  may  be  cheaper  than  buying  a  new  pump.  Moreover,  according  to  Baldor  
Electric  Company,  VFD  control  technology  allows  only  22%  of  the  horsepower  to  operate  a  pump  at  60%  
speed  compare  to  a  fixed  speed  pump .  Here  is  an  example  calculation  of  potential  cost  saving.First,  8
determine  the  kilowatt  usage  and  the  energy  cost:  
● Kilowatts  =  Horsepower  (Hp)  x  0.746  kWh/hp  x  1/  System  Efficiency  
● Energy  Cost=Kilowatts  x  hours/year  x  cost($)/  Kilowatts  hour  (kWh)  
  
Combine  the  equations  to  compare  the  cost  between  a  fixed  motor  pump  and  VFD-­run  motor  pump :  9
Fixed  Speed  Motor:  
(100  HP)  x  (1/95%  eff.)  x  (.746  kW/Hp)  x  ($0.08/kWh)  x  (12  hrs/day)  x  (365  day/year)    
=  $27,516  per  year  
  ​VFD  Run  Motor:  
(100  HP)  x  (0.22)  x  (1/95%  eff.)  x  (.746  kW/Hp)  x  ($0.08/kWh)  x  (12  hrs/day)  x  (365  day/year)    
=  $6,053  per  year  
  
Cost  Analysis  of  purchasing  VFD  vs.  a  fixed-­speed  pump    
If    BDF  purchases  a  new  pump,  we  recommend  Munro  LP200B  2  HP  50  PSI  Centrifugal  Pump  
which  cost  $582 .  If  BDF  chooses  to  retrofit  an  existing  pump,  the  ideal  VFD  will  depend  on  the  existing  10
pump’s  horsepower.  For  BDF’s  20hp  pump,  we  recommend  a  low  cost  GK3000-­4T0150G  20  hp  (15kW)  
VFD,  3  Phase  220V,  380V,  460V  VFD,  that  cost  around  $700 ,  it  would  be  able  to  control  the  flow  rate  11
and  more  efficient  on  electricity  and  water  usage.  
  
6.  Drip  Irrigation  Design  and  Costs    
  
Designing  a  drip  irrigation  system  requires  various  parts,  each  of  which  has  a  specific  
function,  to    ensure  maximum  efficiency  from  the  pump  to  the  drip  tape.  As  stated  in  Section  4,  
it  is  best  to  work  backwards  when  designing  a  drip  irrigation,  from  the  drip  tape  to  the  pump.  
The  steps  listed  below  is  the  process  we  went  through  in  designing  a  drip  irrigation  for  lower  
field  crops  at  BDF.    
1) Determine    the  potential  area  size  and  layout.  For  BDF,  we  designed  a  system  to  irrigate  
25  rows  with  4  lines  of  drip  tape  in  each  125-­foot-­long  row.    
  (25  beds)  X  (125  ft/bed)  X  (4  lines/bed)  =  12,500  ft.  of  drip  tape  needed    
7
  ​http://web.applied.com/assets/attachments/779D4407-­D2AE-­6FAA-­7DA1CEDE2268977B.pdf  
8
  ​http://www.sustainableplant.com/assets/Baldor/Baldor-­0411-­Pump-­Energy-­Savings-­with-­VFDs.pdf  
9
  ​http://www.sustainableplant.com/assets/Baldor/Baldor-­0411-­Pump-­Energy-­Savings-­with-­VFDs.pdf  
10
  ​http://www.sprinklerwarehouse.com/Munro-­Centrifugal-­Pump-­p/lp200b.htm  
11
  ​http://www.gohz.com/20hp-­vfd  
6  
2) Determine  which  kind  of  drip  tape  is  required  based  on  specific  soil  type  and  climate:  
high,  medium,  or  low  flow  (see  Section  2  of  the  guide  for  more  information  on  how  to  
determine  this).     
At  Berggren  we  chose  high  flow  drip  tape  because  the  soil  drains  quickly;;  therefore,  high  
flow  is  necessary  to  keep  moisture  in  the  soil.  Additionally,  the  frequency  of  drip  holes  or  
how  often  you  run  the  system  varies  by  crop.  Not  all  crops  prefer  direct  irrigation  from  
drip  tape.    
3) Design  the  irrigation  system  with  the  proper  flow  rates  and  pressure.  Pressure  regulators  
can  be  used  to  ensure  the  proper  pressure  to  drip  tape  groupings.The  drip  irrigation  
supply  retailer,  DripWorks,  has  a  great  tool  to  calculate  flow  rate  depending  on  amount  of  
drip  tape.     
  
Figure  1:  DripWorks  drip  tape  estimator  calculates  flow  rate  (GPH)  for  specific  drip  
irrigation  systems  depending  upon  numbers  of  beds,  drip  tape  lines,  and  row  length.         12
  
     
  
4) Determine  what  filter  you  need  based  upon  the  sediment  in  your  water  source.  Filters  are  
vital  to  drip  irrigation  systems  as  they  prevent  clogs  in  the  drip  tape  that  can  impede  a  
system’s  ability  to  operate  effectively.  Types  of  filters  will  vary  by  water  source.  
Currently  at  Berggren,  a  large  filter  on  the  submersible  pump  filters  out  large  sediment.  
We  recommend  placing  a  disk  filter  at  the  beginning  of  the  drip  irrigation  system  
attached  to  the  mainline  to  filter  small  organic  matter.  We  also  recommend  adding  
additional  inline  filters  in  each  of  the  five  sub-­sections.    
5) Determine  if  you  need  an  automatic  timer  system.  Although  we  are  not  including  an  
automatic  timer  system  in  our  drip  system  for  BDF,  it  can  help  to  increase  the  system’s  
efficiency.  Even  with  wholesale  price,  the  price  range  is  from  about  $29.95  to  $79.95,  it  
is  an  expensive  addition.     
12
  ​http://www.dripworks.com/category/calculator-­drip-­tape-­revised    
7  
6) Make  sure  that  you  have  all  the  small  pieces  to  tie  the  system  together,  including:  hold  
downs,  tubing  ends,  elbows,  and  tape  row  starts.     
  
Drip  irrigation  supply  providers  can  often  help  you  design  drip  irrigation  system  catered  
to  your  farm  with  their  products.  As  a  case  study  from  Berggren  Demonstration  Farm,  we  have  
compiled  an  approximate  pricing  from  DripWorks.  The  following  prices  are  based  on  wholesale  
prices  from  DripWorks.  The  chart  below  is  a  detailed  list  of  the  costs  for  just  the  irrigation  
system  and  pump,  cost  for  the  K-­line  tubing  to  attach  the  pump  to  the  mainline  are  not  included.    
  
Table  2:  Detailed  graph  of  the  cost  of  all  the  materials  needed  for  drip  irrigation  system.     
  
Drip  Irrigation  
Parts   Description  
Item  
Number     Number   Cost  Per  Unit    
Filter    
Arkal  Disc  Filter,  200  Mesh,  
1"     FA1200   1   $57.95  
Pressure  Regulator   Senninger  1”  Limit  Valve-­  30     PR1LV30   1   $17.95  
Female  Hose  Start  
3/4"  Easy  Loc)  Female  Hose  
Start      6   6  x  $2.29  =  $13.74  
Mainline  Tubing  -­    
1  inch      1"  Polytubing,  250'  roll   F1250   100  ft  =  1  roll   $79.95  
Mainline  ends   1"  Easy  Loc  End  Cap   ELMC1   1   $1.59  
Subline  tubing  -­  
¾  inch     ¾"  Polytubing,  100’     34100   100  ft  =  1  roll   $17.95  
Subline  end     ¾"  Figure  8  ending     CF834   5   5  x  $0.34  =  $1.70    
Tape  Row  Start        LSB    
4  tapes/bed  x  25  beds=  
100   100  x  =  $0.46  =$46  
Section  inline  filters      FI120   5   $  4.29  
Drip  tape  (T-­Tape)    
8mil/8"  space  high  flow,  7500  
feet  roll      2  rolls   2  x  $188  =  $376  
Tape  coupler        LSC        $0.64  
Valves    
3/4"  Easy  Loc  x  3/4"  MPT  w/  
Valve  -­       EL34MPV34   5   5  x  $1.95  =  $9.75    
Elbows     3/4"  Easy  Loc  Elbow     ELL34   55   5  x  $  2.49  =  $12.45  
Hold  downs     U-­shaped  Wire  (Packs  of  100)     SUHD-­100   3  packs   3  x  $  8  =  $24  
T-­Tape  ends        LSGS   25       25  x  $0.49  =  $12.25  
Pump   2  HP  50  PSI  Centrifugal  Pump  
Munro  
LP200B   1   $664.13  
         TOTAL  COST   $1,339.70  
  
This  example  budget  does  not  include  the  additional  cost  for  K-­line  piping.  K-­line  piping  is  
required  to  connect  the  pump  from  the  water  source  to  the  main  filter  
  
8  
Figure  2:  Drip  irrigation  plan  with  specified  crops  and  materials  needed,  generated  on  Dripworks  
Garden  Planner.  13
  
