SlideShare a Scribd company logo
1 of 6
Download to read offline
FUEL INJECTION SYSTEM FOR CI ENGINES
The function of a fuel injection system is to meter the appropriate quantity of fuel for the given
engine speed and load to each cylinder, each cycle, and inject that fuel at the appropriate time in the
cycle at the desired rate with the spray configuration required for the particular combustion
chamber employed. It is important that injection begin and end cleanly, and avoid any secondary
injections. To accomplish this function, fuel is usually drawn from the fuel tank by a supply pump,
and forced through a filter to the injection pump. The injection pump sends fuel under pressure to
the nozzle pipes which carry fuel to the injector nozzles located in each cylinder head. Excess fuel
goes back to the fuel tank. CI engines are operated unthrottled, with engine speed and power
controlled by the amount of fuel injected during each cycle. This allows for high volumetric
efficiency at all speeds, with the intake system designed for very little flow restriction of the
incoming air.
FUNCTIONAL REQUIREMENTS OF AN INJECTION SYSTEM
For a proper running and good performance of the engine, the following requirements must be met
by the injection system:
• Accurate metering of the fuel injected per cycle. Metering errors may cause drastic variation
from the desired output. The quantity of the fuel metered should vary to meet changing speed
and load requirements of the engine.
• Correct timing of the injection of the fuel in the cycle so that maximum power is obtained.
• Proper control of rate of injection so that the desired heat-release pattern is achieved during
combustion.
• Proper atomization of fuel into very fine droplets.
• Proper spray pattern to ensure rapid mixing of fuel and air.
• Uniform distribution of fuel droplets throughout the combustion chamber
• To supply equal quantities of metered fuel to all cylinders in case of multi-cylinder engines.
• No lag during beginning and end of injection i.e., to eliminate dribbling of fuel droplets into the
cylinder.
TYPES OF INJECTION SYSTEMS
There are basically two types of injection systems: Air injection system and solid injection system.
Air Injection System: In this system, fuel is forced into the cylinder by means of compressed air.
This system is little used nowadays, because it requires a bulky multi-stage air compressor. This
causes an increase in engine weight and reduces the brake power output further. One advantage that
is claimed for the air injection system is good mixing of fuel with the air resulting in higher mean
effective pressure. Another advantage is its ability to utilize fuels of high viscosity which are less
expensive than those used by the engines with solid injection systems. These advantages are off-set
by the requirement of a multistage compressor thereby making the air-injection system obsolete.
Solid Injection System: In this system the liquid fuel is injected directly into the combustion
chamber without the aid of compressed air. Hence, it is also called airless mechanical injection or
solid injection system. It can be classified into four types.
i. Individual pump and nozzle system
ii. Unit injector system
iii. Common rail system
iv. Distributor system
Individual Pump and Nozzle System: In this system, each cylinder is provided with one pump and
one injector. A separate metering and compression pump is provided for each cylinder. The pump
may be placed close to the cylinder. The high pressure pump plunger is actuated by a cam, and
produces the fuel pressure necessary to open the injector valve at the correct time. The amount of
fuel injected depends on the effective stroke of the plunger.
Unit Injector System: In this system a pump and the injector nozzle are combined in one housing.
Each cylinder is provided with one of these unit injectors. Fuel is brought up to the injector by a
low pressure pump, where at the proper time, a rocker arm actuates the plunger and thus injects the
fuel into the cylinder. The amount of fuel injected is regulated by the effective stroke of the
plunger.
Common Rail System: In the common rail system, a HP pump supplies fuel, to a fuel header. High
pressure in the header forces the fuel to each of the nozzles located in the cylinders, at proper time.
A mechanically operated (by means of a push rod and rocker arm) valve allows the fuel to enter
the proper cylinder through the nozzle. The pressure in the fuel header must be so high it must
enable to penetrate and disperse the fuel in the combustion chamber. The amount of fuel entering
the cylinder is regulated by varying the length of the push rod stroke.
Distributor System: In this system the pump which pressurizes the fuel also meters and times it.
