SlideShare a Scribd company logo
1 of 9
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 1 of 9
CAD Report for Module 104AAE
The group that thisreportconcernswas:
AdamRush,StevenKendell,AbhishekDabas.(There were twoothermemberswhodropped
out of the group duringthe course theywere TanuChaturbedi andKarolinaKuk.)
Introduction
Honeycomb structures are commonly found in aerospaceapplicationsand haveexceptional strength
to weightratiowhichisnecessaryformanystructural componentsespeciallyinaircrafts.High
strengthmaterial suchas steel andtitaniumhave significantly largerweightthanweakermaterials
(copper).Thisresultsinacompromise tobe made;where amaterial hassufficientstrengthandis
relativelylightsuchasaluminium.Thismakesaluminiumaperfectmaterial tocreate a honeycomb
structure from.Whendesigningsuchstructuresitisadvantageoustopredictthe capabilitiesof the
designedstructure before itismanufactured.“Finite elementanalysis(FEA) isacomputerized
methodforpredictinghowaproduct reactsto real-worldforces,vibration,heat,fluidflow,and
otherphysical effects.”(http://www.autodesk.com 10/12/15) FEA can alsogive visualisationsof
deformation,displacementandthe Stressdistributionswithinthe structure. The objectiveof this
workis to create a honeycombstructure fromAluminium3003 and use FEA to testitsphysical
propertiesinthe Wand L direction.
Honeycomb Core Structure.
The Beginning:
Once the group had beenestablished,we all decidedto tackle the honeycombcore asour
CAD project.Thiswe all feltwasthe one bestsuitedtoour skillsandconfidence inourCAD
capabilities.
From there we all startedgoingthroughthe tutorialsorplayingaroundwithcreatinga
(honeycomb) cellinCatia.Afterawhile membersof the grouphadmade differentlevelsof progress.
StevenandDean(Abhishek) hadgone throughthe tutorialswhereasAdamhadworkedtowards
creatinga honeycombcell.Butthere wasa problemwithone of ourfoundinggroupmembers, Tanu
had decidedtogopart time inher learningandtherefore droppedthe CADmodule.Howeveranew
memberwasfoundinKarolina.Fromhere all membersof the groupworkedoncreatingthe full
honeycombstructure asdefinedinthe courseworkhandout.
The Middle:
All membersmade significantprogresswithcreatingthe fullstructure,we all learnedvarious
methodsof creatinga cell andthenwe learnedvariouswaysof multiplyingthatcell togive usa full
20 by 22 structure of cells. One of the more challengingpartsof the modellingwascreatingthe
thicknessof the cell walls,one methodusedwastocreate a polygonaroundthe initial polygonand
setthe distance betweenthe innerandouterpolygonstothe requiredamount.
The End:
By the time the secondsubmissionwasapproachingwe nearlyhadafull working
honeycombcreatedbySteven,thisishow he didit.Itwas created,firstbyproducinga hexagonal
shape ina plane,producingaconstraintwhere the sidesare of length4.1mm.Fourmore were then
createdparallel toeachotherto create 5 columns,eachhexagonisseparatedby0.1mm.Using the
axistool I placeda vertical line thatwasparallel tothe vertical cell wallsof the hexagon,separated
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 2 of 9
by 0.5mm fromthe hexagoninthe lastcolumn.Iusedthe mirror tool,whichallowedforme to
selectthe 5 hexagonsandmirrorthemalongthe axis,I repeatedthisselectingthe 10hexagonsand
mirroringthemina newaxis,resultingin20 columns.We thenexitedthe planeandusedthe pad
tool,tickingthe box labelled‘thick’,thensetthickness1& 2 to 0.5mm. I thencreatedanotherimage
inthe same plane beneaththe firstrow,creating20 columnsof hexagonsonce again.A constraint
betweenthe firstrowsinnercell wallandthe secondrowscell wall of 0.5mmwas created.This
ensuredthatwhenthe padtool was usedon the secondpart,and the correct thicknesseswasset,
that the vertical wallswouldbe 0.2mmthick,comparedtothe otherswallsthicknessof 0.1mm.
I mirroredeachpart separately,mirroringthe firstrow 11 times,thenrepeatingforthe secondrow,
thuscreatinga total of 22 rows.By creatinga distance of 2.021mm betweenthe axisline andthe
bottomof the rowof hexagonsIwasable to mirror the row of hexagonssothat theyconnected with
the correct measurementstothe rowsof hexagonsadjacent.A picture of the CATIA model isshown
inFigure 1.
The group was organisedandkeptontrack by the use of the WhatsAppappand outlook
e-mail’snew groupsetting,sothatfilescouldbe shared.
FEA Testing and analysis.
Adam Rush’s Tests:
“For the testingandanalysisIdecidedtobase my investigationsonthe VonMisesstress
levelsthatare showninthe CatiaFEA component.Havingneverheardof VonMisesstressIdecided
to lookitup on the internet.Ifoundthis:
“Accordingto the von Mises’stheory,aductile solidwill yieldwhenthe distortionenergy
densityreachesacritical value forthat material …At the instance of yieldinginauniaxial tensile
test,the state of stressintermsof principal stressisgivenby:σ1= σY (yieldstress) andσ2= σ3 = 0.”
(http://web.mae.ufl.edu)
Essentiallythisissayingthat,if 𝜎1, 𝜎2 and 𝜎3 are the stresslevelsinthe planes 𝑥, 𝑦and 𝑧,thenwhen
the stresslevel inthe 𝑥 plane isequal tothe yieldstressof the material then the stressesinthe
othertwo planesare zero.Fromthiswe can saythat the VonMisesstressesare a measure of the
level of stressina3D plane inrelationtothe yieldstressof the material.
Figure 1: HoneycombModel.
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 3 of 9
To testthe honeycombstructure Isetthe meshsize to5mm. From here I startedwith
compressioninthe L plane.Isetclampson the bottomrow of the structure at the lowestpoint
