SlideShare a Scribd company logo
1 of 23
1
Operating System: Introduction
 What is an Operating System?
 Mainframe Systems
 Desktop Systems
 Multiprocessor Systems
 Distributed Systems
 Clustered System
 Real -Time Systems
 Handheld Systems
 Computing Environments
2
What is an Operating System?
 A program that acts as an intermediary between a
user of a computer and the computer hardware.
 Operating system goals:
 Execute user programs and make solving user
problems easier.
 Make the computer system convenient to use.
 Use the computer hardware in an efficient manner.
3
Computer System Components
1. Hardware – provides basic computing resources
(CPU, memory, I/O devices).
2. Operating system – controls and coordinates the use
of the hardware among the various application
programs for the various users.
3. Applications programs – define the ways in which the
system resources are used to solve the computing
problems of the users (compilers, database systems,
video games, business programs).
4. Users (people, machines, other computers).
4
Abstract View of System Components
5
Operating System Definitions
 Resource allocator – manages and allocates
resources.
 Control program – controls the execution of user
programs and operations of I/O devices .
 Kernel – the one program running at all times (all else
being application programs).
6
Mainframe Systems
 Reduce setup time by batching similar jobs
 Automatic job sequencing – automatically transfers
control from one job to another. First rudimentary
operating system.
 Resident monitor
 initial control in monitor
 control transfers to job
 when job completes control transfers pack to monitor
7
Memory Layout for a Simple Batch System
8
Multiprogrammed Batch Systems
Several jobs are kept in main memory at the same time, and the
CPU is multiplexed among them.
9
OS Features Needed for Multiprogramming
 I/O routine supplied by the system.
 Memory management – the system must allocate the
memory to several jobs.
 CPU scheduling – the system must choose among
several jobs ready to run.
 Allocation of devices.
10
Time-Sharing Systems–Interactive Computing
 The CPU is multiplexed among several jobs that are
kept in memory and on disk (the CPU is allocated to a
job only if the job is in memory).
 A job swapped in and out of memory to the disk.
 On-line communication between the user and the
system is provided; when the operating system
finishes the execution of one command, it seeks the
next “control statement” from the user’s keyboard.
 On-line system must be available for users to access
data and code.
11
Desktop Systems
 Personal computers – computer system dedicated to
a single user.
 I/O devices – keyboards, mice, display screens, small
printers.
 User convenience and responsiveness.
 Can adopt technology developed for larger operating
system’ often individuals have sole use of computer
and do not need advanced CPU utilization of
protection features.
 May run several different types of operating systems
(Windows, MacOS, UNIX, Linux)
12
Parallel Systems
 Multiprocessor systems with more than on CPU in
close communication.
 Tightly coupled system – processors share memory
and a clock; communication usually takes place
through the shared memory.
 Advantages of parallel system:
 Increased throughput
 Economical
 Increased reliability
13
Parallel Systems (Cont.)
 Symmetric multiprocessing (SMP)
 Each processor runs and identical copy of the
operating system.
 Many processes can run at once without performance
deterioration.
 Most modern operating systems support SMP
 Asymmetric multiprocessing
 Each processor is assigned a specific task; master
processor schedules and allocated work to slave
processors.
 More common in extremely large systems
14
Symmetric Multiprocessing Architecture
15
Distributed Systems
 Distribute the computation among several physical
processors.
 Loosely coupled system – each processor has its
own local memory; processors communicate with
one another through various communications lines,
such as high-speed buses or telephone lines.
 Advantages of distributed systems.
 Resources Sharing
 Computation speed up – load sharing
 Reliability
 Communications
16
Distributed Systems (cont)
 Requires networking infrastructure.
 Local area networks (LAN) or Wide area networks
(WAN)
 May be either client-server or peer-to-peer systems.
17
General Structure of Client-Server
18
Clustered Systems
 Clustering allows two or more systems to share
storage.
 Provides high reliability.
 Asymmetric clustering: one server runs the
application while other servers standby.
 Symmetric clustering: all N hosts are running the
application.
19
Real-Time Systems
 Often used as a control device in a dedicated
application such as controlling scientific
experiments, medical imaging systems, industrial
control systems, and some display systems.
 Well-defined fixed-time constraints.
 Real-Time systems may be either hard or soft real-
time.
20
Real-Time Systems (Cont.)
 Hard real-time:
 Secondary storage limited or absent, data stored in
short term memory, or read-only memory (ROM)
 Conflicts with time-sharing systems, not supported by
general-purpose operating systems.
 Soft real-time
 Limited utility in industrial control of robotics
 Useful in applications (multimedia, virtual reality)
requiring advanced operating-system features.
21
Handheld Systems
 Personal Digital Assistants (PDAs)
 Cellular telephones
 Issues:
 Limited memory
 Slow processors
 Small display screens.
22
Migration of Operating-System Concepts and Features
23
Computing Environments
 Traditional computing
 Web-Based Computing
 Embedded Computing

