Water Efficiency Presentation

1,186 views

Published on

A presentation given to Wright Patterson AFB, detailing water efficiency recommendations for the base.

Published in: Business, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,186
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Water Efficiency Presentation

  1. 1. Water Efficiency on Military Installations Curt Jawdy, PE 865-310-4727
  2. 2. Why is here? <ul><li>2010 Air Force Energy and Water Audits </li></ul><ul><ul><li>Five Air Force Bases </li></ul></ul><ul><ul><ul><li>Arnold Air Force Base, TN </li></ul></ul></ul><ul><ul><ul><li>Mountain Home Air Force Base, ID </li></ul></ul></ul><ul><ul><ul><li>Nellis Air Force Base, NV </li></ul></ul></ul><ul><ul><ul><li>Tinker Air Force Base, OK </li></ul></ul></ul><ul><ul><ul><li>Wright Patterson Air Force Base, OH </li></ul></ul></ul><ul><ul><li>16 MSF of occupied space </li></ul></ul><ul><ul><li>Over 1,000 buildings </li></ul></ul>
  3. 3. AMEC Efficiency Program <ul><li>Audits over the last four years </li></ul><ul><ul><li>Over 1,000 energy and water audits </li></ul></ul><ul><ul><li>Nearly 12 MSF of occupied space </li></ul></ul><ul><ul><li>Screening audits on additional 1.2 MSF </li></ul></ul><ul><ul><li>Estimated client savings over $18M/yr </li></ul></ul><ul><ul><li>ECO Recommendations of nearly $100M </li></ul></ul><ul><li>Well honed process for: </li></ul><ul><ul><li>Office, Lodging, Vehicle Maintenance, Storage, Chapel, Gymnasium, Dormitories, Mechanical and Electrical Shop Areas, Car Wash…. </li></ul></ul>
  4. 4. I will be focusing on…
  5. 5. Energy Independence and Security Act (EISA) 2007 <ul><li>Reduce water use 16% by 2015 </li></ul><ul><li>Building stock 15% LEED “certifiable” </li></ul><ul><li>Section 438 requires development and redevelopment over 5000 SF to maintain or restore the predevelopment hydrology with regard to rate, volume, duration and temperature of flow </li></ul>
  6. 6. Simplest Options for Reducing Water Use <ul><li>Conservation </li></ul><ul><ul><li>Fix Leaks </li></ul></ul><ul><ul><li>Water saving fixtures </li></ul></ul><ul><ul><li>Reduced boiler and cooling tower blowdown </li></ul></ul><ul><li>Roof Capture </li></ul><ul><ul><li>For domestic or cooling </li></ul></ul><ul><li>Watershed Management </li></ul><ul><ul><li>Turn storm runoff problem into water source asset </li></ul></ul>
  7. 7. Little Need for Irrigation
  8. 8. The true cost of leaks
  9. 9. Leak Detection and Repair Unaccounted Water is hard to find without full metering unless it is catastrophic
  10. 10. Example Basic Fixture Change <ul><li>Example: Wright Patterson Inns </li></ul><ul><li>Over 414 rooms, each with </li></ul><ul><ul><li>Toilet </li></ul></ul><ul><ul><li>Shower </li></ul></ul><ul><ul><li>Sink </li></ul></ul><ul><li>Many of the fixtures are older and could be upgraded to water saving types </li></ul><ul><li>Upgrades could save 3.6 MG/yr </li></ul><ul><li>Similar, though more spread out opportunities basewide </li></ul>
  11. 12. Scale Prevention vs. Water Savings
  12. 13. Potential Cooling Tower Water Savings
  13. 14. Cisterns
  14. 17. Roof Runoff for Cooling Towers <ul><li>Cooling towers are major water users on base </li></ul><ul><li>Significant $$ spent obtaining and softening water </li></ul><ul><li>Use roof runoff to feed adjacent cooling tower </li></ul>
  15. 18. Roof – Cistern – Cooling Tower Concept Cistern Roof Runoff Capture Cooling Tower Secondary Makeup from Base Potable Pump
  16. 19. Steam Plant Opportunity <ul><li>Steam plants require a large amount of soft makeup water </li></ul><ul><li>Plants are required to capture and treat all site runoff </li></ul><ul><ul><li>Clarification </li></ul></ul><ul><ul><li>Flocculation </li></ul></ul><ul><ul><li>Cyclone </li></ul></ul><ul><li>Clarified water can be used for makeup at little cost </li></ul>
  17. 20. Roof Runoff for Wash Water <ul><li>Firemen at 34012 could use cistern water for washing equipment </li></ul><ul><li>Two downspouts on highbay wall and two nearby road grates </li></ul>
  18. 21. Firehouse Cistern Details <ul><li>Underground tank </li></ul><ul><li>Capture roof and nearby road runoff </li></ul><ul><li>Filter at inlet </li></ul><ul><li>Submersible pump </li></ul><ul><li>Pressure tank </li></ul><ul><li>3,000 gallon cistern would provide reliable washwater of 60 gal/day with minimal backup needs </li></ul>
  19. 22. Roof Runoff for Laboratory Supply <ul><li>Fuels lab at 20070 softens all building water to protect distiller </li></ul><ul><li>Still use is only a few gallons per day </li></ul><ul><li>Significant cost for treatment salts </li></ul>