available,therewere 20clampsusedto ensure thatthe whole structure wascovered.Thenthe load
was appliedtothe toprow onthe highestpointsavailable,there were also20load points.However
due to the staggerednature of the honeycombthe loadswere notdirectlyabove the clampsso
there wouldbe anoffsetinthe motionincompressing the honeycomb.One possibleway roundthis
wouldbe to adda plate tothe topand bottomof the honeycombandplace loadsandclampson
that instead,butthenthisstructure wouldalsohave tobe accountedfor.
Once the loadsand clampswere inplace I startedwitha loadof 100N and recordedthe Von
Misesstress,here Ichose to go for an average stresslevelswhenlookingatthe model,Ialsodecided
to findthe cell withthe maximumstressandrecordthatvalue.The max stressturnedout to be in
the lowerleftcorner,thiswasexpecteddue tothe offsetinpositionof the clampsandloads.
Table of loadsin the L direction.
Load Weight Average VonMisesStress Higheststressedcell
100N 1.37𝑒6 𝑁𝑚2 2.54𝑒6 𝑁𝑚2
200N 2.74𝑒6 𝑁𝑚2 5.08𝑒6 𝑁𝑚2
300N 4.11𝑒6 𝑁𝑚2 7.62𝑒6 𝑁𝑚2
400N 5.48𝑒6 𝑁𝑚2 1.02𝑒7 𝑁𝑚2
500N 6.85𝑒6 𝑁𝑚2 1.27𝑒7 𝑁𝑚2
600N 8.22𝑒6 𝑁𝑚2 1.52𝑒7 𝑁𝑚2
700N 9.59𝑒6 𝑁𝑚2 1.78𝑒7 𝑁𝑚2
800N 1.10𝑒7 𝑁𝑚2 2.03𝑒7 𝑁𝑚2
900N 1.23𝑒7 𝑁𝑚2 2.29𝑒7 𝑁𝑚2
1000N 1.37𝑒7 𝑁𝑚2 2.54𝑒7 𝑁𝑚2
1100N 1.51𝑒7 𝑁𝑚2 2.79𝑒7 𝑁𝑚2
1200N 1.64𝑒7 𝑁𝑚2 3.05𝑒7 𝑁𝑚2
1300N 1.78𝑒7 𝑁𝑚2 3.30𝑒7 𝑁𝑚2
1400N 1.92𝑒7 𝑁𝑚2 3.56𝑒7 𝑁𝑚2
1500N 2.06𝑒7 𝑁𝑚2 3.81𝑒7 𝑁𝑚2
1600N 2.19𝑒7 𝑁𝑚2 4.07𝑒7 𝑁𝑚2
1700N 2.33𝑒7 𝑁𝑚2 4.32𝑒7 𝑁𝑚2
1800N 2.47𝑒7 𝑁𝑚2 4.57𝑒7 𝑁𝑚2
1900N 2.60𝑒7 𝑁𝑚2 4.83𝑒7 𝑁𝑚2
2000N 2.74𝑒7 𝑁𝑚2 5.08𝑒7 𝑁𝑚2
The structure hadnot failedat2000N, but itwas severelycompressedatthispoint.The compression
wouldhave ledtothe part beingunusable atthisload.
For testingthe W directionIdecidedtohave the leftside of the honeycombasmyloadpointand
the right side asthe clamp point,Iusedthe same methodas withthe loadinginthe L direction.
Average VonMisesStresstable forloadsinthe W direction.
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 4 of 9
Load Weight Average VonMisesStress Higheststressedcell
100N 1.68𝑒6 𝑁𝑚2 3.34𝑒6 𝑁𝑚2
200N 3.36𝑒6 𝑁𝑚2 6.68𝑒6 𝑁𝑚2
300N 5.04𝑒6 𝑁𝑚2 1.00𝑒7 𝑁𝑚2
400N 6.72𝑒6 𝑁𝑚2 1.34𝑒7 𝑁𝑚2
500N 8.40𝑒6 𝑁𝑚2 1.67𝑒7 𝑁𝑚2
600N 1.01𝑒7 𝑁𝑚2 2.00𝑒7 𝑁𝑚2
700N 1.18𝑒7 𝑁𝑚2 2.34𝑒7 𝑁𝑚2
800N 1.34𝑒7 𝑁𝑚2 2.67𝑒7 𝑁𝑚2
900N 1.51𝑒7 𝑁𝑚2 3.01𝑒7 𝑁𝑚2
1000N 1.68𝑒7 𝑁𝑚2 3.34𝑒7 𝑁𝑚2
1100N 1.85𝑒7 𝑁𝑚2 3.67𝑒7 𝑁𝑚2
1200N 2.02𝑒7 𝑁𝑚2 4.01𝑒7 𝑁𝑚2
1300N 2.18𝑒7 𝑁𝑚2 4.34𝑒7 𝑁𝑚2
1400N 2.35𝑒7 𝑁𝑚2 4.68𝑒7 𝑁𝑚2
1500N 2.52𝑒7 𝑁𝑚2 5.01𝑒7 𝑁𝑚2
1600N (*) 2.69𝑒7 𝑁𝑚2 5.34𝑒7 𝑁𝑚2
1700N 2.86𝑒7 𝑁𝑚2 5.68𝑒7 𝑁𝑚2
1800N 3.02𝑒7 𝑁𝑚2 6.08𝑒7 𝑁𝑚2
1900N 3.19𝑒7 𝑁𝑚2 6.35𝑒7 𝑁𝑚2
2000N 3.36𝑒7 𝑁𝑚2 6.68𝑒7 𝑁𝑚2
(*) Atthispointthe structure collapsed,forcomparisonhoweverIcontinuedtoincrease the loadsso
that I couldcompare the stresslevels inbothdirections.
Since a table witha listof numberscan sometimesbe hardto analyse Ihave decidedtoplotthe
informationintoagraph.
As we can see fromthe chart, the stresslevelsare higherinthe Wplane than inthe L plane,alsothe
maximumstressesare alsorespectivelyhigher.Asstatedinthe table forthe W plane the structure
0
10
20
30
40
50
60
70
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
VonMisesStress(×e6Nm2)
Load (N)
Von Mises Stress in both L and W planes
Avg. Stress L Plane
Max Stress L Plane
Avg. Stress W Plane
Max Stress W Plane
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 5 of 9
failedat1600N but I continuedwiththe analysistocompare the twoplansaccurately.Itcan be seen
that the stresslevelsare proportionaltothe loads. “
StevenKendell’sTests:
“Finite ElementAnalysis
To analyse the Honeycombmodel,IusedCATIA generativestructural analysisfeature.Before
submittingmymodel intoFEA,Idefinedthe material propertiesfollowingthe specificationthatwas
given.Totestthe honeycombstructure Isetthe meshsize to5mm. Firstof all I testedthe model in
the L plane,placingloadsoneachof the 20 verticesonthe toprow of the honeycomb,Ithenset
clampson the bottomrow. There wasa slightoffsetdue tothe staggerednature of the Model.I
foundthe average andmaximumdisplacementof the honeycombatdifferentloads.The loadedand
restrainedmodel isshowninFigure 2.
Anothermaterial wasalsotested,“Aluminiumhoneycombis available infourdifferentalloys,
aerospace grades5052 and5056, and commercial grades3104 and 3003.” (http://www.hexcel.com
10/12/15)
The material Ichose to compare withAluminium3003 was Aluminium5056. The Physical properties
of thisalloywasfoundusingthe MatWeb:Online MaterialsInformationResource.Figure3
highlightsthe physical propertiesthatwere necessarytocompute the analysis.
Figure 2: Loadedand RestrainedModel.
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 6 of 9
The difference inYieldstrengthwill allow forananalysisof the Honeycombswhere thereisa
difference inthe plasticity.
(http://www.matweb.com 10/12/15)
The resultsof the finite
elementanalysisof
Aluminium3003
showedthatthe
average andmaximum
Vonmisesstresswas
constantfor a given
load,and wasnot
dependantonthe
aluminiumalloy.We
founda linear
relationshipbetweenVonmisesstressandthe force
appliedtothe structure,the steepnessof the curve
showsthe amountof stressexperiencedbythe model perLoadapplied.Figure4showsthat the
curve withthe steepestgradientwasforthe max stressexperiencedbythe model whenthe load
was appliedinthe Wdirection.Therefore,the model will experience plasticdeformationundera
smallerloadthanif the loadwas appliedinthe L plane.
The resultsthatoccurredfor Aluminium5052 were identical tothatof Aluminium3003, however