  
7.  Paying  for  Your  Drip  Irrigation  Project  
  
Sustainable  agricultural  practices  and  technologies  are  often  criticized  as  being  too  
expensive  to  be  implemented  on  small  farms.  The  prices  of  these  practices  vary  depending  on  the  
size  of  the  farm  and  the  types  of  practices  chosen.  However,  there  are  many  government  and  
business  resources  that  are  designed  to  support  small  farms  interested  in  investing  in  organic  
certification  and  sustainable  agricultural  practices.  The  organizations  offer  grants  and  easements  
to  aid  small  farmers  interested  in  sustainable  agriculture.  
13
  ​http://gardenplanner.dripworks.com/    
9  
Grants  and  cost-­shares  are  other  options  for  funding  sustainable  agriculture  projects.  
Grants  are  often  offered  by  governmental  agencies  such  as  the  USDA​13​
  or  by  local,  national,  and  
international  organizations.  There  are  five  different  types  of  grants  in  sustainable  agriculture:  
research  and  education,  professional  development  programs,  farmer/rancher  grants,  professional  
and  producer  grants,  and  graduate  student  grants.  Examples  of  these  grants  can  be  found  on  the  
Western  Sustainable  Agriculture  Research  and  Education  website​13​
.  
A  financial  easement  for  sustainable  agriculture  is,  “a  non-­possessory  right  to  use  
another’s  property” .  The  Natural  Resource  Conservation  Service  (NRCS)  offers  an  agricultural  14
easement  program  that  provides  technical  assistance  to  farmers  to  conserve  land  used  for  
agriculture  in  addition  to  surrounding  ecosystems.    The  agricultural  land  easement  includes  
conservation  programs  that  preserve  grasslands,  rangelands,  pasturelands,  and  shrublands.  
Easements  can  provide  significant  public  benefits  such  as  improved  environmental  quality,  
wildlife  conservation  areas,  open  space  protection,  and  historic  area  preservation.  These  
easements  provide  incentives  for  farmers  such  as  tax  deductions  ​14​
.  The  wetland  easement  
program  provides  financial  and  technical  aid  for  landowners  and  farmers  to  help  restore,  and  
protect  wetlands.  There  are  several  subcategories  of  wetland  reserve  easements:  permanent,  
30-­year,  term,  and  30-­year  contracts.    
Every  year  BDF  applies  for  multiple  grants  in  order  to  fund  various  projects.  Money  
received  from  grants  has  been  used  to  fund  projects  such  as  installation  of  a  solar  energy  system.  
Money  awarded  through  grants  can  be  used  for  a  variety  of  projects,  including  drip  irrigation.    
  
Finding  Funding  Opportunities    
  
   Many  grants  through  government  agencies  can  be  found  online  at  grants.gov,  where  one  
can  search  by  category  of  different  agencies,  eligibility,  type  of  grant,  etc.  NRCS  also  offers  
financial  assistance  and  general  support  for  farmers.  For  more  information  about  what  funding  
opportunities  are  available  to  your  organization  or  location,  you  can  call  the  NRCS  office  for  
more  information,  or  go  online.    
Grants  are  also  commonly  offered  by  companies,  donors,  and  nonprofits.  The  Sustainable  
Agriculture  Research  and  Education   organization  has  many  grants  to  help  fund  sustainable  15
agricultural  projects.  Grants  can  also  be  found  through  online  grant-­search  databases  such  as  
grantwatch.com​  ​or  grantforward.com.  These  search  engines  include  grants  from  a  wide  variety  
of  funders.    
When  searching  for  grants,  make  sure  you  meet  the  eligibility  requirements  before  
applying.  You  can  do  this  by  checking  the  requirements  online  or  calling  the  funder.  Often  these  
grants  have  funding  goals  associated  with  water  conservation,  resource  management,  watershed  
protection,  etc.  Below  is  a  descriptive  list  of  a  few  grants  that  could  potentially  be  used  to  fund  a  
drip  irrigation  system.    
  
14
  ​http://financial-­dictionary.thefreedictionary.com/easement  
14​
  ​  ​http://www.sare.org/Grants  
15​
http://www.landtrustalliance.org/what-­you-­can-­do/conserve-­your-­land/benefits-­landowners  
  
15
  
10  
1. Conservation  Innovation  Grant  (CIG)​-­Natural  Resource  Conservation  Service  (NRCS).  
Nationally,  funding  for  this  grant  program  is  up  to  20  million  dollars  and  organizations  in  
all  50  states  are  eligible  to  apply.  The  grant  funds  conservation  projects  and  sustainable  
initiatives  in  the  private  sector  of  agricultural  production.  Applying  for  this  grant  includes  
a  pre-­proposal  screening  in  addition  to  the  grant  application  and  must  be  mailed  to  the  
NRCS.    The  grant  is  offered  annually  through  the  2014  Farm  Bill.  
  
2. Water  Conservation,  Reuse  and  Storage  Program  ​-­  Offered  through  the  Oregon  Water  
Resources  Department.  This  grant  program  requires  organizations  to  have  initial  funding  
which  the  grant  program  would  then  match.  The  program  requires  farmers  and  
organizations  to  conduct  energy  and  resource  analysis  of  how  the  proposed  project  would  
help  to  conserve  water  and  benefit  others  from  minimal  water  usage.  The  grant  is  offered  
annually  and  its  application  information  can  be  found  online .    16
  
3. The  Fruit  Guys  Community  Fund​-­  The  Fruit  Guys  is  a  non-­governmental  organization  
dedicating  to  help  fund  small  farmers  implement  sustainable  agricultural  products.  
Partnered  with  Community  Initiatives,  the  Fruit  Guys  Community  Fund  provides  grant  
opportunities  for  small  farmers  with  $30,000  available  for  funding  multiple  projects.  In  
the  past  this  grant  has  been  awarded  to  farmers  implementing  drip  irrigation  systems.  The  
grant  is  offered  annually.  More  information  can  be  found  online .  17
  
Through  researching  what  type  of  grants  you  are  eligible  for,  you  can  find  many  creative  ways  to  
help    finance  your  drip  irrigation  project.  With  many  options  for  funding  available,  conserving  
water  and  energy  through  drip  irrigation  is  more  accessible  than  ever  before.     
  
8.  Conclusion  
  
A  well-­designed  drip  irrigation  system  can  help  to  reduce  the  energy  and  water  
expenditures  that  accompany  irrigating  produce  fields.  By  reducing  energy  and  water  inputs  on  
farms,  farmers  are  able  to  enjoy  financial  savings,  as  well  as  decrease  their  resource  footprint.    
The  process  of  designing  and  implementing  a  drip  irrigation  system  can  be  lengthy  and  
complicated,  but  the  process  is  easier  with  a  little  background  research,  planning,  and  assistance.  
A  good  starting  point  for  taking  on  a  project  like  this  is  to  know  your  local  climate,  soil  type,  and  
water  rights.  Planning  the  crop  layout  of  your  field  or  garden  is  another  good  preliminary  step  to  
take,  as  some  crops  may  have  different  watering  requirements  than  others,  and  you’ll  want  to  be  
able  to  plan  for  those.  Next,  you’ll  want  to  get  in  touch  with  an  irrigation  vendor,  like  
DripWorks,  who  can  provide  a  variety  of  resources  to  help  you  plan  your  system,  including  their  
website,  a  catalogue,  and  a  representative  that  can  talk  you  through  the  process.  Once  you’ve  
determined  the  setup  of  the  drip  system,  you’ll  want  to  contact  a  pump  dealer  to  find  the  correct  
pump,  with  the  right  pressure  and  flow  rate,  to  fit  your  system’s  needs.  
16
  ​http://www.oregon.gov/owrd/Pages/LAW/conservation_reuse_storage_grant_program.aspx  
“Water  Conservation  Grant”  
17
  ​http://fruitguys.com/about-­us/fruit-­guys-­community-­fund​  “Fruit  Guys  Community  Fund”    
11  
We  recognize  that  the  step-­by-­step  process  we  have  outlined  is  not  always  realistic.  Many  
small  farmers  face  economic  constraints  which  require  them  to  work  with  the  equipment  they  
already  have.  Luckily,  there  are  ways  to  work  around  these  barriers:  a  little  creativity,  some  
research  into  funding,  and  handy  gadgets  -­  like  the  variable  frequency  drive  (VFD)  -­  can  go  a  
long  way.  Systems  can  be  retrofitted  and  tweaked  in  order  to  meet  the  needs  of  the  individual  
farmer,  and  farmers  can  utilize  grant  and  cost-­share  options  in  order  to  receive  funding  to  
implement  a  sustainable  practices  project.    
Our  learning  and  service  outcomes  included  engaging  in  sustainable  farming  practices  
and  designing  a  drip  irrigation  system  for  Berggren  Demonstration  Farm’s  lower  vegetable  
production  field.  We  learned  about  sustainable  farming  practices  (such  as  rotational  grazing  and  
improving  native  pollinator  habitat  on  site)  by  participating  in  them  in  order  to  gain  a  better  
understanding  of  what  those  practices  entail  and  how  they  differ  from  conventional  methods.  
Additionally,  we  worked  through  the  process  of  planning  a  drip  irrigation  system.  This  process  
required  physical  measurements,  online  research,  and  communication  with  various  people  and  
companies  that  acted  as  resources  for  pulling  this  project  together.    
Through  our  research,  we  hope  to  provide  a  clear  and  concise  information  source  for  
other  small  farmers  looking  into  installing  a  drip  irrigation  system.    
  