  20. 23. Laboratory Cistern Details <ul><li>Aboveground tank </li></ul><ul><li>Capture nearby downspout </li></ul><ul><li>Filter at inlet </li></ul><ul><li>Submersible pump </li></ul><ul><li>Small pressure tank </li></ul><ul><li>300 gallon cistern would provide reliable still-water of 5 gal/day with minimal backup needs </li></ul>
  21. 24. How Big Should the Cistern Be? <ul><li>Rain doesn’t fall when you need it </li></ul><ul><li>Larger cisterns allow for storage </li></ul><ul><li>Larger cisterns cost more </li></ul><ul><li>Optimize cistern size based on Benefit:Cost Ratio </li></ul>
  22. 25. Flexible Sizing Mass-Balance Spreadsheet
  23. 26. Utilize New Excel Optimization
  24. 27. Integration with Watershed Management <ul><li>Capture stormwater peak flows in detention structures </li></ul><ul><ul><li>Reduce peak flows </li></ul></ul><ul><ul><li>Settle pollutants </li></ul></ul><ul><ul><li>Reduce erosive velocity </li></ul></ul><ul><ul><li>Provide EISA “infiltration mitigation bank” </li></ul></ul><ul><li>Use captured water for: </li></ul><ul><ul><li>Golf course irrigation </li></ul></ul><ul><ul><li>Cooling towers, etc…. </li></ul></ul>
  25. 28. Energy Independence and Security Act (EISA) 2007 <ul><li>Reduce water use 16% by 2015 </li></ul><ul><li>Building stock 15% LEED “certifiable” </li></ul><ul><li>Section 438 requires development and redevelopment over 5000 SF to maintain or restore the predevelopment hydrology with regard to rate, volume, duration and temperature of flow </li></ul>
  26. 29. Infiltration Bed Opportunity <ul><li>Building 30070 is slated for renovation </li></ul><ul><li>Poor drainage in front of lot </li></ul><ul><li>3’ step up to building FFE </li></ul><ul><li>Downspouts empty directly onto pavement </li></ul>
  27. 30. Infiltration Bed concept <ul><li>Add infiltration beds with underdrains at each entrance </li></ul><ul><li>Minor excavation to allow infiltration and avoid utilities </li></ul><ul><li>Improve looks </li></ul><ul><li>Create ADA ramp </li></ul>
  28. 31. Pervious Paving Opportunity <ul><li>Existing drainage problems </li></ul><ul><li>Install pervious paving with underdrain </li></ul>
  29. 32. Energy Independence and Security Act (EISA) 2007 <ul><li>Reduce water use 16% by 2015 </li></ul><ul><li>Building stock 15% LEED “certifiable” </li></ul><ul><li>Section 438 requires development and redevelopment over 5000 SF to maintain or restore the predevelopment hydrology with regard to rate, volume, duration and temperature of flow </li></ul>
  30. 33. Why worry about maintaining hydrology?
  31. 34. Potential Base Benefits <ul><li>Increased infiltration contributes to reliable base flows and a healthy aquatic ecosystem. </li></ul><ul><li>Infiltration allows filtration of suspended pollutants, resulting in better water quality . </li></ul><ul><li>GI is able to cool runoff by allowing the ground media to moderate temperatures . </li></ul><ul><li>GI treatments moderate flood flows and durations thereby decreasing channel erosion potential. </li></ul><ul><li>And of course re-use of captured water can save money . </li></ul>
  32. 35. Primary GI Pathways <ul><li>Infiltrate </li></ul><ul><ul><li>Bioretention/rain gardens </li></ul></ul><ul><ul><li>Pervious pavement </li></ul></ul><ul><ul><li>Vegetated swales </li></ul></ul><ul><li>Evapotranspire </li></ul><ul><ul><li>Bioretention/rain gardens </li></ul></ul><ul><ul><li>Tree planters </li></ul></ul><ul><ul><li>Vegetated swales </li></ul></ul><ul><li>Harvest and reuse </li></ul><ul><ul><li>Cisterns </li></ul></ul><ul><ul><li>Rain barrels </li></ul></ul>
  33. 36. Technical Guidance (Dec. 2009) <ul><li>Published by EPA </li></ul><ul><li>Two options for meeting the standard </li></ul>
  34. 37. Stormwater Options
  35. 38. Option 1: Treat the 95% Storm
  36. 39. Volume Required to Meet the 95% Rule
  37. 40. Option 2: Replicate Hydrology
  38. 41. When in doubt….model
  39. 42. Surface Ponding Runoff Surface Evaporation Pre-Development SWMM Model Infiltration per Green & Ampt Unsaturated Soil Saturated Soil Water Table per moisture relations Deep Percolation Evapotranspiration <ul><li>Goal </li></ul><ul><ul><li>Determine the water balance prior to development </li></ul></ul><ul><li>Parameters </li></ul><ul><ul><li>Soil physical properties from texture </li></ul></ul><ul><ul><li>2.5% slope </li></ul></ul><ul><ul><li>3’ deep soil matrix </li></ul></ul><ul><li>Forcings </li></ul><ul><ul><li>Rainfall and PET for 1991-2006 </li></ul></ul>Rainfall
