SlideShare a Scribd company logo
1 of 25
Physics 111: Mechanics
Lecture 3
Dale Gary
NJIT Physics Department
February 5-8, 2013
Motion in Two Dimensions
 Reminder of vectors and vector algebra
 Displacement and position in 2-D
 Average and instantaneous velocity in 2-D
 Average and instantaneous acceleration in 2-D
 Projectile motion
 Uniform circular motion
 Relative velocity*
February 5-8, 2013
Vector and its components
 The components are the
legs of the right triangle
whose hypotenuse is A
y
x A
A
A





2 2 1
tan y
x y
x
A
A A A and
A
   
    
 
)
sin(
)
cos(







A
A
A
A
y
x
Or,
   
 




















x
y
x
y
y
x
A
A
A
A
A
A
A
1
2
2
tan
or
tan 


February 5-8, 2013
 Which diagram can represent ?
A) B)
C) D)
Vector Algebra
1
2 r
r
r





r

2
r

1
r

r

2
r

1
r

r

2
r

1
r
 r

2
r

1
r

1
r

February 5-8, 2013
 Kinematic variables in one dimension
 Position: x(t) m
 Velocity: v(t) m/s
 Acceleration: a(t) m/s2
 Kinematic variables in three dimensions
 Position: m
 Velocity: m/s
 Acceleration: m/s2
 All are vectors: have direction and
magnitudes
Motion in two dimensions
k
v
j
v
i
v
t
v z
y
x
ˆ
ˆ
ˆ
)
( 



y
x
z
i
j
k
x
k
z
j
y
i
x
t
r ˆ
ˆ
ˆ
)
( 



k
a
j
a
i
a
t
a z
y
x
ˆ
ˆ
ˆ
)
( 



February 5-8, 2013
 In one dimension
 In two dimensions
 Position: the position of an object is
described by its position vector
--always points to particle from origin.
 Displacement:
x1 (t1) = - 3.0 m, x2 (t2) = + 1.0 m
Δx = +1.0 m + 3.0 m = +4.0 m
Position and Displacement
)
(t
r

1
2 r
r
r






j
y
i
x
j
y
y
i
x
x
j
y
i
x
j
y
i
x
r
ˆ
ˆ
ˆ
)
(
ˆ
)
(
)
ˆ
ˆ
(
)
ˆ
ˆ
(
1
2
1
2
1
1
2
2














)
(
)
( 1
1
2
2 t
x
t
x
x 


1
2 r
r
r






February 5-8, 2013
 Average velocity
 Instantaneous velocity
 v is tangent to the path in x-y graph;
Average & Instantaneous Velocity
dt
r
d
t
r
v
v
t
avg










 0
0
t
lim
lim
j
v
i
v
j
t
y
i
t
x
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 








t
r
vavg





j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
v y
x
ˆ
ˆ
ˆ
ˆ 






February 5-8, 2013
Motion of a Turtle
A turtle starts at the origin and moves with the speed of v0=10 cm/s in
the direction of 25° to the horizontal.
(a) Find the coordinates of a turtle 10 seconds later.
(b) How far did the turtle walk in 10 seconds?
February 5-8, 2013
Motion of a Turtle
Notice, you can solve the
equations independently for the
horizontal (x) and vertical (y)
components of motion and then
combine them!
y
x v
v
v





0
0 0 cos25 9.06 cm/s
x
v v
 
 X components:
 Y components:
 Distance from the origin:
0 90.6 cm
x
x v t
  
0 0 sin 25 4.23 cm/s
y
v v
  0 42.3 cm
y
y v t
  
cm
0
.
100
2
2




 y
x
d
February 5-8, 2013
 Average acceleration
 Instantaneous acceleration
 The magnitude of the velocity (the speed) can change
 The direction of the velocity can change, even though the
magnitude is constant
 Both the magnitude and the direction can change
Average & Instantaneous Acceleration
dt
v
d
t
v
a
a
t
avg