The fuel pump after metering the required amount of fuel is supplied to a rotating distributor at the
correct time for supply to each cylinder. The number of injection strokes per cycle for the pump is
equal to the number of cylinders. Since there is one metering element in each pump, a uniform
distribution is automatically ensured. Not only that, the cost of the fuel-injection system also
reduces.
COMPONENTS OF FUEL INJECTION SYSTEMS
All the above systems comprise mainly of the following components.
i. Fuel tank.
ii. Fuel feed pump to supply fuel from the main fuel tank to the injection system
iii. Injection pump to meter and pressurize the fuel for injection.
iv. Governor to ensure that the amount of fuel injected is in accordance with variation in load.
v. Injector to take the fuel from the pump and distribute it in the combustion chamber by
atomizing it into fine droplets.
vi. Fuel filters to prevent dust and abrasive particles from entering the pump and injectors
thereby minimizing the wear and tear of the components.
FUEL INJECTION SYSTEM
The fuel from the tank is filtered before passing to the pumps, and the metered fuel is then passed
to the injector which is fitted to the engine cylinder. The jerk pump system is the one which is used
almost universally over the whole range of oil engines. The jerk pump is a piece of precision
equipment, and consists of a barrel with plunger; the close fit is required to prevent leakage at the
high pressures.
The plunger is driven from the camshaft.
Fuel is injected into the engine cylinders toward the end of the compression stroke, just before the
desired start of combustion, by one or more injectors located in each cylinder combustion chamber.
The liquid fuel, usually injected at high velocity as one or more jets through small orifices or
nozzles in the injector tip, atomizes into small drops and penetrates into the combustion chamber.
Injection time is usually about 20 of crankshaft rotation, starting at about 15 bTDC and ending
about 5 aTDC. Fuel vaporizes and mixes with the high-temperature high-pressure cylinder air.
Swirl and turbulence of the air is needed to spread the fuel throughout the cylinder and cause it to
mix with the air. Since the air temperature and pressure are above the fuel’s ignition point,
spontaneous ignition of portions of the already-mixed fuel and air occurs after a delay period of a
few crank angle degrees.
Ignition Delay: is the time lapsed from the issuance of the spray pulse by the pump to the
commencement of regular ignition/combustion. Typically = 0.6 to 0.7 ms.
Ignition Delay = Mechanical delay + Chemical delay
Mechanical Delay is the time lapsed from the issuance of the spray pulse by the pump to the start of
fuel injection. Chemical Delay is the time lapsed from the start of fuel injection to the start of
regular combustion. It dominantly depends on fuel properties.
Ignition delay is fairly constant in real time, so at higher engine speeds fuel injection must be
started slightly earlier in the cycle. As it takes a short period of time for the fuel to evaporate, mix
with air, and then self-ignite, so combustion starts shortly before TDC. The cylinder pressure
increases as combustion of the fuel-air mixture occurs. The consequent compression of the
unburned portions of the charge shortens the delay before ignition for the fuel and air which has
mixed to within combustible limits, which then burns rapidly. It also reduces the evaporation time
of the remaining liquid fuel. Injection continues until the desired amount of fuel has entered the
cylinder. Atomization, vaporization, fuel-air mixing, and combustion continue until essentially all
the fuel has passed through each process. In addition, mixing of the air remaining in the cylinder
with burning and already burned gases continues throughout the combustion and expansion
processes. A distribution of fuel droplet sizes is desirable so that the start of combustion of all fuel
particles is not simultaneous, but is spread over a short period of cycle time. This slows the start of
the pressure pulse on the piston and gives smoother engine operation. Time duration of injection in
a CI engine must be much higher than that in SI engines. Injection pressure for CI engines must be
much higher than that required for SI engines. The cylinder pressure into which the fuel is first
injected is very high near the end of the compression stroke, due to high compression ratio of CI
engines. By the time the final fuel is injected, peak pressure during combustion is being
experienced. Pressure must be high enough so that fuel spray will penetrate across the entire
combustion chamber. The fuel is introduced into the cylinder of a diesel engine through a nozzle
with a large pressure differential across the nozzle orifice. The cylinder pressure at injection is