More Related Content

Similar to Introduction to Operating Systems: What They Are and Their Main Components

Operting system
Operting systemOperting system
Operting systemKAnurag2
 
Unit 1os processes and threads
Unit 1os processes and threadsUnit 1os processes and threads
Unit 1os processes and threadsdonny101
 
Introduction to Operating System
Introduction to Operating SystemIntroduction to Operating System
Introduction to Operating SystemAiman Hafeez
 
Network operating systems
Network operating systems Network operating systems
Network operating systems Sachin Awasthi
 
Oslecture1
Oslecture1Oslecture1
Oslecture1kausik23
 
Operating Systems
Operating Systems Operating Systems
Operating Systems Fahad Shaikh
 
OS M1.1.pptx
OS M1.1.pptxOS M1.1.pptx
OS M1.1.pptxbleh23
 
Operating system || Chapter 1: Introduction
Operating system || Chapter 1: IntroductionOperating system || Chapter 1: Introduction
Operating system || Chapter 1: IntroductionAnkonGopalBanik
 
MC 7204 OS Question Bank with Answer
MC 7204 OS Question Bank with AnswerMC 7204 OS Question Bank with Answer
MC 7204 OS Question Bank with Answersellappasiva
 
NE223_chapter 1_Overview of operating systems.ppt
NE223_chapter 1_Overview of operating systems.pptNE223_chapter 1_Overview of operating systems.ppt
NE223_chapter 1_Overview of operating systems.pptMemMem25
 

Similar to Introduction to Operating Systems: What They Are and Their Main Components (20)

operating system
operating systemoperating system
operating system
 
Basic os-concepts
Basic os-conceptsBasic os-concepts
Basic os-concepts
 
Operting system
Operting systemOperting system
Operting system
 
Introduction to OS 1.ppt
Introduction to OS 1.pptIntroduction to OS 1.ppt
Introduction to OS 1.ppt
 
Oslecture1
Oslecture1Oslecture1
Oslecture1
 
Basic os-concepts
Basic os-conceptsBasic os-concepts
Basic os-concepts
 
Os2
Os2Os2
Os2
 
Unit 1os processes and threads
Unit 1os processes and threadsUnit 1os processes and threads
Unit 1os processes and threads
 
Introduction to Operating System
Introduction to Operating SystemIntroduction to Operating System
Introduction to Operating System
 
Network operating systems
Network operating systems Network operating systems
Network operating systems
 
Oslecture1
Oslecture1Oslecture1
Oslecture1
 
Operating Systems
Operating Systems Operating Systems
Operating Systems
 
OS M1.1.pptx
OS M1.1.pptxOS M1.1.pptx
OS M1.1.pptx
 
Operating system || Chapter 1: Introduction
Operating system || Chapter 1: IntroductionOperating system || Chapter 1: Introduction
Operating system || Chapter 1: Introduction
 
OS UNIT1.pptx
OS UNIT1.pptxOS UNIT1.pptx
OS UNIT1.pptx
 
MC 7204 OS Question Bank with Answer
MC 7204 OS Question Bank with AnswerMC 7204 OS Question Bank with Answer
MC 7204 OS Question Bank with Answer
 
operating systems
operating systemsoperating systems
operating systems
 
Operating system
Operating systemOperating system
Operating system
 
Operating System
Operating SystemOperating System
Operating System
 
NE223_chapter 1_Overview of operating systems.ppt
NE223_chapter 1_Overview of operating systems.pptNE223_chapter 1_Overview of operating systems.ppt
NE223_chapter 1_Overview of operating systems.ppt
 

Recently uploaded

IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝soniya singh
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 

Recently uploaded (20)

🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
Model Call Girl in Narela Delhi reach out to us at 🔝8264348440🔝
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 