the yieldstrengthof
Aluminium5052 is
90MPa. Therefore a
much greaterloadcan
be appliedtothe
honeycombbefore
plasticdeformation
takesplace.
Youngs Modulus Yield Strength
Aluminium 3003 69GPa 40MPa
Aluminium 5056 71.0GPa 150MPa
Figure 3: Physical Propertiesof AluminiumAlloys
usedinAnalysis.
FIGURE 4
FIGURE 5
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 7 of 9
AbhishekDabas’s Results:
Here are the resultsthatDean hasgathered.
LAVG LMAX WAVG WMAX
100 1.08 2.15 3.21 6.42
200 2.15 4.3 6.43 12.9
300 3.23 6.45 9.64 19.3
400 4.3 8.6 12.9 25.7
500 5.38 10.8 16.1 32.1
600 6.46 12.9 19.3 38.5
700 7.53 15.1 22.5 44.9
800 8.61 17.2 25.7 51.4
900 9.68 19.4 28.9 57.8
1000 10.8 21.5 32.1 64.2
1100 11.8 23.7 35.3 70.6
1200 12.9 25.8 38.5 77
1300 14 28 41.8 83.5
1400 15.1 30.1 45 89.9
1500 16.1 32.3 48.2 96.3
1600 17.2 34.4 51.4 103
1700 18.3 36.6 54.6 109
1800 19.4 38.7 57.8 116
1900 20.4 40.9 61 122
2000 21.5 43 64.2 128
0
20
40
60
80
100
120
140
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
VonMises(MPa)
Loads (N)
Von Mises Stress (Dean)
Avg Von Mises L Direction
Max Von Mises L Direction
Avg Von Mises W Direction
Max Von Mises W Direction
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 8 of 9
As youcan see the graph showsthat there isa linearrelationbetweenloadandVonMisesstress
levels.
Comparisonof the FEA’s
The four differentsetsof dataallow usto make a strongcomparisonbetweenthe loadand
the VonMisesstressvalues.Althoughthe testswere carriedoutbydifferentpeopleindifferent
waysand had the unitsgivenindifferentways,we cansaythat there isdefinitelyalinearrelation
betweenthe Loadandthe comparative VonMisesstress.Each of the graphs show a roughlystraight
line increasingfromlefttoright,since eachof the graphsshow the same linearpatternwe can
conclude thatthe data gatheredare consistentatleastwitheachother.
Startingwiththe L plane,we canconclude thatfor everyXnewtonloadamountthere will
be a correspondingYvalue forthe VonMisesstress,thisvalue will be inthe formof Y=mX+c where
bothm and c are constantsfor the equation butwhenthe loadisa 0N the stresslevel will be a0 as
well therefore we canconclude thatc has a value of 0. Infact thisequation 𝑦 = 𝑚𝑥+ 𝑐 holdstrue
for eachsetof data gathered,the onlydifference isinthe valuesof m,since c will alwaysbe 0when
the loadis at 0N. It can be seenfromthe graphsthat the value form increasesaslookat different
parts of the data,hence the graph. The bottomline inthe graph showsthe valuesforthe L plane at
an average value forVonMisesstress,the secondline showsvaluesforthe L plane butthistime at
the max value forVonMisesstress.The thirdline shows,however,the valuesforthe Wplane at the
average value forVonMisesstressandthe fourthshowsthe valuesforthe W plane at the max value
for VonMisesstress.Here we mustnote that there isa difference inthe gradientof the line forthe
W plane comparedto the L plane inboth the average valuesandthe max valuesof VonMisesstress.
In notingthiswe can begin tosay that there islessstructural stabilityinthe Wplane thaninthe L
plane,thiscanbe saidbecause itcan clearlybe seenthatthere are higherstressvaluesinthe W
plane comparedtothe L plane.The reasonforthe lowerstructural stabilitycouldbe inthe factthat
inthe L plane the vertical wallshave athicknessof 0.2mmwhereasinthe W plane the
corresponding“vertical”wallsonlyhave athicknessof 0.1mm.
There are waysthat we couldoptimise thisdesignbothinthe testingof the designandinits
complete state.Firstlyfortestingwe couldaffix platestothe topand bottom, or to the leftandright
handsides,of the structure and use those to fullydistribute the weightacrossthe whole structure,
but the downside tothispotentialmethodwouldbe thatthiswouldcause anincrease inthe weight
of the structure and itsstability,the ideabehindthe honeycombstructure isthatitislightweight
and flexibleinthe Land W planesbutrigidinthe T plane. Inthe designof the honeycombwe could
make all vertical wallsineitherdirection0.2mmratherthanjust inthe L plane.Idon’tthinkthis
wouldseriouslyincreasethe weightof the objectandit wouldgive comparable strengthinin
compressioninboththe L plane andin the W plane.
In Conclusion:
Althougheachmemberof the groupcame at the task withdifferentideasandskillsetswe
have all foundthat we have learnedsomethingnew whilstdoingthisproject.We managedtocreate
a workinghoneycombstructure andwe all managedtotestit inFEA. Althoughourmethodsof
creatingand testingwere differentwe foundthatthe resultsthatwe eachobtainedwere
comparable whichwouldsuggestthatthe resultswere eitherthe same orsimilarenough. Onthe
downside thoughwe were hopingtohave enoughtime tooptimisethe designandcreate abetter
honeycombthanwhenwe started,butwithillnessesandpeopledroppingoutwe foundourselves
CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 9 of 9
out of time to do the optimisation,butwe canlearnfromthisfor the nextprojectthat we come to
as a group.
References:
http://web.mae.ufl.edu: http://web.mae.ufl.edu/nkim/eas4200c/VonMisesCriterion.pdf (04/12/15)
http://www.autodesk.com:http://www.autodesk.com/solutions/finite-element-analysis(10/12/15)
http://www.hexcel.com:http://www.hexcel.com/Resources/DataSheets/Brochure-Data-
Sheets/Honeycomb_Attributes_and_Properties.pdf (10/12/15)
http://www.matweb.com:http://www.matweb.com/search/datasheet.aspx?matguid=aaaabe41a20
a4ed2b48270f7f2ef1b2d (10/12/15)