 0
0
t
lim
lim
j
a
i
a
j
t
v
i
t
v
a y
avg
x
avg
y
x
avg
ˆ
ˆ
ˆ
ˆ ,
, 








t
v
aavg





j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
a y
x
y
x ˆ
ˆ
ˆ
ˆ 






February 5-8, 2013
 Position
 Average velocity
 Instantaneous velocity
 Acceleration
 are not necessarily same direction.
Summary in two dimension
j
y
i
x
t
r ˆ
ˆ
)
( 


j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
t
v
t
a y
x
y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












j
v
i
v
j
t
y
i
t
x
t
r
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 












j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
t
r
t
v y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












dt
dx
vx 
dt
dy
vy 
2
2
dt
x
d
dt
dv
a x
x 
 2
2
dt
y
d
dt
dv
a
y
y 

)
(
and
),
(
, t
a
t
v
(t)
r



February 5-8, 2013
Motion in two dimensions
t
a
v
v




 0
 Motions in each dimension are independent components
 Constant acceleration equations
 Constant acceleration equations hold in each dimension
 t = 0 beginning of the process;
 where ax and ay are constant;
 Initial velocity initial displacement ;
2
2
1
0 t
a
t
v
r
r







t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


j
a
i
a
a y
x
ˆ
ˆ 


j
v
i
v
v y
x
ˆ
ˆ 0
0
0 


j
y
i
x
r ˆ
ˆ 0
0
0 


February 5-8, 2013
 Define coordinate system. Make sketch showing axes, origin.
 List known quantities. Find v0x , v0y , ax , ay , etc. Show initial
conditions on sketch.
 List equations of motion to see which ones to use.
 Time t is the same for x and y directions.
x0 = x(t = 0), y0 = y(t = 0), v0x = vx(t = 0), v0y = vy(t = 0).
 Have an axis point along the direction of a if it is constant.
Hints for solving problems
t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


February 5-8, 2013
 2-D problem and define a coordinate
system: x- horizontal, y- vertical (up +)
 Try to pick x0 = 0, y0 = 0 at t = 0
 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical: ay = -g = -9.8 m/s2, v0y = 0
 Equations:
Projectile Motion
2
2
1
gt
t
v
y
y iy
i
f 


t
a
v
v y
y
y 
 0
2
2
1
0
0 t
a
t
v
y
y y
y 


)
(
2 0
2
0
2
y
y
a
v
v y
y
y 


t
a
v
v x
x
x 
 0
2
2
1
0
0 t
a
t
v
x
x x
x 


)
(
2 0
2
0
2
x
x
a
v
v x
x
x 


Horizontal Vertical
February 5-8, 2013
 X and Y motions happen independently, so
we can treat them separately
 Try to pick x0 = 0, y0 = 0 at t = 0
 Horizontal motion + Vertical motion
 Horizontal: ax = 0 , constant velocity motion
 Vertical: ay = -g = -9.8 m/s2
 x and y are connected by time t
 y(x) is a parabola
Projectile Motion
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

Horizontal Vertical
February 5-8, 2013
 2-D problem and define a coordinate system.
 Horizontal: ax = 0 and vertical: ay = -g.
 Try to pick x0 = 0, y0 = 0 at t = 0.
 Velocity initial conditions:
 v0 can have x, y components.
 v0x is constant usually.
 v0y changes continuously.
 Equations:
Projectile Motion
0
0
0 cos
v
v x 
Horizontal Vertical
0
0
0 sin 
v
v x 
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

February 5-8, 2013
 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0 and v0y = v0 sinθ0
 Horizontal motion:
 Vertical motion:
 Parabola;
 θ0 = 0 and θ0 = 90 ?
Trajectory of Projectile Motion
2
2
1
0
0 gt
t
v
y y 


x
x
v
x
t
t
v
x
0
0
0 



2
0
0
0
2 

















x
x
y
v
x
g
v
x
v
y
2
0
2
2
0
0
cos
2
tan x
v
g
x
y

 