Introduction to Operating Systems: What They Are and Their Main Components

  • 1. 1 Operating System: Introduction  What is an Operating System?  Mainframe Systems  Desktop Systems  Multiprocessor Systems  Distributed Systems  Clustered System  Real -Time Systems  Handheld Systems  Computing Environments
  • 2. 2 What is an Operating System?  A program that acts as an intermediary between a user of a computer and the computer hardware.  Operating system goals:  Execute user programs and make solving user problems easier.  Make the computer system convenient to use.  Use the computer hardware in an efficient manner.
  • 3. 3 Computer System Components 1. Hardware – provides basic computing resources (CPU, memory, I/O devices). 2. Operating system – controls and coordinates the use of the hardware among the various application programs for the various users. 3. Applications programs – define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs). 4. Users (people, machines, other computers).
  • 4. 4 Abstract View of System Components
  • 5. 5 Operating System Definitions  Resource allocator – manages and allocates resources.  Control program – controls the execution of user programs and operations of I/O devices .  Kernel – the one program running at all times (all else being application programs).
  • 6. 6 Mainframe Systems  Reduce setup time by batching similar jobs  Automatic job sequencing – automatically transfers control from one job to another. First rudimentary operating system.  Resident monitor  initial control in monitor  control transfers to job  when job completes control transfers pack to monitor
  • 7. 7 Memory Layout for a Simple Batch System
  • 8. 8 Multiprogrammed Batch Systems Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them.
  • 9. 9 OS Features Needed for Multiprogramming  I/O routine supplied by the system.  Memory management – the system must allocate the memory to several jobs.  CPU scheduling – the system must choose among several jobs ready to run.  Allocation of devices.
  • 10. 10 Time-Sharing Systems–Interactive Computing  The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).  A job swapped in and out of memory to the disk.  On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next “control statement” from the user’s keyboard.  On-line system must be available for users to access data and code.
  • 11. 11 Desktop Systems  Personal computers – computer system dedicated to a single user.  I/O devices – keyboards, mice, display screens, small printers.  User convenience and responsiveness.  Can adopt technology developed for larger operating system’ often individuals have sole use of computer and do not need advanced CPU utilization of protection features.  May run several different types of operating systems (Windows, MacOS, UNIX, Linux)
  • 12. 12 Parallel Systems  Multiprocessor systems with more than on CPU in close communication.  Tightly coupled system – processors share memory and a clock; communication usually takes place through the shared memory.  Advantages of parallel system:  Increased throughput  Economical  Increased reliability
  • 13. 13 Parallel Systems (Cont.)  Symmetric multiprocessing (SMP)  Each processor runs and identical copy of the operating system.  Many processes can run at once without performance deterioration.  Most modern operating systems support SMP  Asymmetric multiprocessing  Each processor is assigned a specific task; master processor schedules and allocated work to slave processors.  More common in extremely large systems
  • 15. 15 Distributed Systems  Distribute the computation among several physical processors.  Loosely coupled system – each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.  Advantages of distributed systems.  Resources Sharing  Computation speed up – load sharing  Reliability  Communications
  • 16. 16 Distributed Systems (cont)  Requires networking infrastructure.  Local area networks (LAN) or Wide area networks (WAN)  May be either client-server or peer-to-peer systems.
  • 17. 17 General Structure of Client-Server
  • 18. 18 Clustered Systems  Clustering allows two or more systems to share storage.  Provides high reliability.  Asymmetric clustering: one server runs the application while other servers standby.  Symmetric clustering: all N hosts are running the application.
  • 19. 19 Real-Time Systems  Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.  Well-defined fixed-time constraints.  Real-Time systems may be either hard or soft real- time.
  • 20. 20 Real-Time Systems (Cont.)  Hard real-time:  Secondary storage limited or absent, data stored in short term memory, or read-only memory (ROM)  Conflicts with time-sharing systems, not supported by general-purpose operating systems.  Soft real-time  Limited utility in industrial control of robotics  Useful in applications (multimedia, virtual reality) requiring advanced operating-system features.
  • 21. 21 Handheld Systems  Personal Digital Assistants (PDAs)  Cellular telephones  Issues:  Limited memory  Slow processors  Small display screens.
  • 22. 22 Migration of Operating-System Concepts and Features
  • 23. 23 Computing Environments  Traditional computing  Web-Based Computing  Embedded Computing