More Related Content

What's hot

Stress in Beams (solid Mechanics)
Stress in Beams (solid Mechanics)Stress in Beams (solid Mechanics)
Stress in Beams (solid Mechanics)SahariazzamanRahi
 
Lec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rLec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rMUST,Mirpur AJK,Pakistan
 
Axial member
Axial memberAxial member
Axial membermusadoto
 
Chapter 7: Shear Stresses in Beams and Related Problems
Chapter 7: Shear Stresses in Beams and Related ProblemsChapter 7: Shear Stresses in Beams and Related Problems
Chapter 7: Shear Stresses in Beams and Related ProblemsMonark Sutariya
 
Cantilever Retaining Wall
Cantilever Retaining Wall Cantilever Retaining Wall
Cantilever Retaining Wall Harsh Shani
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams designSimon Foo
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDERHarsh Shani
 
Lec3 bending of open and closed sections
Lec3 bending of open and closed sectionsLec3 bending of open and closed sections
Lec3 bending of open and closed sectionsMahdi Damghani
 
Moment of inertia of plane figures
Moment of inertia of plane figuresMoment of inertia of plane figures
Moment of inertia of plane figuresAurobindaSthitapragn
 
Chapter 2: Axial Strains and Deformation in Bars
Chapter 2: Axial Strains and Deformation in BarsChapter 2: Axial Strains and Deformation in Bars
Chapter 2: Axial Strains and Deformation in BarsMonark Sutariya
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram constructionPritesh Parmar
 
experimental stress analysis-Chapter 8
experimental stress analysis-Chapter 8experimental stress analysis-Chapter 8
experimental stress analysis-Chapter 8MAHESH HUDALI
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformationsMohamed Yaser
 

What's hot (19)

Stress in Beams (solid Mechanics)
Stress in Beams (solid Mechanics)Stress in Beams (solid Mechanics)
Stress in Beams (solid Mechanics)
 
Mm210(4)
Mm210(4)Mm210(4)
Mm210(4)
 
Lec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-rLec 18 19 -flexural analysis and design of beams-2007-r
Lec 18 19 -flexural analysis and design of beams-2007-r
 
Axial member
Axial memberAxial member
Axial member
 
Chapter 7: Shear Stresses in Beams and Related Problems
Chapter 7: Shear Stresses in Beams and Related ProblemsChapter 7: Shear Stresses in Beams and Related Problems
Chapter 7: Shear Stresses in Beams and Related Problems
 
Solid Mechanics Assignment Help
Solid Mechanics Assignment HelpSolid Mechanics Assignment Help
Solid Mechanics Assignment Help
 
Square footing design
Square footing designSquare footing design
Square footing design
 
Reinforce Concrete Design I - By Dr. Iftekhar Anam
Reinforce Concrete Design I - By Dr. Iftekhar AnamReinforce Concrete Design I - By Dr. Iftekhar Anam
Reinforce Concrete Design I - By Dr. Iftekhar Anam
 
Cantilever Retaining Wall
Cantilever Retaining Wall Cantilever Retaining Wall
Cantilever Retaining Wall
 
Chapter 5 beams design
Chapter 5  beams designChapter 5  beams design
Chapter 5 beams design
 
INDUSTRIAL BUILDING GANTRY GIRDER
INDUSTRIAL BUILDING  GANTRY GIRDERINDUSTRIAL BUILDING  GANTRY GIRDER
INDUSTRIAL BUILDING GANTRY GIRDER
 
Lec3 bending of open and closed sections
Lec3 bending of open and closed sectionsLec3 bending of open and closed sections
Lec3 bending of open and closed sections
 
Moment of inertia of plane figures
Moment of inertia of plane figuresMoment of inertia of plane figures
Moment of inertia of plane figures
 
Chapter 2: Axial Strains and Deformation in Bars
Chapter 2: Axial Strains and Deformation in BarsChapter 2: Axial Strains and Deformation in Bars
Chapter 2: Axial Strains and Deformation in Bars
 
Column Interaction Diagram construction
Column Interaction Diagram constructionColumn Interaction Diagram construction
Column Interaction Diagram construction
 
experimental stress analysis-Chapter 8
experimental stress analysis-Chapter 8experimental stress analysis-Chapter 8
experimental stress analysis-Chapter 8
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformations
 