9.  Acknowledgements    
  
We  would  like  to  thank  the  Berggren  Demonstration  Farm  staff,  the  leaders  of  the  
Environmental  Leadership  Program,  and  the  Berggren  affiliates.  
  
-­​Angela  Andre  ​is  the  farm  manager  for  this  organization.  She  has  30  years  of  experience  in  best  
farming  practices  and  education  in  natural  resources.  We  would  like  to  thank  her  for  her  
knowledge  and  wisdom  on  best  farming  practices  on  an  ecologically-­conscious  farm.    
  
-­​Jared  Pruch  ​is  the  program  coordinator  for  Berggren.  He  has  experience  with  nonprofit  
management,  program  development,  environmental  education,  and  best  practices  within  
agriculture.  We  would  like  to  thank  him  for  his  advice  on  grant-­writing  and  sustainable  farming  
during  our  term.  
  
-­​Peg  Boulay​  is  the  co-­director  of  the  Environmental  Leadership  Program  at  the  University  of  
Oregon.  We  would  like  to  thank  her  for  making  this  opportunity  and  connection  for  our  team  
possible.  
  
-­​Deion  Jones  ​is  a  master’s  student  in  Environmental  Studies  and  a  Graduate  Teaching  Fellow  at  
the  University  of  Oregon.  We  would  like  to  thank  him  for  his  contribution,  leadership,  and  
support  throughout  this  program.  
  
Additionally  we  would  like  to  thank:  
  
Jim  Russell  -­  Whitewater  Ranch  
Anthony  Knox  -­  Pacific  Ag.  Systems  
Tom  Burnham  and  Kevin  Macquoid  -­  Natural  Resources  Conservation  Service    
12  
Harper  Keeler,  Dan  Schuler,  and  Keegan  Caughlin  -­  University  of  Oregon  Urban  Farm  
  
This  project  was  funded  in  part  by  the  Environmental  Leadership  Program’s  small  gift  fund.  
  
13  

More Related Content

What's hot

Unit -5 RESERVOIR PLANNING
Unit -5  RESERVOIR PLANNINGUnit -5  RESERVOIR PLANNING
Unit -5 RESERVOIR PLANNINGramuKasagani2
 
Integrating Rainwater Harvesting & Stormwater Management
Integrating Rainwater Harvesting & Stormwater ManagementIntegrating Rainwater Harvesting & Stormwater Management
Integrating Rainwater Harvesting & Stormwater ManagementGaurav Singh
 
Rainwater Harvesting and Utilisation Policy Maker
Rainwater Harvesting and Utilisation Policy MakerRainwater Harvesting and Utilisation Policy Maker
Rainwater Harvesting and Utilisation Policy MakerK9T
 
26 nov16 irrigation_water_use_efficiency
26 nov16 irrigation_water_use_efficiency26 nov16 irrigation_water_use_efficiency
26 nov16 irrigation_water_use_efficiencyIWRS Society
 
Rain Water Harvesting and Conservation
Rain Water Harvesting and ConservationRain Water Harvesting and Conservation
Rain Water Harvesting and ConservationD4Z
 
Ben Starr_AHA Paper_Final
Ben Starr_AHA Paper_FinalBen Starr_AHA Paper_Final
Ben Starr_AHA Paper_FinalBen Starr
 
India; Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...
India;  Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...India;  Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...
India; Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...D5Z
 
Technical Seminar “Water Efficiency, Water Productivity, Water Saving"
Technical Seminar “Water Efficiency, Water Productivity, Water Saving" Technical Seminar “Water Efficiency, Water Productivity, Water Saving"
Technical Seminar “Water Efficiency, Water Productivity, Water Saving" NENAwaterscarcity
 
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...IWRS Society
 
Performance assessment of water filtration plants in pakistan - JBES
Performance assessment of water filtration plants in pakistan - JBESPerformance assessment of water filtration plants in pakistan - JBES
Performance assessment of water filtration plants in pakistan - JBESInnspub Net
 
76201952
7620195276201952
76201952IJRAT
 
Methods and technologies to improve efficiency of water use
Methods and technologies to improve efficiency of water useMethods and technologies to improve efficiency of water use
Methods and technologies to improve efficiency of water useDamion Lawrence
 
Water availability for dry season irrigation in the Anayariwatershed in Ghana
Water availability for dry season irrigation in the Anayariwatershed in GhanaWater availability for dry season irrigation in the Anayariwatershed in Ghana
Water availability for dry season irrigation in the Anayariwatershed in Ghanaafrica-rising
 
SDG target 6.4: water use efficiency and water stress indicators
SDG target 6.4: water use efficiency and water stress indicatorsSDG target 6.4: water use efficiency and water stress indicators
SDG target 6.4: water use efficiency and water stress indicatorsFAO
 
Planning and management of water
Planning and management of waterPlanning and management of water
Planning and management of waterSiddhi Vakharia
 

What's hot (20)

Unit -5 RESERVOIR PLANNING
Unit -5  RESERVOIR PLANNINGUnit -5  RESERVOIR PLANNING
Unit -5 RESERVOIR PLANNING
 
Integrating Rainwater Harvesting & Stormwater Management
Integrating Rainwater Harvesting & Stormwater ManagementIntegrating Rainwater Harvesting & Stormwater Management
Integrating Rainwater Harvesting & Stormwater Management
 
Rainwater Harvesting and Utilisation Policy Maker
Rainwater Harvesting and Utilisation Policy MakerRainwater Harvesting and Utilisation Policy Maker
Rainwater Harvesting and Utilisation Policy Maker
 
26 nov16 irrigation_water_use_efficiency
26 nov16 irrigation_water_use_efficiency26 nov16 irrigation_water_use_efficiency
26 nov16 irrigation_water_use_efficiency
 
Rain Water Harvesting and Conservation
Rain Water Harvesting and ConservationRain Water Harvesting and Conservation
Rain Water Harvesting and Conservation
 
Ben Starr_AHA Paper_Final
Ben Starr_AHA Paper_FinalBen Starr_AHA Paper_Final
Ben Starr_AHA Paper_Final
 
India; Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...
India;  Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...India;  Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...
India; Harvesting Rainwater, Catch Water Where it Falls: Rooftop Rain Water ...
 
Technical Seminar “Water Efficiency, Water Productivity, Water Saving"
Technical Seminar “Water Efficiency, Water Productivity, Water Saving" Technical Seminar “Water Efficiency, Water Productivity, Water Saving"
Technical Seminar “Water Efficiency, Water Productivity, Water Saving"
 
Capture of Tyre and Road Wear Particles from Wastewater and Stormwater
Capture of Tyre and Road Wear Particles from Wastewater and StormwaterCapture of Tyre and Road Wear Particles from Wastewater and Stormwater
Capture of Tyre and Road Wear Particles from Wastewater and Stormwater
 
Evolving thinking on Agricultural Water Productivity: Lessons learned from 20...
Evolving thinking on Agricultural Water Productivity: Lessons learned from 20...Evolving thinking on Agricultural Water Productivity: Lessons learned from 20...
Evolving thinking on Agricultural Water Productivity: Lessons learned from 20...
 
Promoting conjunctive use of surface and groundwater: A case study from a maj...
Promoting conjunctive use of surface and groundwater: A case study from a maj...Promoting conjunctive use of surface and groundwater: A case study from a maj...
Promoting conjunctive use of surface and groundwater: A case study from a maj...
 
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...
26nov16 a low_cost_drip_irrigation_system_for_adoption_in_jhum_areas_in_nagal...
 
Agriculture and Water
Agriculture and WaterAgriculture and Water
Agriculture and Water
 
Irrigation Efficiency vs. Water Productivity: Uses, limitations and misinter...
Irrigation Efficiency vs. Water Productivity:  Uses, limitations and misinter...Irrigation Efficiency vs. Water Productivity:  Uses, limitations and misinter...
Irrigation Efficiency vs. Water Productivity: Uses, limitations and misinter...
 