  40. 43. Soil Characteristics w/SPAW <ul><li>Inputs from NRCS </li></ul><ul><ul><li>More than just HSGs </li></ul></ul><ul><ul><li>Texture </li></ul></ul><ul><ul><li>Organic matter </li></ul></ul><ul><ul><li>Bulk Density </li></ul></ul><ul><li>Outputs </li></ul><ul><ul><li>Saturated Conductivity </li></ul></ul><ul><ul><li>Wilting Point </li></ul></ul><ul><ul><li>Field Capacity </li></ul></ul><ul><ul><li>Porosity </li></ul></ul>
  41. 44. Local Pre-developed Water Balance <ul><li>Some portion of percolation eventually enters streamflow </li></ul>1.8”/yr 1.2”/yr 16.4”/yr 23.3”/yr
  42. 45. Urbanization Effects on Land <ul><li>Pre-development models were altered to represent conditions after construction </li></ul><ul><ul><li>More paving and roofing </li></ul></ul><ul><ul><li>Less flow over rough areas prior to entering piped system </li></ul></ul><ul><ul><li>Less puddling depth in grassed areas after grading </li></ul></ul>
  43. 46. Urbanization Effects on Runoff <ul><li>Gut checks well with Tom Schueler “Simple Method” </li></ul><ul><ul><li>Long term direct runoff % = 1.5 + 0.92*(% Impervious) </li></ul></ul>
  44. 47. Surface Evaporation Infiltration per Green & Ampt Evapotranspiration Unsaturated Media Saturated Media Water Table per moisture relations Deep Percolation Surface Ponding Surface Ponding Runoff Surface Evaporation Runon 3’ Deep Bioretention Model for 95% Storm Infiltration per Green & Ampt Unsaturated Soil Saturated Soil Water Table per moisture relations Deep Percolation Evapotranspiration Source Area GI Facility Rainfall Rainfall
  45. 48. Infiltrating flow w/o runoff Media has saturated and begun to create a water table Runoff occurs only when media and ponding depth are both full Causes of Runoff <ul><li>Flow out of the cell is the limiting factor </li></ul><ul><li>VERY few storms can overwhelm the inflow capacity </li></ul>
  46. 49. Overcontrol by 95% Criteria
  47. 50. Simplified Design I <ul><li>A range of pre-development models were run to determine the impact of soil conductivity </li></ul><ul><li>The graph above could be used to determine the target runoff volume % </li></ul><ul><li>Held constant </li></ul><ul><ul><li>Local climate </li></ul></ul><ul><ul><li>Slope </li></ul></ul><ul><ul><li>Subsurface conductivity </li></ul></ul>
  48. 51. Simplified Design II <ul><li>A range of bioretention models were run to determine the necessary bioretention cell size </li></ul><ul><li>The graph above could be used to determine how much area of bioretention would be required to match the pre-development hydrology </li></ul><ul><li>Held constant </li></ul><ul><ul><li>Local climate </li></ul></ul><ul><ul><li>Slope </li></ul></ul><ul><ul><li>Source % Impervious </li></ul></ul><ul><ul><li>Bioretention media </li></ul></ul><ul><ul><li>Soil conductivity </li></ul></ul><ul><ul><li>Bioretention depth </li></ul></ul>
  49. 52. Importance of Testing <ul><li>Infiltration rates can vary significantly over small areas </li></ul><ul><li>Tests must be performed at the bottom of proposed facilities </li></ul><ul><li>Siting facilities well is crucial </li></ul>
  50. 53. Bioretention Conclusions <ul><li>With Wright Patterson conditions: </li></ul><ul><ul><li>The 95% control criteria can be overly restrictive for at least some base soils </li></ul></ul><ul><li>For very well-drained and very poorly drained soils it will be difficult to match pre-development hydrology </li></ul><ul><li>An “infiltration banking” system could be set up to ensure that mission and environmental goals can both be met </li></ul><ul><li>Simplified design curves can be constructed, but there would be a lot of them </li></ul><ul><li>Highly impervious land uses would need to rely on techniques to effectively reduce the imperviousness to match hydrology </li></ul>
  51. 54. Impervious Disconnection <ul><li>Is the practice of directing runoff from impervious areas to flow over pervious areas and thus allowing infiltration </li></ul><ul><li>Goal: check for possibility for maintaining pre-development hydrology </li></ul><ul><li>Method: model various levels of development with disconnection </li></ul>
  52. 55. Disconnection Conclusions <ul><li>Previous AMEC studies have shown that impervious disconnection can maintain pre-development hydrology roughly as well as bioretention for sites less than ~25% impervious </li></ul><ul><li>Impervious disconnection can provide a portion of site volume control requirements for more highly developed sites </li></ul>
  53. 56. Let’s talk about: Questions?

×