typically in the range 50 to 100 atmospheres. Fuel injection pressures in the range of 200 to 2000
atmospheres are used depending on the engine size and type of combustion system employed.
These large pressure differences across the injector nozzle are required so that the injected liquid
fuel jet will enter the chamber at sufficiently high velocity to
(a) Fuel sucked in (b) Fuel compressed into injector
(c) delivery ends and plunger completes stroke
(d) the engine is stopped when the plunger is rotated
so the angular groove meets the spillway port just
1) atomize into small-sized droplets to enable rapid evaporation and
2) traverse the combustion chamber in the time available and fully utilize the air charge.
Average fuel droplet size generally decreases with increasing pressure. Orifice hole size of injectors
is typically in the range of 0.2 to 1.0 mm diameter. It is desirable that the crank angle of rotation
through which injection take place be almost constant for all speeds. To do this, as engine speed
changes, requires that injection pressure be related to speed. It requires very high injector pressure
at higher engine speeds. On some modern injectors, orifice flow area can be varied some to allow
greater flow at higher speeds. Big, slow engines with large open combustion chambers have low air
motion and turbulence within the cylinder. The injector is mounted near the center of the chamber,
often with five or six orifices to spray over the entire chamber. Because of the low turbulence,
evaporation and mixing are slower and real time between start of injection and start of combustion
is longer. However, engine speed is slower, so injection timing in cycle time is about the same.
Large engine must have vary high injection pressure and high spray velocity. With lower air motion
and turbulence, high liquid spray velocity is needed to enhance evaporation and mixing. Also, high
velocity is needed to assure that some spray reaches fully across the large combustion chamber.
Injector with multiple orifices require higher pressure to obtain the same injection velocity and
penetration distance. Fuel velocity leaving the injector is usually about 100 to 200 m/s but it can be
as high as 250 m/s. However, viscous drag, evaporation and combustion chamber swirl reduce this
very quickly. For optimum fuel viscosity and spray penetration, it is important to have fuel at
correct temperature. Often, engines are equipped with temperature sensors and means of heating or
cooling the incoming fuel. The vapor jet extends past the liquid jet and ideally just reaches the far
walls of the combustion chambers. Evaporation occurs on the outside of the fuel jet while the center
remains liquid.
Figure shows how the inner liquid core is surrounded by successive vapor zones of air-fuel that are:
A: too rich to burn B: rich combustible
C: stoichiometric D: lean combustible
E: too lean to burn Self-ignition starts mainly in zone B. Solid carbon soot is generated mostly
in zones A and B.
Liquid drop diameter size leaving the injector is on the order of 0.01 mm and smaller, generally
with some normal distribution of sizes. Factors that affect droplet size include pressure differential
across the nozzle, nozzle size and geometry, fuel properties, and air temperature and turbulence.
Higher nozzle pressure differentials give smaller droplets. Small high-speed engines need much
faster evaporation and mixing of the fuel due to shorter real time available during the cycle. This
occurs because of the high turbulence and motion within the cylinder caused by high engine speed.
As speed is increased, the level of turbulence and air motion increases. This increases evaporation
and mixing and shortens ignition delay, resulting in fairly constant injection timing for all speeds.
Injectors with high swirl are designed to spray the fuel jet against the cylinder wall. This speeds the
evaporation process but can only be done in those engines that operate with very hot walls. This
practice is not needed and should not be done with large engines operating at slower speeds. These
have low swirl and cooler walls, which would not evaporate the fuel efficiently. This would lead to
high specific fuel consumption and high HC emissions in the exhaust.
Example:
An automobile has a 3.2-liter, five-cylinder, four stroke cycle diesel engine operating at 2400 RPM.
Fuel injection occurs from 20° bTDC to 5° aTDC. The engine has a volumetric efficiency of 0.95
and operates with fuel equivalence ratio of 0.80. Light diesel fuel is used. Calculate
1. time for one injection
2. fuel flow rate through an injector
Solution:
For one cylinder for one cycle:
The mass of the air:
The mass of fuel needed:
1. Time for injection:
2. Injection rate:

More Related Content

Similar to ICE_Handout(5) for CI fuel injection.pdf

Qip ice-12-fuel injection systems
Qip ice-12-fuel injection systemsQip ice-12-fuel injection systems
Qip ice-12-fuel injection systemsJaydip Yadav
 
CIE injection ver 3 spring 2100000.ppsx
CIE injection  ver 3 spring 2100000.ppsxCIE injection  ver 3 spring 2100000.ppsx
CIE injection ver 3 spring 2100000.ppsxBfhfHdhg
 
unit-2-COMPRESSION IGNITION engine system
unit-2-COMPRESSION IGNITION engine systemunit-2-COMPRESSION IGNITION engine system
unit-2-COMPRESSION IGNITION engine systemsamy709581
 
Diesel Automotive Engines Chapter 14.ppt
Diesel Automotive Engines Chapter 14.pptDiesel Automotive Engines Chapter 14.ppt
Diesel Automotive Engines Chapter 14.pptSandeepNikhil1
 
Fuel oil system.ppt-1
Fuel oil system.ppt-1Fuel oil system.ppt-1
Fuel oil system.ppt-1srinivas401
 
Electronic fuel injection vs carburettors
Electronic fuel injection vs carburettorsElectronic fuel injection vs carburettors
Electronic fuel injection vs carburettorsSalman Ahmed
 
AUTOMOBILE ENGINEERING
AUTOMOBILE ENGINEERINGAUTOMOBILE ENGINEERING
AUTOMOBILE ENGINEERINGDr.S.SURESH
 
ppt of fuel injection system
ppt of fuel injection systemppt of fuel injection system
ppt of fuel injection systemAyush Upadhyay
 
2161902150123119053-170323180029.pdf
2161902150123119053-170323180029.pdf2161902150123119053-170323180029.pdf
2161902150123119053-170323180029.pdfWondererBack
 
Electronic fuel injection
Electronic fuel injectionElectronic fuel injection
Electronic fuel injectiongurprits2
 
Piston Engines: Fuel
Piston Engines: FuelPiston Engines: Fuel
Piston Engines: FuelJess Peters
 

Similar to ICE_Handout(5) for CI fuel injection.pdf (20)

UnitII updated.pptx
UnitII updated.pptxUnitII updated.pptx
UnitII updated.pptx
 
Qip ice-12-fuel injection systems
Qip ice-12-fuel injection systemsQip ice-12-fuel injection systems
Qip ice-12-fuel injection systems
 
pptmpfi.pptx
pptmpfi.pptxpptmpfi.pptx
pptmpfi.pptx
 
CIE injection ver 3 spring 2100000.ppsx
CIE injection  ver 3 spring 2100000.ppsxCIE injection  ver 3 spring 2100000.ppsx
CIE injection ver 3 spring 2100000.ppsx
 
AICE-Unit 2
AICE-Unit   2AICE-Unit   2
AICE-Unit 2
 
unit-2-COMPRESSION IGNITION engine system
unit-2-COMPRESSION IGNITION engine systemunit-2-COMPRESSION IGNITION engine system
unit-2-COMPRESSION IGNITION engine system
 
Diesel Automotive Engines Chapter 14.ppt
Diesel Automotive Engines Chapter 14.pptDiesel Automotive Engines Chapter 14.ppt
Diesel Automotive Engines Chapter 14.ppt
 
Fuel oil system.ppt-1
Fuel oil system.ppt-1Fuel oil system.ppt-1
Fuel oil system.ppt-1
 
Fuel injectors ppt
Fuel injectors pptFuel injectors ppt
Fuel injectors ppt
 
Electronic fuel injection vs carburettors
Electronic fuel injection vs carburettorsElectronic fuel injection vs carburettors
Electronic fuel injection vs carburettors
 
Unit 2.pdf
Unit 2.pdfUnit 2.pdf
Unit 2.pdf
 
AUTOMOBILE ENGINEERING
AUTOMOBILE ENGINEERINGAUTOMOBILE ENGINEERING
AUTOMOBILE ENGINEERING
 
Fuel injection in ci engines
Fuel injection in ci enginesFuel injection in ci engines
Fuel injection in ci engines
 
ppt of fuel injection system
ppt of fuel injection systemppt of fuel injection system
ppt of fuel injection system
 