Performance assessment of water filtration plants in pakistan - JBES
Performance assessment of water filtration plants in pakistan - JBESPerformance assessment of water filtration plants in pakistan - JBES
Performance assessment of water filtration plants in pakistan - JBES
 
76201952
7620195276201952
76201952
 
Methods and technologies to improve efficiency of water use
Methods and technologies to improve efficiency of water useMethods and technologies to improve efficiency of water use
Methods and technologies to improve efficiency of water use
 
Water availability for dry season irrigation in the Anayariwatershed in Ghana
Water availability for dry season irrigation in the Anayariwatershed in GhanaWater availability for dry season irrigation in the Anayariwatershed in Ghana
Water availability for dry season irrigation in the Anayariwatershed in Ghana
 
SDG target 6.4: water use efficiency and water stress indicators
SDG target 6.4: water use efficiency and water stress indicatorsSDG target 6.4: water use efficiency and water stress indicators
SDG target 6.4: water use efficiency and water stress indicators
 
Planning and management of water
Planning and management of waterPlanning and management of water
Planning and management of water
 

Viewers also liked

9.9.14 check 406405 austin tx
9.9.14 check 406405 austin tx9.9.14 check 406405 austin tx
9.9.14 check 406405 austin txKeithSelf1975
 
Fotografiar el tiempo
Fotografiar el tiempoFotografiar el tiempo
Fotografiar el tiempocarofovi
 
2.9.16 check# 432474 austin, tx
2.9.16 check# 432474 austin, tx2.9.16 check# 432474 austin, tx
2.9.16 check# 432474 austin, txKeithSelf1975
 
3.22.16 check# 434582 gulfport, ms
3.22.16 check# 434582 gulfport, ms3.22.16 check# 434582 gulfport, ms
3.22.16 check# 434582 gulfport, msKeithSelf1975
 
Serie fotográfica: Cansancio.
Serie fotográfica: Cansancio.Serie fotográfica: Cansancio.
Serie fotográfica: Cansancio.carofovi
 
12.16.14 check 411650 washington dc
12.16.14 check 411650 washington dc12.16.14 check 411650 washington dc
12.16.14 check 411650 washington dcKeithSelf1975
 
Collin county history stats
Collin county history statsCollin county history stats
Collin county history statsKeithSelf1975
 
JFHR_Corporate Profile
JFHR_Corporate ProfileJFHR_Corporate Profile
JFHR_Corporate ProfileTien Nha Hoang
 
iOS Google Sign In
iOS Google Sign IniOS Google Sign In
iOS Google Sign Inapgeek
 
5.5.15 check 418306 austin tx
5.5.15 check 418306 austin tx5.5.15 check 418306 austin tx
5.5.15 check 418306 austin txKeithSelf1975
 
1.20.15 check 412841 austin tx
1.20.15 check 412841 austin tx1.20.15 check 412841 austin tx
1.20.15 check 412841 austin txKeithSelf1975
 
簡單介紹JavaScript變數範圍
簡單介紹JavaScript變數範圍簡單介紹JavaScript變數範圍
簡單介紹JavaScript變數範圍林儀泰 Tommy Lin
 
3.10.15 check 415342 austin tx
3.10.15 check 415342 austin tx3.10.15 check 415342 austin tx
3.10.15 check 415342 austin txKeithSelf1975
 
CV Rana Riasat Ali[D] _1_
CV Rana Riasat Ali[D] _1_CV Rana Riasat Ali[D] _1_
CV Rana Riasat Ali[D] _1_Rana Riasat Ali
 

Viewers also liked (20)

9.9.14 check 406405 austin tx
9.9.14 check 406405 austin tx9.9.14 check 406405 austin tx
9.9.14 check 406405 austin tx
 
2016 01
2016 012016 01
2016 01
 
Fracking2_DF
Fracking2_DFFracking2_DF
Fracking2_DF
 
CV Elias Makhoali updated
CV Elias Makhoali updatedCV Elias Makhoali updated
CV Elias Makhoali updated
 
Fotografiar el tiempo
Fotografiar el tiempoFotografiar el tiempo
Fotografiar el tiempo
 
2.9.16 check# 432474 austin, tx
2.9.16 check# 432474 austin, tx2.9.16 check# 432474 austin, tx
2.9.16 check# 432474 austin, tx
 
3.22.16 check# 434582 gulfport, ms
3.22.16 check# 434582 gulfport, ms3.22.16 check# 434582 gulfport, ms
3.22.16 check# 434582 gulfport, ms
 
Serie fotográfica: Cansancio.
Serie fotográfica: Cansancio.Serie fotográfica: Cansancio.
Serie fotográfica: Cansancio.
 
12.16.14 check 411650 washington dc
12.16.14 check 411650 washington dc12.16.14 check 411650 washington dc
12.16.14 check 411650 washington dc
 
Collin county history stats
Collin county history statsCollin county history stats
Collin county history stats
 
JFHR_Corporate Profile
JFHR_Corporate ProfileJFHR_Corporate Profile
JFHR_Corporate Profile
 
iOS Google Sign In
iOS Google Sign IniOS Google Sign In
iOS Google Sign In
 
2015 12
2015 122015 12
2015 12
 
Superior SHEQ Management Solutions - Brochure 2016
Superior SHEQ Management Solutions - Brochure 2016Superior SHEQ Management Solutions - Brochure 2016
Superior SHEQ Management Solutions - Brochure 2016
 
5.5.15 check 418306 austin tx
5.5.15 check 418306 austin tx5.5.15 check 418306 austin tx
5.5.15 check 418306 austin tx
 
1.20.15 check 412841 austin tx
1.20.15 check 412841 austin tx1.20.15 check 412841 austin tx
1.20.15 check 412841 austin tx
 
簡單介紹JavaScript變數範圍
簡單介紹JavaScript變數範圍簡單介紹JavaScript變數範圍
簡單介紹JavaScript變數範圍
 
AdAsia Communications Overview
AdAsia Communications OverviewAdAsia Communications Overview
AdAsia Communications Overview
 
3.10.15 check 415342 austin tx
3.10.15 check 415342 austin tx3.10.15 check 415342 austin tx
3.10.15 check 415342 austin tx
 
CV Rana Riasat Ali[D] _1_
CV Rana Riasat Ali[D] _1_CV Rana Riasat Ali[D] _1_
CV Rana Riasat Ali[D] _1_
 

Similar to A Case Study at Berggren Demonstration Farm - ELP

A Case Study at Berggren Demonstration Farm - ELP
A Case Study at Berggren Demonstration Farm - ELPA Case Study at Berggren Demonstration Farm - ELP
A Case Study at Berggren Demonstration Farm - ELPAlex Burgdorfer
 
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 19/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1APA Florida
 
Oregon Agricultural Water Law
Oregon Agricultural Water LawOregon Agricultural Water Law
Oregon Agricultural Water LawSteveShropshire
 
FINAL PPT (HYDROLOGY) WATER HARVESTING.pptx
FINAL PPT  (HYDROLOGY) WATER HARVESTING.pptxFINAL PPT  (HYDROLOGY) WATER HARVESTING.pptx
FINAL PPT (HYDROLOGY) WATER HARVESTING.pptxKRIPABHARDWAJ1
 
Analysis Of Riparian Buffer Zone Between An Aquatic...
Analysis Of Riparian Buffer Zone Between An Aquatic...Analysis Of Riparian Buffer Zone Between An Aquatic...
Analysis Of Riparian Buffer Zone Between An Aquatic...Katherine Alexander
 
Caroline Plouff Top Ten Water Conservation Tips for Farmers
Caroline Plouff  Top Ten Water Conservation Tips for FarmersCaroline Plouff  Top Ten Water Conservation Tips for Farmers
Caroline Plouff Top Ten Water Conservation Tips for FarmersCaroline Plouff
 
Optimizing Irrigation
Optimizing IrrigationOptimizing Irrigation
Optimizing IrrigationDon Talend
 
Effects from Farmer-led Collective Action on Water Use & Irrigated Crops
Effects from Farmer-led Collective Action on Water Use & Irrigated CropsEffects from Farmer-led Collective Action on Water Use & Irrigated Crops
Effects from Farmer-led Collective Action on Water Use & Irrigated CropsKrystal Drysdale
 
Water Management in Horticultural Crops
Water Management in Horticultural Crops Water Management in Horticultural Crops
Water Management in Horticultural Crops SHUATS
 
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily Wieber
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily WieberCSUF Sustainability Symposium_April 2014_Miriam Morua and Emily Wieber
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily WieberEmily Wieber
 
Smart technologies - sensors for improving Water Use Efficiency in Agriculture
Smart technologies - sensors for improving Water Use Efficiency in AgricultureSmart technologies - sensors for improving Water Use Efficiency in Agriculture
Smart technologies - sensors for improving Water Use Efficiency in AgricultureSai Bhaskar Reddy Nakka
 
Rainwater harvesting
Rainwater harvestingRainwater harvesting
Rainwater harvestingTousif Raja
 
Nisqually Water Banking Feasibility Study Introduction
Nisqually Water Banking Feasibility Study IntroductionNisqually Water Banking Feasibility Study Introduction
Nisqually Water Banking Feasibility Study IntroductionNisqually River Council
 
Utah Domestic Groundwater Use & Management
Utah Domestic Groundwater Use & ManagementUtah Domestic Groundwater Use & Management
Utah Domestic Groundwater Use & ManagementParsons Behle & Latimer
 
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...TWCA
 
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...Venkataraju Badanapuri
 

Similar to A Case Study at Berggren Demonstration Farm - ELP (20)

A Case Study at Berggren Demonstration Farm - ELP
A Case Study at Berggren Demonstration Farm - ELPA Case Study at Berggren Demonstration Farm - ELP
A Case Study at Berggren Demonstration Farm - ELP
 
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 19/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1
9/9 FRI 9:30 | Emerging Megatrends in Water Law and Policy 1
 
Policy Instruments in IWRM
Policy Instruments in IWRMPolicy Instruments in IWRM
Policy Instruments in IWRM
 
Oregon Agricultural Water Law
Oregon Agricultural Water LawOregon Agricultural Water Law
Oregon Agricultural Water Law
 
FINAL PPT (HYDROLOGY) WATER HARVESTING.pptx
FINAL PPT  (HYDROLOGY) WATER HARVESTING.pptxFINAL PPT  (HYDROLOGY) WATER HARVESTING.pptx
FINAL PPT (HYDROLOGY) WATER HARVESTING.pptx
 
Analysis Of Riparian Buffer Zone Between An Aquatic...
Analysis Of Riparian Buffer Zone Between An Aquatic...Analysis Of Riparian Buffer Zone Between An Aquatic...
Analysis Of Riparian Buffer Zone Between An Aquatic...
 