MOMENT OF INERTIA
MOMENT OF INERTIAMOMENT OF INERTIA
MOMENT OF INERTIA
 
Chapter 18(beams of composite materials)
Chapter 18(beams of composite materials)Chapter 18(beams of composite materials)
Chapter 18(beams of composite materials)
 

Similar to CAD Honeycomb Structure FEA Analysis

MMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingMMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingLI HE
 
Final Report Turbulant Flat Plate Ansys
Final Report Turbulant Flat Plate AnsysFinal Report Turbulant Flat Plate Ansys
Final Report Turbulant Flat Plate AnsysSultan Islam
 
Elastic Plastic Foundation
Elastic Plastic FoundationElastic Plastic Foundation
Elastic Plastic FoundationMiguelito Manya
 
Tesis iisee Elasto Plastic Foundation
Tesis iisee Elasto Plastic Foundation Tesis iisee Elasto Plastic Foundation
Tesis iisee Elasto Plastic Foundation Miguelito Manya
 
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod Frame
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod FrameFinite Element Analysis of Mercury III Hyperloop Scale Model Pod Frame
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod FrameWilliam Steppe
 
Mechanics of Solid experiments
Mechanics of Solid experimentsMechanics of Solid experiments
Mechanics of Solid experimentsWasimKhan355
 
Team 32 Midterm Final Report
Team 32 Midterm  Final ReportTeam 32 Midterm  Final Report
Team 32 Midterm Final ReportSamuel Trejo
 
Project Stuff Real cool
Project Stuff Real coolProject Stuff Real cool
Project Stuff Real coolJulia London
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsMahdi Damghani
 
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxSajjadAnwar25
 
FEA Project 2- Akash Marakani
FEA Project 2- Akash MarakaniFEA Project 2- Akash Marakani
FEA Project 2- Akash MarakaniAkash Marakani
 
Metal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor CapacitorsMetal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor Capacitorstahamohssein
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsMahdi Damghani
 

Similar to CAD Honeycomb Structure FEA Analysis (20)

MMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft WingMMAE545-Final Report-Analysis of Aircraft Wing
MMAE545-Final Report-Analysis of Aircraft Wing
 
Final Report Turbulant Flat Plate Ansys
Final Report Turbulant Flat Plate AnsysFinal Report Turbulant Flat Plate Ansys
Final Report Turbulant Flat Plate Ansys
 
Elastic Plastic Foundation
Elastic Plastic FoundationElastic Plastic Foundation
Elastic Plastic Foundation
 
Tesis iisee Elasto Plastic Foundation
Tesis iisee Elasto Plastic Foundation Tesis iisee Elasto Plastic Foundation
Tesis iisee Elasto Plastic Foundation
 
Microelectromechanical Assignment Help
Microelectromechanical Assignment HelpMicroelectromechanical Assignment Help
Microelectromechanical Assignment Help
 
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod Frame
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod FrameFinite Element Analysis of Mercury III Hyperloop Scale Model Pod Frame
Finite Element Analysis of Mercury III Hyperloop Scale Model Pod Frame
 
Mechanics of Solid experiments
Mechanics of Solid experimentsMechanics of Solid experiments
Mechanics of Solid experiments
 
Fa3110171022
Fa3110171022Fa3110171022
Fa3110171022
 
Team 32 Midterm Final Report
Team 32 Midterm  Final ReportTeam 32 Midterm  Final Report
Team 32 Midterm Final Report
 
Senior Project Report
Senior Project Report Senior Project Report
Senior Project Report
 
Project Stuff Real cool
Project Stuff Real coolProject Stuff Real cool
Project Stuff Real cool
 
Gravity machine
Gravity machineGravity machine
Gravity machine
 
cfd ahmed body
cfd ahmed bodycfd ahmed body
cfd ahmed body
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beams
 
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptxContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
ContinuumordiscontinuumGSIorJRCimproved45minutesversion.pptx
 
FEA Project 2- Akash Marakani
FEA Project 2- Akash MarakaniFEA Project 2- Akash Marakani
FEA Project 2- Akash Marakani
 
n-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDFn-p-p Silicon solar Cells.PDF
n-p-p Silicon solar Cells.PDF
 
Metal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor CapacitorsMetal-Insulator-Semiconductor Capacitors
Metal-Insulator-Semiconductor Capacitors
 
Testing of bored_pile_inclination
Testing of bored_pile_inclinationTesting of bored_pile_inclination
Testing of bored_pile_inclination
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 