February 5-8, 2013
 Initial conditions (t = 0): x0 = 0, y0 = 0
v0x = v0 cosθ0 and v0x = v0 sinθ0, then
What is R and h ?
Horizontal Vertical
2
2
1
0
0
0 gt
t
v y 


t
v
x x
0
0

g
v
g
v
v
t
v
x
x
R x
0
2
0
0
0
0
0
0
0
2
sin
sin
cos
2 







g
v
g
v
t
y 0
0
0 sin
2
2 


2
0
2
2
1
0
0
2
2
2












t
g
t
v
gt
t
v
y
y
h y
h
h
y
g
v
h
2
sin 0
2
2
0 

y
y
y
y
y v
g
v
g
v
gt
v
v 0
0
0
0
2






h
gt
v
v y
y 
 0
2
2
1
0
0 gt
t
v
y
y y 


x
x v
v 0

t
v
x
x x
0
0 

February 5-8, 2013
Projectile Motion
at Various Initial Angles
 Complementary
values of the initial
angle result in the
same range
 The heights will be
different
 The maximum range
occurs at a projection
angle of 45o
g
v
R

2
sin
2
0

February 5-8, 2013
Uniform circular motion
Constant speed, or,
constant magnitude of velocity
Motion along a circle:
Changing direction of velocity
February 5-8, 2013
Circular Motion: Observations
 Object moving along a
curved path with constant
speed
 Magnitude of velocity: same
 Direction of velocity: changing
 Velocity: changing
 Acceleration is NOT zero!
 Net force acting on the
object is NOT zero
 “Centripetal force” a
m
Fnet



February 5-8, 2013
 Centripetal acceleration
 Direction: Centripetal
Uniform Circular Motion
r
v
t
v
a
r
v
r
v
t
r
t
v
r
r
v
v
r
r
v
v
r
2
2
so,
















O
x
y
ri
R
A B
vi
rf
vf
Δr
vi
vf
Δv = vf - vi
February 5-8, 2013
Uniform Circular Motion
 Velocity:
 Magnitude: constant v
 The direction of the velocity is
tangent to the circle
 Acceleration:
 Magnitude:
 directed toward the center of
the circle of motion
 Period:
 time interval required for one
complete revolution of the
particle
r
v
ac
2

r
v
ac
2

v
r
T

2

v
ac



February 5-8, 2013
 Position
 Average velocity
 Instantaneous velocity
 Acceleration
 are not necessarily in the same direction.
Summary
j
y
i
x
t
r ˆ
ˆ
)
( 


j
a
i
a
j
dt
dv
i
dt
dv
dt
v
d
t
v
t
a y
x
y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












j
v
i
v
j
t
y
i
t
x
t
r
v y
avg
x
avg
avg
ˆ
ˆ
ˆ
ˆ ,
, 












j
v
i
v
j
dt
dy
i
dt
dx
dt
r
d
t
r
t
v y
x
t
ˆ
ˆ
ˆ
ˆ
lim
)
(
0












dt
dx
vx 
dt
dy
vy 
2
2
dt
x
d
dt
dv
a x
x 
 2
2
dt
y
d
dt
dv
a
y
y 

)
(
and
),
(
, t
a
t
v
(t)
r



February 5-8, 2013
 If a particle moves with constant acceleration a, motion
equations are
 Projectile motion is one type of 2-D motion under constant
acceleration, where ax = 0, ay = -g.
Summary
j
t
a
t
v
y
i
t
a
t
v
x
j
y
i
x
r yi
yi
i
xi
xi
i
f
f
f
ˆ
)
(
ˆ
)
(
ˆ
ˆ 2
2
1
2
2
1









j
t
a
v
i
t
a
v
j
v
i
v
t
v y
iy
x
ix
fy
fx
f
ˆ
)
(
ˆ
)
(
ˆ
ˆ
)
( 






t
a
v
v i





2
2
1
t
a
t
v
r
r i
i
f








More Related Content

Similar to Phys111_lecture03.ppt

Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02Cleophas Rwemera
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)nur amalina
 