Social stud
Social studSocial stud
Social stud
 
Caroline Plouff Top Ten Water Conservation Tips for Farmers
Caroline Plouff  Top Ten Water Conservation Tips for FarmersCaroline Plouff  Top Ten Water Conservation Tips for Farmers
Caroline Plouff Top Ten Water Conservation Tips for Farmers
 
Optimizing Irrigation
Optimizing IrrigationOptimizing Irrigation
Optimizing Irrigation
 
Effects from Farmer-led Collective Action on Water Use & Irrigated Crops
Effects from Farmer-led Collective Action on Water Use & Irrigated CropsEffects from Farmer-led Collective Action on Water Use & Irrigated Crops
Effects from Farmer-led Collective Action on Water Use & Irrigated Crops
 
Water Management in Horticultural Crops
Water Management in Horticultural Crops Water Management in Horticultural Crops
Water Management in Horticultural Crops
 
Business_of_Water
Business_of_WaterBusiness_of_Water
Business_of_Water
 
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily Wieber
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily WieberCSUF Sustainability Symposium_April 2014_Miriam Morua and Emily Wieber
CSUF Sustainability Symposium_April 2014_Miriam Morua and Emily Wieber
 
Smart technologies - sensors for improving Water Use Efficiency in Agriculture
Smart technologies - sensors for improving Water Use Efficiency in AgricultureSmart technologies - sensors for improving Water Use Efficiency in Agriculture
Smart technologies - sensors for improving Water Use Efficiency in Agriculture
 
Rainwater harvesting
Rainwater harvestingRainwater harvesting
Rainwater harvesting
 
Nisqually Water Banking Feasibility Study Introduction
Nisqually Water Banking Feasibility Study IntroductionNisqually Water Banking Feasibility Study Introduction
Nisqually Water Banking Feasibility Study Introduction
 
Utah Domestic Groundwater Use & Management
Utah Domestic Groundwater Use & ManagementUtah Domestic Groundwater Use & Management
Utah Domestic Groundwater Use & Management
 
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...
Dry Year Option for Water Solutions in Urban and Agricultural Settings, Dr. L...
 
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...
AN OVERVIEW OF INTEGRATED THEORY OF IRRIGATION EFFICIENCY AND UNIFORMITY AND ...
 