CAD Honeycomb Structure FEA Analysis

  • 1. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 1 of 9 CAD Report for Module 104AAE The group that thisreportconcernswas: AdamRush,StevenKendell,AbhishekDabas.(There were twoothermemberswhodropped out of the group duringthe course theywere TanuChaturbedi andKarolinaKuk.) Introduction Honeycomb structures are commonly found in aerospaceapplicationsand haveexceptional strength to weightratiowhichisnecessaryformanystructural componentsespeciallyinaircrafts.High strengthmaterial suchas steel andtitaniumhave significantly largerweightthanweakermaterials (copper).Thisresultsinacompromise tobe made;where amaterial hassufficientstrengthandis relativelylightsuchasaluminium.Thismakesaluminiumaperfectmaterial tocreate a honeycomb structure from.Whendesigningsuchstructuresitisadvantageoustopredictthe capabilitiesof the designedstructure before itismanufactured.“Finite elementanalysis(FEA) isacomputerized methodforpredictinghowaproduct reactsto real-worldforces,vibration,heat,fluidflow,and otherphysical effects.”(http://www.autodesk.com 10/12/15) FEA can alsogive visualisationsof deformation,displacementandthe Stressdistributionswithinthe structure. The objectiveof this workis to create a honeycombstructure fromAluminium3003 and use FEA to testitsphysical propertiesinthe Wand L direction. Honeycomb Core Structure. The Beginning: Once the group had beenestablished,we all decidedto tackle the honeycombcore asour CAD project.Thiswe all feltwasthe one bestsuitedtoour skillsandconfidence inourCAD capabilities. From there we all startedgoingthroughthe tutorialsorplayingaroundwithcreatinga (honeycomb) cellinCatia.Afterawhile membersof the grouphadmade differentlevelsof progress. StevenandDean(Abhishek) hadgone throughthe tutorialswhereasAdamhadworkedtowards creatinga honeycombcell.Butthere wasa problemwithone of ourfoundinggroupmembers, Tanu had decidedtogopart time inher learningandtherefore droppedthe CADmodule.Howeveranew memberwasfoundinKarolina.Fromhere all membersof the groupworkedoncreatingthe full honeycombstructure asdefinedinthe courseworkhandout. The Middle: All membersmade significantprogresswithcreatingthe fullstructure,we all learnedvarious methodsof creatinga cell andthenwe learnedvariouswaysof multiplyingthatcell togive usa full 20 by 22 structure of cells. One of the more challengingpartsof the modellingwascreatingthe thicknessof the cell walls,one methodusedwastocreate a polygonaroundthe initial polygonand setthe distance betweenthe innerandouterpolygonstothe requiredamount. The End: By the time the secondsubmissionwasapproachingwe nearlyhadafull working honeycombcreatedbySteven,thisishow he didit.Itwas created,firstbyproducinga hexagonal shape ina plane,producingaconstraintwhere the sidesare of length4.1mm.Fourmore were then createdparallel toeachotherto create 5 columns,eachhexagonisseparatedby0.1mm.Using the axistool I placeda vertical line thatwasparallel tothe vertical cell wallsof the hexagon,separated
  • 2. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 2 of 9 by 0.5mm fromthe hexagoninthe lastcolumn.Iusedthe mirror tool,whichallowedforme to selectthe 5 hexagonsandmirrorthemalongthe axis,I repeatedthisselectingthe 10hexagonsand mirroringthemina newaxis,resultingin20 columns.We thenexitedthe planeandusedthe pad tool,tickingthe box labelled‘thick’,thensetthickness1& 2 to 0.5mm. I thencreatedanotherimage inthe same plane beneaththe firstrow,creating20 columnsof hexagonsonce again.A constraint betweenthe firstrowsinnercell wallandthe secondrowscell wall of 0.5mmwas created.This ensuredthatwhenthe padtool was usedon the secondpart,and the correct thicknesseswasset, that the vertical wallswouldbe 0.2mmthick,comparedtothe otherswallsthicknessof 0.1mm. I mirroredeachpart separately,mirroringthe firstrow 11 times,thenrepeatingforthe secondrow, thuscreatinga total of 22 rows.By creatinga distance of 2.021mm betweenthe axisline andthe bottomof the rowof hexagonsIwasable to mirror the row of hexagonssothat theyconnected with the correct measurementstothe rowsof hexagonsadjacent.A picture of the CATIA model isshown inFigure 1. The group was organisedandkeptontrack by the use of the WhatsAppappand outlook e-mail’snew groupsetting,sothatfilescouldbe shared. FEA Testing and analysis. Adam Rush’s Tests: “For the testingandanalysisIdecidedtobase my investigationsonthe VonMisesstress levelsthatare showninthe CatiaFEA component.Havingneverheardof VonMisesstressIdecided to lookitup on the internet.Ifoundthis: “Accordingto the von Mises’stheory,aductile solidwill yieldwhenthe distortionenergy densityreachesacritical value forthat material …At the instance of yieldinginauniaxial tensile test,the state of stressintermsof principal stressisgivenby:σ1= σY (yieldstress) andσ2= σ3 = 0.” (http://web.mae.ufl.edu) Essentiallythisissayingthat,if 𝜎1, 𝜎2 and 𝜎3 are the stresslevelsinthe planes 𝑥, 𝑦and 𝑧,thenwhen the stresslevel inthe 𝑥 plane isequal tothe yieldstressof the material then the stressesinthe othertwo planesare zero.Fromthiswe can saythat the VonMisesstressesare a measure of the level of stressina3D plane inrelationtothe yieldstressof the material. Figure 1: HoneycombModel.