3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)Rabea A. G. Rabih_Sch2009
 
The motion with vector analyze
The motion with vector analyzeThe motion with vector analyze
The motion with vector analyzeTuti Resri Yanti
 
Class 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdfClass 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdfVivekanand Anglo Vedic Academy
 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionNikolai Priezjev
 
chapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptxchapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptxGemechisEdosa2
 
1 d chapter 2
1 d chapter 21 d chapter 2
1 d chapter 2mantlfin
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfCyberMohdSalahShoty
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileAbduljalil AlAbidi
 

Similar to Phys111_lecture03.ppt (20)

motion 1 dimention
motion 1 dimentionmotion 1 dimention
motion 1 dimention
 
Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02Chapter2powerpoint 090816163937-phpapp02
Chapter2powerpoint 090816163937-phpapp02
 
Kleppner solution partial
Kleppner solution   partialKleppner solution   partial
Kleppner solution partial
 
Lec 02 (constant acc 051)
Lec 02 (constant acc 051)Lec 02 (constant acc 051)
Lec 02 (constant acc 051)
 
Relative motion and relative speed
Relative motion and relative speedRelative motion and relative speed
Relative motion and relative speed
 
3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)
 
3. Motion in straight line 1.pptx
3. Motion in straight line 1.pptx3. Motion in straight line 1.pptx
3. Motion in straight line 1.pptx
 
The motion with vector analyze
The motion with vector analyzeThe motion with vector analyze
The motion with vector analyze
 
Ecp2
Ecp2Ecp2
Ecp2
 
Class 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdfClass 11 Motion in a straight line Study material in pdf
Class 11 Motion in a straight line Study material in pdf
 
Dynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear MotionDynamics Kinematics Curvilinear Motion
Dynamics Kinematics Curvilinear Motion
 
Angular momentum
Angular momentumAngular momentum
Angular momentum
 
Rectilinear motion
Rectilinear motionRectilinear motion
Rectilinear motion
 
chapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptxchapter 2 example1 on the kinematics of particle.pptx
chapter 2 example1 on the kinematics of particle.pptx
 
1 d chapter 2
1 d chapter 21 d chapter 2
1 d chapter 2
 
Lecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdfLecture Dynamics Kinetics of Particles.pdf
Lecture Dynamics Kinetics of Particles.pdf
 
MECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptxMECH-202-Lecture 3.pptx
MECH-202-Lecture 3.pptx
 
General Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a ProjectileGeneral Curvilinear Motion &Motion of a Projectile
General Curvilinear Motion &Motion of a Projectile
 
Ch03 ssm
Ch03 ssmCh03 ssm
Ch03 ssm
 
Wave Motion Theory Part1
Wave Motion Theory Part1Wave Motion Theory Part1
Wave Motion Theory Part1
 

Recently uploaded

2024-05-15-Surat Meetup-Hyperautomation.pptx
2024-05-15-Surat Meetup-Hyperautomation.pptx2024-05-15-Surat Meetup-Hyperautomation.pptx
2024-05-15-Surat Meetup-Hyperautomation.pptxnitishjain2015
 
2024 mega trends for the digital workplace - FINAL.pdf
2024 mega trends for the digital workplace - FINAL.pdf2024 mega trends for the digital workplace - FINAL.pdf
2024 mega trends for the digital workplace - FINAL.pdfNancy Goebel
 
SaaStr Workshop Wednesday with CEO of Guru
SaaStr Workshop Wednesday with CEO of GuruSaaStr Workshop Wednesday with CEO of Guru
SaaStr Workshop Wednesday with CEO of Gurusaastr
 