UNIT 5-1.pptx
UNIT 5-1.pptxUNIT 5-1.pptx
UNIT 5-1.pptx
 

A Case Study at Berggren Demonstration Farm - ELP

  • 1. Drip Irrigation Guide A Case Study at Berggren Demonstration Farm                                     By  the  University  of  Oregon’s  Environmental  Leadership  Program   Sustainable  Farms  Team:   Ashleigh  Angel,  Alex  Burgdorfer,  Maddie  Cheek,  Brady  Chiongbian,  Will   Dickerson,  Wilson  Hui,  Zoe  Lavier,  Rena  Nenot  and  Emma  Porricolo                
  • 2. Table  of  Contents     1. Introduction  to  Drip  Irrigation  (pg.  2)     2. Oregon  Water  Law  (pg.  2-­3)     3. Varying  Methods  of  Drip  Irrigation:  A  Case  Study  of  Berggren  Farm  (pg.  4)     4. Calculating  Energy  and  Water  Needs  for  Your  System  (pg.  4-­5)     5. Pump  Calculations  and  Introduction  to  Variable  Frequency  Drives  (pg.  5-­6)     6. Drip  Irrigation  Design  and  Costs  (pg.  6-­9)     7. Paying  for  Your  Drip  Irrigation  Project  (pg.  9-­11)     8. Conclusion  (pg.  11-­12)     9. Acknowledgments  (pg.  12-­13)     Figures       Table  1:  Contact  information  for  various  resources  we  used  in  designing  the  drip  system  for   BDF.       Figure  1:  DripWorks  drip  tape  estimator  calculates  flow  rate  (GPH)  for  specific  drip  irrigation   systems  depending  upon  numbers  of  beds,  drip  tape  lines,  and  row  length.       Table  2:  Detailed  graph  of  the  cost  of  all  the  materials  needed  for  drip  irrigation  system.       Figure  2:  Drip  irrigation  plan  with  specified  crops  and  materials  needed,  generated  on  Dripworks   Garden  Planner.                   1  
  • 3. 1.  Introduction  to  Drip  Irrigation       Recent climate conditions have negatively influenced agricultural production due to                     increased droughts throughout the United States. In 2015, an estimated 82% of the state of                               California experienced an ‘extreme drought’, resulting in $1.5 billion of drought related                         farm-­loss and 17,000 agricultural jobs lost statewide . Furthermore, warming weather has                        1 severely limited snowpack percentages in Oregon -­ in 2015 Oregon received a concerning 6% of                               average snowpack levels . Consequently, the governor of Oregon declared 15 counties as                        2 drought stricken. As climate change continues to impact the quantity and quality of water it will                                 be vital for agricultural farmers to adapt to the environmental conditions and adopt more                             effective  water  management  practices.       Drip-­irrigation is considered a Best Management Practice (BMP) because of its ability to                           efficiently and economically irrigate agricultural crops. The process of drip-­irrigation allows                       water to be applied directly to the base of the plant through a matrix of tubes and valves and then                                         slowly filter through the root structure, thereby minimizing the total quantity of water needed in                               order to effectively irrigate the plants. This ‘more crop per drop’ method is a useful water                                 management practice because it is more likely to provide sufficient irrigation for agricultural                           fields in comparison to other irrigation practices during times of reduced water availability, such                             is the case in many parts of California. In certain instances, drip irrigation has reduced water                                 consumption by an impressive 70% in comparison to other irrigation practices, such as flood                             irrigation   .    3 According to the University of Rhode Island, the following bullet points demonstrate the                           various  benefits  of  the  Best  Management  Practice-­  drip  irrigation.       Benefits  of  drip  irrigation:   ● Prevents  disease  by  minimizing  water  contact  with  the  leaves,  stems,  and  fruit  of  plants   ● Allows  the  rows  between  plants  to  remain  dry,  improving  access  and  reducing  weed   growth   ● Saves  time,  money,  and  water  because  the  system  is  so  efficient   ● Decreases  labor   ● Increases  effectiveness  on  uneven  ground   ● Reduces  leaching  of  water  and  nutrients  below  the  root  zone    4   2.  Oregon  Water  Law     It is important to consider what kind of access rights you have to your water resource                                 before planning a drip irrigation system. Your access rights will impact your ability to install a                                 drip irrigation system and may affect the availability of cost-­share and other funding. Water                             rights in Oregon are regulated by Oregon’s water laws. ‘Water Rights In Oregon;; An                             Introduction To Oregon’s water laws’, or Aqua Book, is a document available on the website                               1  http://www.bloomberg.com/news/articles/2014-­08-­11/california-­drought-­transforms-­global-­food-­market   2  http://www.nrcs.usda.gov/wps/portal/nrcs/detail/or/home/?cid=nrcs142p2_046169   3 .  ​http://www.rainbird.com/documents/corporate/iuow/iuow_whitepapers.pdf-­​  “Rain  Bird”   4  http://www.uri.edu/ce/healthylandscapes/dripirrigation.htm  -­  ‘Drip  Irrigation  for  the  Home  Garden.’   2  
  • 4. Oregon.gov. It summarizes laws regulating water in the state of Oregon and provides four bases                               for  water  use:     -­ Water  may  be  used  only  for  beneficial  purpose  without  waste.   -­ The oldest water right holder takes the priority over the new rights holder water supply in                                 case  of  shortage.     -­ A water right is attached to the land where it is established;; if the land is sold, the water                                       right  goes  with  the  land  to  the  new  owner.     -­ A  water  right  must  be  used  at  least  once  every  five  years  to  remain  valid.       Water  rights  principle  in  Oregon     ● Under Oregon’s water code, all water is publicly owned. Therefore, individuals need a                           permit  to  use  it,  even  when  the  water  passes  through  their  property.     ● Water rights in Oregon function according to the Prior Appropriation Doctrine                       established February 24, 1909. This doctrine states that the first person to obtain water                             rights has the priority of usage above the junior water rights holder, and so on for the next                                     oldest until all water rights are satisfied or until there is no more water available. This                                 means in case of droughts the older water rights holders takes priority over the youngest                               ones. This contrasts with the Riparian doctrine, usually applied on the East Coast, where                             landowners  have  a  right  over  the  water  flowing  through  their  land.       Acquiring,  transferring  and  ending  terminating  or  relinquishing  water  rights     There  are  three  steps  in  the  process  of  obtaining  water  rights:   1. Applying  to  the  Water  Resources  Department  (WRD)  for  a  permit  to  use  water.   2. Once the permit is granted, the applicant must construct a water system and start using                               water.   3. The permit holder must hire a certified water rights examiner to complete a survey of                               water use and submit a report about how and where water is being used to the WRD. If                                     use is in compliance with the provision of the permit, a water right certificate will be                                 issued  based  on  the  report.       Water rights are restricted to the conditions, place of diversion, and type of use, described                               in the report written by the water rights examiner. To transfer a water right, the holder must file a                                       transfer application with the WRD to change one or more of the conditions of its right. For the                                     transfer  to  be  granted,  the  WRD  needs  to  be  sure  it  will  not  affect  the  water  rights  of  others.     A water right remains valid as long as it is used without a lapse of five or more                                     consecutive years. If unused for five years or more, the water right is considered forfeited and is                                   subject to cancellation. Cancellation requires a legal process to determine if the period of                             non-­use occurred unless 15 years have passed since the period of non-­use. Once cancelled, the                               landowner  must  apply  for  new  water  rights  through  the  usual  process.   Applying for water rights or affirming your rights are still valid is an important part of                                 deciding  your  next  step  to  implement  a  drip  irrigation  system.         3  
  • 5. 3.  Varying  Methods  of  Drip  Irrigation:  A  Case  Study  of  Berggren  Farm     An  effective  drip  irrigation  system  on  a  farm  is  tailored  to  the  constraints  and  needs  of  the   climate,  soil  type,  and  the  farm’s  production  crops.  The  first  step  in  designing  a  drip  irrigation   system  is  determining  which  drip  tape  (high,  medium,  or  low  flow)  has  the  emission  rates  that   will  best  suit  the  soil  type.  Information  on  the  soil  and  climate  type  can  be  found  online  at  the   USDA  Web  Soil  Survey.    5 Berggren  Demonstration  Farm  Case  Study:   Berggren  lower  field:  #95  soil  ‘Newberg  fine  sandy  loam’   ·∙​                ​Mean  annual  precipitation:  40-­60  inches   ·∙​                ​Frost-­free  period:  165  to  210  days   ·∙​                ​Landform:  flood  plains   ·∙​                ​Farmland  classification:  prime  farmland       These  are  the  conditions  for  the  production  field  at  Berggren  Demonstration  Farm  (BDF),  a   30-­acre  farm  outside  of  Walterville,  Oregon.  You  can  use  the  considerations  for  this  site-­specific   study  to  assess  your  own  needs  and  constraints  regarding  implementing  a  drip  irrigation  system.       4.  Calculating  Energy  and  Water  Needs  for  Your  System     When  designing  a  drip  irrigation  system,  energy  and  water  conservation  are  usually  the   first  considerations.  Our  team  initially  set  out  to  utilize  gravitational  force  to  power  our  system   through  an  elevated  water  tank  located  above  Berggren’s  vegetable  garden,  but  the  local   geography  proved  incapable  of  fulfilling  the  system’s  pressure  requirements.  This  led  to  a  full   reconsideration  of  our  system  design,  as  our  new  system  required  an  optimized  pump  able  to   supply  correct  pressure  and  flow  directly  to  the  drip  lines.   Calculating  the  necessary  flow  and  pressure  within  the  drip  system  itself  can  be  done   easily  with  simple  algebra.  DripWorks,  an  irrigation  supply  company,  has  readily  available   calculators  on  their  website  (​http://www.dripworks.com/category/calculators​)  that  allow  for   quick,  accurate  measurements.  If  you  already  have  a  pump,  use  DripWorks’  flow  estimator   calculator  to  understand  the  flow  available  for  your  system.  If  you  will  later  optimize  a  pump  for   the  system  you  design,  go  directly  to  their  drip  tape  estimator  to  compute  the  flow  rate  and   zoning  requirements.     Once  the  system’s  requirements  are  calculated,  a  pump  must  be  optimized  to  fulfill  these   needs.  An  existing  pump  may  be  retrofitted  using  a  variable  frequency  drive,  discussed  in  more   detail  in  Section  5,  but  designing  the  system  prior  to  purchasing  a  pump  is  highly  recommended.   You  will  first  need  to  understand  the  most  suitable  pump  type  for  your  water  resource.     Many  options  –  such  as  end-­suction  centrifugal,  submersible,  turbine,  booster,  and  jet   pumps  -­  exist  that  are  best-­suited  for  varying  conditions  exist.  While  calculating  optimal  pump   specifications  is  possible  prior  to  purchasing  a  new  pump,  variance  between  pump  manufacturers   may  lead  to  miscalculations  in  practice  as  two  pumps  with  the  exact  same  horsepower  may  have   widely  varying  flows  and  pressures.  It  is  best  to  contact  a  local  pump  dealer  who  will  be  able  to   5 USDA  Web  Soil  Survey:  http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm   4  