  • 3. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 3 of 9 To testthe honeycombstructure Isetthe meshsize to5mm. From here I startedwith compressioninthe L plane.Isetclampson the bottomrow of the structure at the lowestpoint available,therewere 20clampsusedto ensure thatthe whole structure wascovered.Thenthe load was appliedtothe toprow onthe highestpointsavailable,there were also20load points.However due to the staggerednature of the honeycombthe loadswere notdirectlyabove the clampsso there wouldbe anoffsetinthe motionincompressing the honeycomb.One possibleway roundthis wouldbe to adda plate tothe topand bottomof the honeycombandplace loadsandclampson that instead,butthenthisstructure wouldalsohave tobe accountedfor. Once the loadsand clampswere inplace I startedwitha loadof 100N and recordedthe Von Misesstress,here Ichose to go for an average stresslevelswhenlookingatthe model,Ialsodecided to findthe cell withthe maximumstressandrecordthatvalue.The max stressturnedout to be in the lowerleftcorner,thiswasexpecteddue tothe offsetinpositionof the clampsandloads. Table of loadsin the L direction. Load Weight Average VonMisesStress Higheststressedcell 100N 1.37𝑒6 𝑁𝑚2 2.54𝑒6 𝑁𝑚2 200N 2.74𝑒6 𝑁𝑚2 5.08𝑒6 𝑁𝑚2 300N 4.11𝑒6 𝑁𝑚2 7.62𝑒6 𝑁𝑚2 400N 5.48𝑒6 𝑁𝑚2 1.02𝑒7 𝑁𝑚2 500N 6.85𝑒6 𝑁𝑚2 1.27𝑒7 𝑁𝑚2 600N 8.22𝑒6 𝑁𝑚2 1.52𝑒7 𝑁𝑚2 700N 9.59𝑒6 𝑁𝑚2 1.78𝑒7 𝑁𝑚2 800N 1.10𝑒7 𝑁𝑚2 2.03𝑒7 𝑁𝑚2 900N 1.23𝑒7 𝑁𝑚2 2.29𝑒7 𝑁𝑚2 1000N 1.37𝑒7 𝑁𝑚2 2.54𝑒7 𝑁𝑚2 1100N 1.51𝑒7 𝑁𝑚2 2.79𝑒7 𝑁𝑚2 1200N 1.64𝑒7 𝑁𝑚2 3.05𝑒7 𝑁𝑚2 1300N 1.78𝑒7 𝑁𝑚2 3.30𝑒7 𝑁𝑚2 1400N 1.92𝑒7 𝑁𝑚2 3.56𝑒7 𝑁𝑚2 1500N 2.06𝑒7 𝑁𝑚2 3.81𝑒7 𝑁𝑚2 1600N 2.19𝑒7 𝑁𝑚2 4.07𝑒7 𝑁𝑚2 1700N 2.33𝑒7 𝑁𝑚2 4.32𝑒7 𝑁𝑚2 1800N 2.47𝑒7 𝑁𝑚2 4.57𝑒7 𝑁𝑚2 1900N 2.60𝑒7 𝑁𝑚2 4.83𝑒7 𝑁𝑚2 2000N 2.74𝑒7 𝑁𝑚2 5.08𝑒7 𝑁𝑚2 The structure hadnot failedat2000N, but itwas severelycompressedatthispoint.The compression wouldhave ledtothe part beingunusable atthisload. For testingthe W directionIdecidedtohave the leftside of the honeycombasmyloadpointand the right side asthe clamp point,Iusedthe same methodas withthe loadinginthe L direction. Average VonMisesStresstable forloadsinthe W direction.
  • 4. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 4 of 9 Load Weight Average VonMisesStress Higheststressedcell 100N 1.68𝑒6 𝑁𝑚2 3.34𝑒6 𝑁𝑚2 200N 3.36𝑒6 𝑁𝑚2 6.68𝑒6 𝑁𝑚2 300N 5.04𝑒6 𝑁𝑚2 1.00𝑒7 𝑁𝑚2 400N 6.72𝑒6 𝑁𝑚2 1.34𝑒7 𝑁𝑚2 500N 8.40𝑒6 𝑁𝑚2 1.67𝑒7 𝑁𝑚2 600N 1.01𝑒7 𝑁𝑚2 2.00𝑒7 𝑁𝑚2 700N 1.18𝑒7 𝑁𝑚2 2.34𝑒7 𝑁𝑚2 800N 1.34𝑒7 𝑁𝑚2 2.67𝑒7 𝑁𝑚2 900N 1.51𝑒7 𝑁𝑚2 3.01𝑒7 𝑁𝑚2 1000N 1.68𝑒7 𝑁𝑚2 3.34𝑒7 𝑁𝑚2 1100N 1.85𝑒7 𝑁𝑚2 3.67𝑒7 𝑁𝑚2 1200N 2.02𝑒7 𝑁𝑚2 4.01𝑒7 𝑁𝑚2 1300N 2.18𝑒7 𝑁𝑚2 4.34𝑒7 𝑁𝑚2 1400N 2.35𝑒7 𝑁𝑚2 4.68𝑒7 𝑁𝑚2 1500N 2.52𝑒7 𝑁𝑚2 5.01𝑒7 𝑁𝑚2 1600N (*) 2.69𝑒7 𝑁𝑚2 5.34𝑒7 𝑁𝑚2 1700N 2.86𝑒7 𝑁𝑚2 5.68𝑒7 𝑁𝑚2 1800N 3.02𝑒7 𝑁𝑚2 6.08𝑒7 𝑁𝑚2 1900N 3.19𝑒7 𝑁𝑚2 6.35𝑒7 𝑁𝑚2 2000N 3.36𝑒7 𝑁𝑚2 6.68𝑒7 𝑁𝑚2 (*) Atthispointthe structure collapsed,forcomparisonhoweverIcontinuedtoincrease the loadsso that I couldcompare the stresslevels inbothdirections. Since a table witha listof numberscan sometimesbe hardto analyse Ihave decidedtoplotthe informationintoagraph. As we can see fromthe chart, the stresslevelsare higherinthe Wplane than inthe L plane,alsothe maximumstressesare alsorespectivelyhigher.Asstatedinthe table forthe W plane the structure 0 10 20 30 40 50 60 70 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 VonMisesStress(×e6Nm2) Load (N) Von Mises Stress in both L and W planes Avg. Stress L Plane Max Stress L Plane Avg. Stress W Plane Max Stress W Plane
  • 5. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 5 of 9 failedat1600N but I continuedwiththe analysistocompare the twoplansaccurately.Itcan be seen that the stresslevelsare proportionaltothe loads. “ StevenKendell’sTests: “Finite ElementAnalysis To analyse the Honeycombmodel,IusedCATIA generativestructural analysisfeature.Before submittingmymodel intoFEA,Idefinedthe material propertiesfollowingthe specificationthatwas given.Totestthe honeycombstructure Isetthe meshsize to5mm. Firstof all I testedthe model in the L plane,placingloadsoneachof the 20 verticesonthe toprow of the honeycomb,Ithenset clampson the bottomrow. There wasa slightoffsetdue tothe staggerednature of the Model.I foundthe average andmaximumdisplacementof the honeycombatdifferentloads.The loadedand restrainedmodel isshowninFigure 2. Anothermaterial wasalsotested,“Aluminiumhoneycombis available infourdifferentalloys, aerospace grades5052 and5056, and commercial grades3104 and 3003.” (http://www.hexcel.com 10/12/15) The material Ichose to compare withAluminium3003 was Aluminium5056. The Physical properties of thisalloywasfoundusingthe MatWeb:Online MaterialsInformationResource.Figure3 highlightsthe physical propertiesthatwere necessarytocompute the analysis. Figure 2: Loadedand RestrainedModel.
  • 6. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 6 of 9 The difference inYieldstrengthwill allow forananalysisof the Honeycombswhere thereisa difference inthe plasticity. (http://www.matweb.com 10/12/15) The resultsof the finite elementanalysisof Aluminium3003 showedthatthe average andmaximum Vonmisesstresswas constantfor a given load,and wasnot dependantonthe aluminiumalloy.We founda linear relationshipbetweenVonmisesstressandthe force appliedtothe structure,the steepnessof the curve showsthe amountof stressexperiencedbythe model perLoadapplied.Figure4showsthat the curve withthe steepestgradientwasforthe max stressexperiencedbythe model whenthe load was appliedinthe Wdirection.Therefore,the model will experience plasticdeformationundera smallerloadthanif the loadwas appliedinthe L plane. The resultsthatoccurredfor Aluminium5052 were identical tothatof Aluminium3003, however the yieldstrengthof Aluminium5052 is 90MPa. Therefore a much greaterloadcan be appliedtothe honeycombbefore plasticdeformation takesplace. Youngs Modulus Yield Strength Aluminium 3003 69GPa 40MPa Aluminium 5056 71.0GPa 150MPa Figure 3: Physical Propertiesof AluminiumAlloys usedinAnalysis. FIGURE 4 FIGURE 5