Modernizing The Transport System:Dhaka Metro Rail
Modernizing The Transport System:Dhaka Metro RailModernizing The Transport System:Dhaka Metro Rail
Modernizing The Transport System:Dhaka Metro RailKhanMdReahnAftab
 
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdf
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdfMicrosoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdf
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdfSkillCertProExams
 
TSM unit 5 Toxicokinetics seminar by Ansari Aashif Raza.pptx
TSM unit 5 Toxicokinetics seminar by  Ansari Aashif Raza.pptxTSM unit 5 Toxicokinetics seminar by  Ansari Aashif Raza.pptx
TSM unit 5 Toxicokinetics seminar by Ansari Aashif Raza.pptxAnsari Aashif Raza Mohd Imtiyaz
 
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESBIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESfuthumetsaneliswa
 
The Concession of Asaba International Airport: Balancing Politics and Policy ...
The Concession of Asaba International Airport: Balancing Politics and Policy ...The Concession of Asaba International Airport: Balancing Politics and Policy ...
The Concession of Asaba International Airport: Balancing Politics and Policy ...Kayode Fayemi
 
Databricks Machine Learning Associate Exam Dumps 2024.pdf
Databricks Machine Learning Associate Exam Dumps 2024.pdfDatabricks Machine Learning Associate Exam Dumps 2024.pdf
Databricks Machine Learning Associate Exam Dumps 2024.pdfSkillCertProExams
 
Using AI to boost productivity for developers
Using AI to boost productivity for developersUsing AI to boost productivity for developers
Using AI to boost productivity for developersTeri Eyenike
 
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...Sosiaali- ja terveysministeriö / yleiset
 
"I hear you": Moving beyond empathy in UXR
"I hear you": Moving beyond empathy in UXR"I hear you": Moving beyond empathy in UXR
"I hear you": Moving beyond empathy in UXRMegan Campos
 
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESBIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESfuthumetsaneliswa
 

Recently uploaded (14)

2024-05-15-Surat Meetup-Hyperautomation.pptx
2024-05-15-Surat Meetup-Hyperautomation.pptx2024-05-15-Surat Meetup-Hyperautomation.pptx
2024-05-15-Surat Meetup-Hyperautomation.pptx
 
2024 mega trends for the digital workplace - FINAL.pdf
2024 mega trends for the digital workplace - FINAL.pdf2024 mega trends for the digital workplace - FINAL.pdf
2024 mega trends for the digital workplace - FINAL.pdf
 
SaaStr Workshop Wednesday with CEO of Guru
SaaStr Workshop Wednesday with CEO of GuruSaaStr Workshop Wednesday with CEO of Guru
SaaStr Workshop Wednesday with CEO of Guru
 
Modernizing The Transport System:Dhaka Metro Rail
Modernizing The Transport System:Dhaka Metro RailModernizing The Transport System:Dhaka Metro Rail
Modernizing The Transport System:Dhaka Metro Rail
 
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdf
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdfMicrosoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdf
Microsoft Fabric Analytics Engineer (DP-600) Exam Dumps 2024.pdf
 
TSM unit 5 Toxicokinetics seminar by Ansari Aashif Raza.pptx
TSM unit 5 Toxicokinetics seminar by  Ansari Aashif Raza.pptxTSM unit 5 Toxicokinetics seminar by  Ansari Aashif Raza.pptx
TSM unit 5 Toxicokinetics seminar by Ansari Aashif Raza.pptx
 
Abortion Pills Fahaheel ௹+918133066128💬@ Safe and Effective Mifepristion and ...
Abortion Pills Fahaheel ௹+918133066128💬@ Safe and Effective Mifepristion and ...Abortion Pills Fahaheel ௹+918133066128💬@ Safe and Effective Mifepristion and ...
Abortion Pills Fahaheel ௹+918133066128💬@ Safe and Effective Mifepristion and ...
 
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESBIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
 
The Concession of Asaba International Airport: Balancing Politics and Policy ...
The Concession of Asaba International Airport: Balancing Politics and Policy ...The Concession of Asaba International Airport: Balancing Politics and Policy ...
The Concession of Asaba International Airport: Balancing Politics and Policy ...
 