  • 6. discuss  the  many  options  available.  Pacific  Ag  Systems  Inc.  is  a  great  resource  for  Oregonian   farmers,  and  other  options  exist  nationally  such  as  Sprinkler  Warehouse .  6   Table  1:  Contact  information  for  various  resources  we  used  in  designing  the  drip  system  for   BDF.     Categories   Organization   Phone/E-­mail   Website   General  drip   system  guidance   and  calculators   Dripworks   (800)  522  3747     support@dripworks.com   www.dripworks.com     Local  organization   specializing  in  drip   system  design  and   installation   Pacific  Ag  Systems  Inc.   (541)  998  1983     aknox@pacag.com   www.pacag.com/     Irrigation  Supplies   Sprinkler  Warehouse   (281)  500  9800   www.sprinklerwarehouse.com   Government   resource  for   general   conservation   practices   National  Resource   Conservation  Service      (​Lane  County  District   Conservationist  Tom   Burnham)   (541)  465  6443     tom.burnham@or.usda.gov     www.nrcs.usda.gov/     Water  rights   WaterMaster   (541)  382  3620   www.oregon.gov/OWRD/page s/index.aspx   Soil  maps  and  data   from  the  National   Cooperative  Soil   Survey   Web  Soil  Survey   (Portland  State  Office)   (503)  414  3261   www.websoilsurvey.sc.egov.us da.gov         5.  Pump  Calculations  and  Introduction  to  Variable  Frequency  Drives       This  section  will  provide  information  on  how  to  determine  a  pump  to  fit  in  the  system.     We  also  provide  a  brief    cost  comparison  on  Variable  Frequency  Drives  (VFD)  and  a  fixed  speed  motor   for  a  year.   After  designing  the  system,  the  next  step  will  be  to  determine  which  pump  will  fit  into  your  drip   irrigation  system.  You  will  need  to  find  out  the  flow  rate  you  need  for  the  drip  tapes.  For  example,  40   Gallon  Per  Hour  (GPH)  is  needed  for  every  100  feet  of  drip  tape  at  a  pressure  of  8  pressure  per  inch  (PSI)   for  high  flow  t-­tape  (GPH  varies  by  the  type  of  drip  tape).  Given  a  field  125  ft.  in  length,  the  necessary   flow  rate  is  calculated  as  follows:  40  GPH/100  feet  x  12,500  feet  of  tape  =  5,000  GPH.   Therefore,  the  maximum  flow  rate  of  the  pump  should  be  more  than  5000  GPH.   6  ​http://www.sprinklerwarehouse.com   5  
  • 7.   Relationship  between  pressure  (PSI),  flow  rate  and  horsepower :  7 ● Pressure  (PSI)  =  Force  (lbs)  /  Unit  Area  (square  inch)   ● Flow  Rate  (GPH)  =  Volume  (gallons)  /  Unit  Time  (hour)   ● Horsepower  =  [Pressure  (psi)  x  Flow  rate  (GPH)]  /  1714       In  order  to  retrofit  an  existing  pump  to  optimally  supply  the  necessary  pressure  and  flow  rate  for  a   planned  irrigation  system,  a  VFD  may  be  used  in  order  to  adjust  power  delivery  to  the  pump’s  motor.  If   you  already  own  a  pump,  this  may  be  cheaper  than  buying  a  new  pump.  Moreover,  according  to  Baldor   Electric  Company,  VFD  control  technology  allows  only  22%  of  the  horsepower  to  operate  a  pump  at  60%   speed  compare  to  a  fixed  speed  pump .  Here  is  an  example  calculation  of  potential  cost  saving.First,  8 determine  the  kilowatt  usage  and  the  energy  cost:   ● Kilowatts  =  Horsepower  (Hp)  x  0.746  kWh/hp  x  1/  System  Efficiency   ● Energy  Cost=Kilowatts  x  hours/year  x  cost($)/  Kilowatts  hour  (kWh)     Combine  the  equations  to  compare  the  cost  between  a  fixed  motor  pump  and  VFD-­run  motor  pump :  9 Fixed  Speed  Motor:   (100  HP)  x  (1/95%  eff.)  x  (.746  kW/Hp)  x  ($0.08/kWh)  x  (12  hrs/day)  x  (365  day/year)     =  $27,516  per  year    ​VFD  Run  Motor:   (100  HP)  x  (0.22)  x  (1/95%  eff.)  x  (.746  kW/Hp)  x  ($0.08/kWh)  x  (12  hrs/day)  x  (365  day/year)     =  $6,053  per  year     Cost  Analysis  of  purchasing  VFD  vs.  a  fixed-­speed  pump     If    BDF  purchases  a  new  pump,  we  recommend  Munro  LP200B  2  HP  50  PSI  Centrifugal  Pump   which  cost  $582 .  If  BDF  chooses  to  retrofit  an  existing  pump,  the  ideal  VFD  will  depend  on  the  existing  10 pump’s  horsepower.  For  BDF’s  20hp  pump,  we  recommend  a  low  cost  GK3000-­4T0150G  20  hp  (15kW)   VFD,  3  Phase  220V,  380V,  460V  VFD,  that  cost  around  $700 ,  it  would  be  able  to  control  the  flow  rate  11 and  more  efficient  on  electricity  and  water  usage.     6.  Drip  Irrigation  Design  and  Costs       Designing  a  drip  irrigation  system  requires  various  parts,  each  of  which  has  a  specific   function,  to    ensure  maximum  efficiency  from  the  pump  to  the  drip  tape.  As  stated  in  Section  4,   it  is  best  to  work  backwards  when  designing  a  drip  irrigation,  from  the  drip  tape  to  the  pump.   The  steps  listed  below  is  the  process  we  went  through  in  designing  a  drip  irrigation  for  lower   field  crops  at  BDF.     1) Determine    the  potential  area  size  and  layout.  For  BDF,  we  designed  a  system  to  irrigate   25  rows  with  4  lines  of  drip  tape  in  each  125-­foot-­long  row.      (25  beds)  X  (125  ft/bed)  X  (4  lines/bed)  =  12,500  ft.  of  drip  tape  needed     7  ​http://web.applied.com/assets/attachments/779D4407-­D2AE-­6FAA-­7DA1CEDE2268977B.pdf   8  ​http://www.sustainableplant.com/assets/Baldor/Baldor-­0411-­Pump-­Energy-­Savings-­with-­VFDs.pdf   9  ​http://www.sustainableplant.com/assets/Baldor/Baldor-­0411-­Pump-­Energy-­Savings-­with-­VFDs.pdf   10  ​http://www.sprinklerwarehouse.com/Munro-­Centrifugal-­Pump-­p/lp200b.htm   11  ​http://www.gohz.com/20hp-­vfd   6  
  • 8. 2) Determine  which  kind  of  drip  tape  is  required  based  on  specific  soil  type  and  climate:   high,  medium,  or  low  flow  (see  Section  2  of  the  guide  for  more  information  on  how  to   determine  this).     At  Berggren  we  chose  high  flow  drip  tape  because  the  soil  drains  quickly;;  therefore,  high   flow  is  necessary  to  keep  moisture  in  the  soil.  Additionally,  the  frequency  of  drip  holes  or   how  often  you  run  the  system  varies  by  crop.  Not  all  crops  prefer  direct  irrigation  from   drip  tape.     3) Design  the  irrigation  system  with  the  proper  flow  rates  and  pressure.  Pressure  regulators   can  be  used  to  ensure  the  proper  pressure  to  drip  tape  groupings.The  drip  irrigation   supply  retailer,  DripWorks,  has  a  great  tool  to  calculate  flow  rate  depending  on  amount  of   drip  tape.       Figure  1:  DripWorks  drip  tape  estimator  calculates  flow  rate  (GPH)  for  specific  drip   irrigation  systems  depending  upon  numbers  of  beds,  drip  tape  lines,  and  row  length.      12         4) Determine  what  filter  you  need  based  upon  the  sediment  in  your  water  source.  Filters  are   vital  to  drip  irrigation  systems  as  they  prevent  clogs  in  the  drip  tape  that  can  impede  a   system’s  ability  to  operate  effectively.  Types  of  filters  will  vary  by  water  source.   Currently  at  Berggren,  a  large  filter  on  the  submersible  pump  filters  out  large  sediment.   We  recommend  placing  a  disk  filter  at  the  beginning  of  the  drip  irrigation  system   attached  to  the  mainline  to  filter  small  organic  matter.  We  also  recommend  adding   additional  inline  filters  in  each  of  the  five  sub-­sections.     5) Determine  if  you  need  an  automatic  timer  system.  Although  we  are  not  including  an   automatic  timer  system  in  our  drip  system  for  BDF,  it  can  help  to  increase  the  system’s   efficiency.  Even  with  wholesale  price,  the  price  range  is  from  about  $29.95  to  $79.95,  it   is  an  expensive  addition.     12  ​http://www.dripworks.com/category/calculator-­drip-­tape-­revised     7  
  • 9. 6) Make  sure  that  you  have  all  the  small  pieces  to  tie  the  system  together,  including:  hold   downs,  tubing  ends,  elbows,  and  tape  row  starts.       Drip  irrigation  supply  providers  can  often  help  you  design  drip  irrigation  system  catered   to  your  farm  with  their  products.  As  a  case  study  from  Berggren  Demonstration  Farm,  we  have   compiled  an  approximate  pricing  from  DripWorks.  The  following  prices  are  based  on  wholesale   prices  from  DripWorks.  The  chart  below  is  a  detailed  list  of  the  costs  for  just  the  irrigation   system  and  pump,  cost  for  the  K-­line  tubing  to  attach  the  pump  to  the  mainline  are  not  included.       Table  2:  Detailed  graph  of  the  cost  of  all  the  materials  needed  for  drip  irrigation  system.       Drip  Irrigation   Parts   Description   Item   Number     Number   Cost  Per  Unit     Filter     Arkal  Disc  Filter,  200  Mesh,   1"     FA1200   1   $57.95   Pressure  Regulator   Senninger  1”  Limit  Valve-­  30     PR1LV30   1   $17.95   Female  Hose  Start   3/4"  Easy  Loc)  Female  Hose   Start     6   6  x  $2.29  =  $13.74   Mainline  Tubing  -­     1  inch     1"  Polytubing,  250'  roll   F1250   100  ft  =  1  roll   $79.95   Mainline  ends   1"  Easy  Loc  End  Cap   ELMC1   1   $1.59   Subline  tubing  -­   ¾  inch     ¾"  Polytubing,  100’     34100   100  ft  =  1  roll   $17.95   Subline  end     ¾"  Figure  8  ending     CF834   5   5  x  $0.34  =  $1.70     Tape  Row  Start       LSB     4  tapes/bed  x  25  beds=   100   100  x  =  $0.46  =$46   Section  inline  filters     FI120   5   $  4.29   Drip  tape  (T-­Tape)     8mil/8"  space  high  flow,  7500   feet  roll     2  rolls   2  x  $188  =  $376   Tape  coupler       LSC       $0.64   Valves     3/4"  Easy  Loc  x  3/4"  MPT  w/   Valve  -­      EL34MPV34   5   5  x  $1.95  =  $9.75     Elbows     3/4"  Easy  Loc  Elbow     ELL34   55   5  x  $  2.49  =  $12.45   Hold  downs     U-­shaped  Wire  (Packs  of  100)     SUHD-­100   3  packs   3  x  $  8  =  $24   T-­Tape  ends       LSGS   25      25  x  $0.49  =  $12.25   Pump   2  HP  50  PSI  Centrifugal  Pump   Munro   LP200B   1   $664.13         TOTAL  COST   $1,339.70     This  example  budget  does  not  include  the  additional  cost  for  K-­line  piping.  K-­line  piping  is   required  to  connect  the  pump  from  the  water  source  to  the  main  filter     8  