  • 7. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 7 of 9 AbhishekDabas’s Results: Here are the resultsthatDean hasgathered. LAVG LMAX WAVG WMAX 100 1.08 2.15 3.21 6.42 200 2.15 4.3 6.43 12.9 300 3.23 6.45 9.64 19.3 400 4.3 8.6 12.9 25.7 500 5.38 10.8 16.1 32.1 600 6.46 12.9 19.3 38.5 700 7.53 15.1 22.5 44.9 800 8.61 17.2 25.7 51.4 900 9.68 19.4 28.9 57.8 1000 10.8 21.5 32.1 64.2 1100 11.8 23.7 35.3 70.6 1200 12.9 25.8 38.5 77 1300 14 28 41.8 83.5 1400 15.1 30.1 45 89.9 1500 16.1 32.3 48.2 96.3 1600 17.2 34.4 51.4 103 1700 18.3 36.6 54.6 109 1800 19.4 38.7 57.8 116 1900 20.4 40.9 61 122 2000 21.5 43 64.2 128 0 20 40 60 80 100 120 140 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 VonMises(MPa) Loads (N) Von Mises Stress (Dean) Avg Von Mises L Direction Max Von Mises L Direction Avg Von Mises W Direction Max Von Mises W Direction
  • 8. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 8 of 9 As youcan see the graph showsthat there isa linearrelationbetweenloadandVonMisesstress levels. Comparisonof the FEA’s The four differentsetsof dataallow usto make a strongcomparisonbetweenthe loadand the VonMisesstressvalues.Althoughthe testswere carriedoutbydifferentpeopleindifferent waysand had the unitsgivenindifferentways,we cansaythat there isdefinitelyalinearrelation betweenthe Loadandthe comparative VonMisesstress.Each of the graphs show a roughlystraight line increasingfromlefttoright,since eachof the graphsshow the same linearpatternwe can conclude thatthe data gatheredare consistentatleastwitheachother. Startingwiththe L plane,we canconclude thatfor everyXnewtonloadamountthere will be a correspondingYvalue forthe VonMisesstress,thisvalue will be inthe formof Y=mX+c where bothm and c are constantsfor the equation butwhenthe loadisa 0N the stresslevel will be a0 as well therefore we canconclude thatc has a value of 0. Infact thisequation 𝑦 = 𝑚𝑥+ 𝑐 holdstrue for eachsetof data gathered,the onlydifference isinthe valuesof m,since c will alwaysbe 0when the loadis at 0N. It can be seenfromthe graphsthat the value form increasesaslookat different parts of the data,hence the graph. The bottomline inthe graph showsthe valuesforthe L plane at an average value forVonMisesstress,the secondline showsvaluesforthe L plane butthistime at the max value forVonMisesstress.The thirdline shows,however,the valuesforthe Wplane at the average value forVonMisesstressandthe fourthshowsthe valuesforthe W plane at the max value for VonMisesstress.Here we mustnote that there isa difference inthe gradientof the line forthe W plane comparedto the L plane inboth the average valuesandthe max valuesof VonMisesstress. In notingthiswe can begin tosay that there islessstructural stabilityinthe Wplane thaninthe L plane,thiscanbe saidbecause itcan clearlybe seenthatthere are higherstressvaluesinthe W plane comparedtothe L plane.The reasonforthe lowerstructural stabilitycouldbe inthe factthat inthe L plane the vertical wallshave athicknessof 0.2mmwhereasinthe W plane the corresponding“vertical”wallsonlyhave athicknessof 0.1mm. There are waysthat we couldoptimise thisdesignbothinthe testingof the designandinits complete state.Firstlyfortestingwe couldaffix platestothe topand bottom, or to the leftandright handsides,of the structure and use those to fullydistribute the weightacrossthe whole structure, but the downside tothispotentialmethodwouldbe thatthiswouldcause anincrease inthe weight of the structure and itsstability,the ideabehindthe honeycombstructure isthatitislightweight and flexibleinthe Land W planesbutrigidinthe T plane. Inthe designof the honeycombwe could make all vertical wallsineitherdirection0.2mmratherthanjust inthe L plane.Idon’tthinkthis wouldseriouslyincreasethe weightof the objectandit wouldgive comparable strengthinin compressioninboththe L plane andin the W plane. In Conclusion: Althougheachmemberof the groupcame at the task withdifferentideasandskillsetswe have all foundthat we have learnedsomethingnew whilstdoingthisproject.We managedtocreate a workinghoneycombstructure andwe all managedtotestit inFEA. Althoughourmethodsof creatingand testingwere differentwe foundthatthe resultsthatwe eachobtainedwere comparable whichwouldsuggestthatthe resultswere eitherthe same orsimilarenough. Onthe downside thoughwe were hopingtohave enoughtime tooptimisethe designandcreate abetter honeycombthanwhenwe started,butwithillnessesandpeopledroppingoutwe foundourselves
  • 9. CAD Report 104AAE Group Members: Adam Rush, Steven Kendell, Abhishek Dabas Page 9 of 9 out of time to do the optimisation,butwe canlearnfromthisfor the nextprojectthat we come to as a group. References: http://web.mae.ufl.edu: http://web.mae.ufl.edu/nkim/eas4200c/VonMisesCriterion.pdf (04/12/15) http://www.autodesk.com:http://www.autodesk.com/solutions/finite-element-analysis(10/12/15) http://www.hexcel.com:http://www.hexcel.com/Resources/DataSheets/Brochure-Data- Sheets/Honeycomb_Attributes_and_Properties.pdf (10/12/15) http://www.matweb.com:http://www.matweb.com/search/datasheet.aspx?matguid=aaaabe41a20 a4ed2b48270f7f2ef1b2d (10/12/15)