Databricks Machine Learning Associate Exam Dumps 2024.pdf
Databricks Machine Learning Associate Exam Dumps 2024.pdfDatabricks Machine Learning Associate Exam Dumps 2024.pdf
Databricks Machine Learning Associate Exam Dumps 2024.pdf
 
Using AI to boost productivity for developers
Using AI to boost productivity for developersUsing AI to boost productivity for developers
Using AI to boost productivity for developers
 
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...
STM valmiusseminaari 26-04-2024 PUUMALAINEN Ajankohtaista kansainvälisestä yh...
 
"I hear you": Moving beyond empathy in UXR
"I hear you": Moving beyond empathy in UXR"I hear you": Moving beyond empathy in UXR
"I hear you": Moving beyond empathy in UXR
 
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINESBIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
BIG DEVELOPMENTS IN LESOTHO(DAMS & MINES
 

Phys111_lecture03.ppt

  • 1. Physics 111: Mechanics Lecture 3 Dale Gary NJIT Physics Department
  • 2. February 5-8, 2013 Motion in Two Dimensions  Reminder of vectors and vector algebra  Displacement and position in 2-D  Average and instantaneous velocity in 2-D  Average and instantaneous acceleration in 2-D  Projectile motion  Uniform circular motion  Relative velocity*
  • 3. February 5-8, 2013 Vector and its components  The components are the legs of the right triangle whose hypotenuse is A y x A A A      2 2 1 tan y x y x A A A A and A            ) sin( ) cos(        A A A A y x Or,                           x y x y y x A A A A A A A 1 2 2 tan or tan   
  • 4. February 5-8, 2013  Which diagram can represent ? A) B) C) D) Vector Algebra 1 2 r r r      r  2 r  1 r  r  2 r  1 r  r  2 r  1 r  r  2 r  1 r  1 r 
  • 5. February 5-8, 2013  Kinematic variables in one dimension  Position: x(t) m  Velocity: v(t) m/s  Acceleration: a(t) m/s2  Kinematic variables in three dimensions  Position: m  Velocity: m/s  Acceleration: m/s2  All are vectors: have direction and magnitudes Motion in two dimensions k v j v i v t v z y x ˆ ˆ ˆ ) (     y x z i j k x k z j y i x t r ˆ ˆ ˆ ) (     k a j a i a t a z y x ˆ ˆ ˆ ) (    
  • 6. February 5-8, 2013  In one dimension  In two dimensions  Position: the position of an object is described by its position vector --always points to particle from origin.  Displacement: x1 (t1) = - 3.0 m, x2 (t2) = + 1.0 m Δx = +1.0 m + 3.0 m = +4.0 m Position and Displacement ) (t r  1 2 r r r       j y i x j y y i x x j y i x j y i x r ˆ ˆ ˆ ) ( ˆ ) ( ) ˆ ˆ ( ) ˆ ˆ ( 1 2 1 2 1 1 2 2               ) ( ) ( 1 1 2 2 t x t x x    1 2 r r r      
  • 7. February 5-8, 2013  Average velocity  Instantaneous velocity  v is tangent to the path in x-y graph; Average & Instantaneous Velocity dt r d t r v v t avg            0 0 t lim lim j v i v j t y i t x v y avg x avg avg ˆ ˆ ˆ ˆ , ,          t r vavg      j v i v j dt dy i dt dx dt r d v y x ˆ ˆ ˆ ˆ       
  • 8. February 5-8, 2013 Motion of a Turtle A turtle starts at the origin and moves with the speed of v0=10 cm/s in the direction of 25° to the horizontal. (a) Find the coordinates of a turtle 10 seconds later. (b) How far did the turtle walk in 10 seconds?