  • 10. Figure  2:  Drip  irrigation  plan  with  specified  crops  and  materials  needed,  generated  on  Dripworks   Garden  Planner.  13     7.  Paying  for  Your  Drip  Irrigation  Project     Sustainable  agricultural  practices  and  technologies  are  often  criticized  as  being  too   expensive  to  be  implemented  on  small  farms.  The  prices  of  these  practices  vary  depending  on  the   size  of  the  farm  and  the  types  of  practices  chosen.  However,  there  are  many  government  and   business  resources  that  are  designed  to  support  small  farms  interested  in  investing  in  organic   certification  and  sustainable  agricultural  practices.  The  organizations  offer  grants  and  easements   to  aid  small  farmers  interested  in  sustainable  agriculture.   13  ​http://gardenplanner.dripworks.com/     9  
  • 11. Grants  and  cost-­shares  are  other  options  for  funding  sustainable  agriculture  projects.   Grants  are  often  offered  by  governmental  agencies  such  as  the  USDA​13​  or  by  local,  national,  and   international  organizations.  There  are  five  different  types  of  grants  in  sustainable  agriculture:   research  and  education,  professional  development  programs,  farmer/rancher  grants,  professional   and  producer  grants,  and  graduate  student  grants.  Examples  of  these  grants  can  be  found  on  the   Western  Sustainable  Agriculture  Research  and  Education  website​13​ .   A  financial  easement  for  sustainable  agriculture  is,  “a  non-­possessory  right  to  use   another’s  property” .  The  Natural  Resource  Conservation  Service  (NRCS)  offers  an  agricultural  14 easement  program  that  provides  technical  assistance  to  farmers  to  conserve  land  used  for   agriculture  in  addition  to  surrounding  ecosystems.    The  agricultural  land  easement  includes   conservation  programs  that  preserve  grasslands,  rangelands,  pasturelands,  and  shrublands.   Easements  can  provide  significant  public  benefits  such  as  improved  environmental  quality,   wildlife  conservation  areas,  open  space  protection,  and  historic  area  preservation.  These   easements  provide  incentives  for  farmers  such  as  tax  deductions  ​14​ .  The  wetland  easement   program  provides  financial  and  technical  aid  for  landowners  and  farmers  to  help  restore,  and   protect  wetlands.  There  are  several  subcategories  of  wetland  reserve  easements:  permanent,   30-­year,  term,  and  30-­year  contracts.     Every  year  BDF  applies  for  multiple  grants  in  order  to  fund  various  projects.  Money   received  from  grants  has  been  used  to  fund  projects  such  as  installation  of  a  solar  energy  system.   Money  awarded  through  grants  can  be  used  for  a  variety  of  projects,  including  drip  irrigation.       Finding  Funding  Opportunities         Many  grants  through  government  agencies  can  be  found  online  at  grants.gov,  where  one   can  search  by  category  of  different  agencies,  eligibility,  type  of  grant,  etc.  NRCS  also  offers   financial  assistance  and  general  support  for  farmers.  For  more  information  about  what  funding   opportunities  are  available  to  your  organization  or  location,  you  can  call  the  NRCS  office  for   more  information,  or  go  online.     Grants  are  also  commonly  offered  by  companies,  donors,  and  nonprofits.  The  Sustainable   Agriculture  Research  and  Education  organization  has  many  grants  to  help  fund  sustainable  15 agricultural  projects.  Grants  can  also  be  found  through  online  grant-­search  databases  such  as   grantwatch.com​  ​or  grantforward.com.  These  search  engines  include  grants  from  a  wide  variety   of  funders.     When  searching  for  grants,  make  sure  you  meet  the  eligibility  requirements  before   applying.  You  can  do  this  by  checking  the  requirements  online  or  calling  the  funder.  Often  these   grants  have  funding  goals  associated  with  water  conservation,  resource  management,  watershed   protection,  etc.  Below  is  a  descriptive  list  of  a  few  grants  that  could  potentially  be  used  to  fund  a   drip  irrigation  system.       14  ​http://financial-­dictionary.thefreedictionary.com/easement   14​  ​  ​http://www.sare.org/Grants   15​ http://www.landtrustalliance.org/what-­you-­can-­do/conserve-­your-­land/benefits-­landowners     15   10  
  • 12. 1. Conservation  Innovation  Grant  (CIG)​-­Natural  Resource  Conservation  Service  (NRCS).   Nationally,  funding  for  this  grant  program  is  up  to  20  million  dollars  and  organizations  in   all  50  states  are  eligible  to  apply.  The  grant  funds  conservation  projects  and  sustainable   initiatives  in  the  private  sector  of  agricultural  production.  Applying  for  this  grant  includes   a  pre-­proposal  screening  in  addition  to  the  grant  application  and  must  be  mailed  to  the   NRCS.    The  grant  is  offered  annually  through  the  2014  Farm  Bill.     2. Water  Conservation,  Reuse  and  Storage  Program  ​-­  Offered  through  the  Oregon  Water   Resources  Department.  This  grant  program  requires  organizations  to  have  initial  funding   which  the  grant  program  would  then  match.  The  program  requires  farmers  and   organizations  to  conduct  energy  and  resource  analysis  of  how  the  proposed  project  would   help  to  conserve  water  and  benefit  others  from  minimal  water  usage.  The  grant  is  offered   annually  and  its  application  information  can  be  found  online .    16   3. The  Fruit  Guys  Community  Fund​-­  The  Fruit  Guys  is  a  non-­governmental  organization   dedicating  to  help  fund  small  farmers  implement  sustainable  agricultural  products.   Partnered  with  Community  Initiatives,  the  Fruit  Guys  Community  Fund  provides  grant   opportunities  for  small  farmers  with  $30,000  available  for  funding  multiple  projects.  In   the  past  this  grant  has  been  awarded  to  farmers  implementing  drip  irrigation  systems.  The   grant  is  offered  annually.  More  information  can  be  found  online .  17   Through  researching  what  type  of  grants  you  are  eligible  for,  you  can  find  many  creative  ways  to   help    finance  your  drip  irrigation  project.  With  many  options  for  funding  available,  conserving   water  and  energy  through  drip  irrigation  is  more  accessible  than  ever  before.       8.  Conclusion     A  well-­designed  drip  irrigation  system  can  help  to  reduce  the  energy  and  water   expenditures  that  accompany  irrigating  produce  fields.  By  reducing  energy  and  water  inputs  on   farms,  farmers  are  able  to  enjoy  financial  savings,  as  well  as  decrease  their  resource  footprint.     The  process  of  designing  and  implementing  a  drip  irrigation  system  can  be  lengthy  and   complicated,  but  the  process  is  easier  with  a  little  background  research,  planning,  and  assistance.   A  good  starting  point  for  taking  on  a  project  like  this  is  to  know  your  local  climate,  soil  type,  and   water  rights.  Planning  the  crop  layout  of  your  field  or  garden  is  another  good  preliminary  step  to   take,  as  some  crops  may  have  different  watering  requirements  than  others,  and  you’ll  want  to  be   able  to  plan  for  those.  Next,  you’ll  want  to  get  in  touch  with  an  irrigation  vendor,  like   DripWorks,  who  can  provide  a  variety  of  resources  to  help  you  plan  your  system,  including  their   website,  a  catalogue,  and  a  representative  that  can  talk  you  through  the  process.  Once  you’ve   determined  the  setup  of  the  drip  system,  you’ll  want  to  contact  a  pump  dealer  to  find  the  correct   pump,  with  the  right  pressure  and  flow  rate,  to  fit  your  system’s  needs.   16  ​http://www.oregon.gov/owrd/Pages/LAW/conservation_reuse_storage_grant_program.aspx   “Water  Conservation  Grant”   17  ​http://fruitguys.com/about-­us/fruit-­guys-­community-­fund​  “Fruit  Guys  Community  Fund”     11  
  • 13. We  recognize  that  the  step-­by-­step  process  we  have  outlined  is  not  always  realistic.  Many   small  farmers  face  economic  constraints  which  require  them  to  work  with  the  equipment  they   already  have.  Luckily,  there  are  ways  to  work  around  these  barriers:  a  little  creativity,  some   research  into  funding,  and  handy  gadgets  -­  like  the  variable  frequency  drive  (VFD)  -­  can  go  a   long  way.  Systems  can  be  retrofitted  and  tweaked  in  order  to  meet  the  needs  of  the  individual   farmer,  and  farmers  can  utilize  grant  and  cost-­share  options  in  order  to  receive  funding  to   implement  a  sustainable  practices  project.     Our  learning  and  service  outcomes  included  engaging  in  sustainable  farming  practices   and  designing  a  drip  irrigation  system  for  Berggren  Demonstration  Farm’s  lower  vegetable   production  field.  We  learned  about  sustainable  farming  practices  (such  as  rotational  grazing  and   improving  native  pollinator  habitat  on  site)  by  participating  in  them  in  order  to  gain  a  better   understanding  of  what  those  practices  entail  and  how  they  differ  from  conventional  methods.   Additionally,  we  worked  through  the  process  of  planning  a  drip  irrigation  system.  This  process   required  physical  measurements,  online  research,  and  communication  with  various  people  and   companies  that  acted  as  resources  for  pulling  this  project  together.     Through  our  research,  we  hope  to  provide  a  clear  and  concise  information  source  for   other  small  farmers  looking  into  installing  a  drip  irrigation  system.       9.  Acknowledgements       We  would  like  to  thank  the  Berggren  Demonstration  Farm  staff,  the  leaders  of  the   Environmental  Leadership  Program,  and  the  Berggren  affiliates.     -­​Angela  Andre  ​is  the  farm  manager  for  this  organization.  She  has  30  years  of  experience  in  best   farming  practices  and  education  in  natural  resources.  We  would  like  to  thank  her  for  her   knowledge  and  wisdom  on  best  farming  practices  on  an  ecologically-­conscious  farm.       -­​Jared  Pruch  ​is  the  program  coordinator  for  Berggren.  He  has  experience  with  nonprofit   management,  program  development,  environmental  education,  and  best  practices  within   agriculture.  We  would  like  to  thank  him  for  his  advice  on  grant-­writing  and  sustainable  farming   during  our  term.     -­​Peg  Boulay​  is  the  co-­director  of  the  Environmental  Leadership  Program  at  the  University  of   Oregon.  We  would  like  to  thank  her  for  making  this  opportunity  and  connection  for  our  team   possible.     -­​Deion  Jones  ​is  a  master’s  student  in  Environmental  Studies  and  a  Graduate  Teaching  Fellow  at   the  University  of  Oregon.  We  would  like  to  thank  him  for  his  contribution,  leadership,  and   support  throughout  this  program.     Additionally  we  would  like  to  thank:     Jim  Russell  -­  Whitewater  Ranch   Anthony  Knox  -­  Pacific  Ag.  Systems   Tom  Burnham  and  Kevin  Macquoid  -­  Natural  Resources  Conservation  Service     12  
  • 14. Harper  Keeler,  Dan  Schuler,  and  Keegan  Caughlin  -­  University  of  Oregon  Urban  Farm     This  project  was  funded  in  part  by  the  Environmental  Leadership  Program’s  small  gift  fund.     13