  • 9. February 5-8, 2013 Motion of a Turtle Notice, you can solve the equations independently for the horizontal (x) and vertical (y) components of motion and then combine them! y x v v v      0 0 0 cos25 9.06 cm/s x v v    X components:  Y components:  Distance from the origin: 0 90.6 cm x x v t    0 0 sin 25 4.23 cm/s y v v   0 42.3 cm y y v t    cm 0 . 100 2 2      y x d
  • 10. February 5-8, 2013  Average acceleration  Instantaneous acceleration  The magnitude of the velocity (the speed) can change  The direction of the velocity can change, even though the magnitude is constant  Both the magnitude and the direction can change Average & Instantaneous Acceleration dt v d t v a a t avg            0 0 t lim lim j a i a j t v i t v a y avg x avg y x avg ˆ ˆ ˆ ˆ , ,          t v aavg      j a i a j dt dv i dt dv dt v d a y x y x ˆ ˆ ˆ ˆ       
  • 11. February 5-8, 2013  Position  Average velocity  Instantaneous velocity  Acceleration  are not necessarily same direction. Summary in two dimension j y i x t r ˆ ˆ ) (    j a i a j dt dv i dt dv dt v d t v t a y x y x t ˆ ˆ ˆ ˆ lim ) ( 0             j v i v j t y i t x t r v y avg x avg avg ˆ ˆ ˆ ˆ , ,              j v i v j dt dy i dt dx dt r d t r t v y x t ˆ ˆ ˆ ˆ lim ) ( 0             dt dx vx  dt dy vy  2 2 dt x d dt dv a x x   2 2 dt y d dt dv a y y   ) ( and ), ( , t a t v (t) r   
  • 12. February 5-8, 2013 Motion in two dimensions t a v v      0  Motions in each dimension are independent components  Constant acceleration equations  Constant acceleration equations hold in each dimension  t = 0 beginning of the process;  where ax and ay are constant;  Initial velocity initial displacement ; 2 2 1 0 t a t v r r        t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x    j a i a a y x ˆ ˆ    j v i v v y x ˆ ˆ 0 0 0    j y i x r ˆ ˆ 0 0 0   
  • 13. February 5-8, 2013  Define coordinate system. Make sketch showing axes, origin.  List known quantities. Find v0x , v0y , ax , ay , etc. Show initial conditions on sketch.  List equations of motion to see which ones to use.  Time t is the same for x and y directions. x0 = x(t = 0), y0 = y(t = 0), v0x = vx(t = 0), v0y = vy(t = 0).  Have an axis point along the direction of a if it is constant. Hints for solving problems t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x   
  • 14. February 5-8, 2013  2-D problem and define a coordinate system: x- horizontal, y- vertical (up +)  Try to pick x0 = 0, y0 = 0 at t = 0  Horizontal motion + Vertical motion  Horizontal: ax = 0 , constant velocity motion  Vertical: ay = -g = -9.8 m/s2, v0y = 0  Equations: Projectile Motion 2 2 1 gt t v y y iy i f    t a v v y y y   0 2 2 1 0 0 t a t v y y y y    ) ( 2 0 2 0 2 y y a v v y y y    t a v v x x x   0 2 2 1 0 0 t a t v x x x x    ) ( 2 0 2 0 2 x x a v v x x x    Horizontal Vertical
  • 15. February 5-8, 2013  X and Y motions happen independently, so we can treat them separately  Try to pick x0 = 0, y0 = 0 at t = 0  Horizontal motion + Vertical motion  Horizontal: ax = 0 , constant velocity motion  Vertical: ay = -g = -9.8 m/s2  x and y are connected by time t  y(x) is a parabola Projectile Motion gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0   Horizontal Vertical
  • 16. February 5-8, 2013  2-D problem and define a coordinate system.  Horizontal: ax = 0 and vertical: ay = -g.  Try to pick x0 = 0, y0 = 0 at t = 0.  Velocity initial conditions:  v0 can have x, y components.  v0x is constant usually.  v0y changes continuously.  Equations: Projectile Motion 0 0 0 cos v v x  Horizontal Vertical 0 0 0 sin  v v x  gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0  
  • 17. February 5-8, 2013  Initial conditions (t = 0): x0 = 0, y0 = 0 v0x = v0 cosθ0 and v0y = v0 sinθ0  Horizontal motion:  Vertical motion:  Parabola;  θ0 = 0 and θ0 = 90 ? Trajectory of Projectile Motion 2 2 1 0 0 gt t v y y    x x v x t t v x 0 0 0     2 0 0 0 2                   x x y v x g v x v y 2 0 2 2 0 0 cos 2 tan x v g x y    
  • 18. February 5-8, 2013  Initial conditions (t = 0): x0 = 0, y0 = 0 v0x = v0 cosθ0 and v0x = v0 sinθ0, then What is R and h ? Horizontal Vertical 2 2 1 0 0 0 gt t v y    t v x x 0 0  g v g v v t v x x R x 0 2 0 0 0 0 0 0 0 2 sin sin cos 2         g v g v t y 0 0 0 sin 2 2    2 0 2 2 1 0 0 2 2 2             t g t v gt t v y y h y h h y g v h 2 sin 0 2 2 0   y y y y y v g v g v gt v v 0 0 0 0 2       h gt v v y y   0 2 2 1 0 0 gt t v y y y    x x v v 0  t v x x x 0 0  
  • 19. February 5-8, 2013 Projectile Motion at Various Initial Angles  Complementary values of the initial angle result in the same range  The heights will be different  The maximum range occurs at a projection angle of 45o g v R  2 sin 2 0 
  • 20. February 5-8, 2013 Uniform circular motion Constant speed, or, constant magnitude of velocity Motion along a circle: Changing direction of velocity
  • 21. February 5-8, 2013 Circular Motion: Observations  Object moving along a curved path with constant speed  Magnitude of velocity: same  Direction of velocity: changing  Velocity: changing  Acceleration is NOT zero!  Net force acting on the object is NOT zero  “Centripetal force” a m Fnet   
  • 22. February 5-8, 2013  Centripetal acceleration  Direction: Centripetal Uniform Circular Motion r v t v a r v r v t r t v r r v v r r v v r 2 2 so,                 O x y ri R A B vi rf vf Δr vi vf Δv = vf - vi
  • 23. February 5-8, 2013 Uniform Circular Motion  Velocity:  Magnitude: constant v  The direction of the velocity is tangent to the circle  Acceleration:  Magnitude:  directed toward the center of the circle of motion  Period:  time interval required for one complete revolution of the particle r v ac 2  r v ac 2  v r T  2  v ac   
  • 24. February 5-8, 2013  Position  Average velocity  Instantaneous velocity  Acceleration  are not necessarily in the same direction. Summary j y i x t r ˆ ˆ ) (    j a i a j dt dv i dt dv dt v d t v t a y x y x t ˆ ˆ ˆ ˆ lim ) ( 0             j v i v j t y i t x t r v y avg x avg avg ˆ ˆ ˆ ˆ , ,              j v i v j dt dy i dt dx dt r d t r t v y x t ˆ ˆ ˆ ˆ lim ) ( 0             dt dx vx  dt dy vy  2 2 dt x d dt dv a x x   2 2 dt y d dt dv a y y   ) ( and ), ( , t a t v (t) r   
  • 25. February 5-8, 2013  If a particle moves with constant acceleration a, motion equations are  Projectile motion is one type of 2-D motion under constant acceleration, where ax = 0, ay = -g. Summary j t a t v y i t a t v x j y i x r yi yi i xi xi i f f f ˆ ) ( ˆ ) ( ˆ ˆ 2 2 1 2 2 1          j t a v i t a v j v i v t v y iy x ix fy fx f ˆ ) ( ˆ ) ( ˆ ˆ ) (        t a v v i      2 2 1 t a t v r r i i f       