2161902150123119053-170323180029.pdf
2161902150123119053-170323180029.pdf2161902150123119053-170323180029.pdf
2161902150123119053-170323180029.pdf
 
UNIT 3 -CHAP 3.pptx
UNIT 3 -CHAP 3.pptxUNIT 3 -CHAP 3.pptx
UNIT 3 -CHAP 3.pptx
 
2 fuel-supply-systems
2 fuel-supply-systems2 fuel-supply-systems
2 fuel-supply-systems
 
Automobile unit 2 Engine Auxiliary Systems
Automobile unit 2   Engine Auxiliary SystemsAutomobile unit 2   Engine Auxiliary Systems
Automobile unit 2 Engine Auxiliary Systems
 
Electronic fuel injection
Electronic fuel injectionElectronic fuel injection
Electronic fuel injection
 
Piston Engines: Fuel
Piston Engines: FuelPiston Engines: Fuel
Piston Engines: Fuel
 

Recently uploaded

BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024AHOhOops1
 
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一F La
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsMihajloManjak
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证jjrehjwj11gg
 
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHER
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHERUNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHER
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHERunosafeads
 
办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一mkfnjj
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsFifth Gear Automotive
 
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607dollysharma2066
 
Independent Andheri Call Girls 9833363713
Independent Andheri Call Girls 9833363713Independent Andheri Call Girls 9833363713
Independent Andheri Call Girls 9833363713Komal Khan
 
907MTAMount Coventry University Bachelor's Diploma in Engineering
907MTAMount Coventry University Bachelor's Diploma in Engineering907MTAMount Coventry University Bachelor's Diploma in Engineering
907MTAMount Coventry University Bachelor's Diploma in EngineeringFi sss
 
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样gfghbihg
 
Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company PresentationMihajloManjak
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESDineshKumar4165
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一fhhkjh
 
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxUNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxDineshKumar4165
 
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 HybridHyundai Motor Group
 
VDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesVDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesKannanDN
 
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 

Recently uploaded (20)

BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024BLUE VEHICLES the kids picture show 2024
BLUE VEHICLES the kids picture show 2024
 
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Servicesauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
 
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
办理(PITT毕业证书)美国匹兹堡大学毕业证成绩单原版一比一
 
Digamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and QualificationsDigamma - CertiCon Team Skills and Qualifications
Digamma - CertiCon Team Skills and Qualifications
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
 
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHER
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHERUNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHER
UNOSAFE ELEVATOR PRIVATE LTD BANGALORE BROUCHER
 
办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一办理埃默里大学毕业证Emory毕业证原版一比一
办理埃默里大学毕业证Emory毕业证原版一比一
 
Not Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These SymptomsNot Sure About VW EGR Valve Health Look For These Symptoms
Not Sure About VW EGR Valve Health Look For These Symptoms
 
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607
( Best ) Genuine Call Girls In Mandi House =DELHI-| 8377087607
 
Independent Andheri Call Girls 9833363713
Independent Andheri Call Girls 9833363713Independent Andheri Call Girls 9833363713
Independent Andheri Call Girls 9833363713
 
907MTAMount Coventry University Bachelor's Diploma in Engineering
907MTAMount Coventry University Bachelor's Diploma in Engineering907MTAMount Coventry University Bachelor's Diploma in Engineering
907MTAMount Coventry University Bachelor's Diploma in Engineering
 
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
 
Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company Presentation
 
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLESUNIT-III-TRANSMISSION SYSTEMS REAR AXLES
UNIT-III-TRANSMISSION SYSTEMS REAR AXLES
 
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
定制(Plymouth文凭证书)普利茅斯大学毕业证毕业证成绩单学历认证原版一比一
 
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptxUNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
UNIT-IV-STEERING, BRAKES AND SUSPENSION SYSTEMS.pptx
 
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
 
VDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive IndustriesVDA 6.3 Process Approach in Automotive Industries
VDA 6.3 Process Approach in Automotive Industries
 
Call Girls In Kirti Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Kirti Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICECall Girls In Kirti Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Kirti Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
 
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Jama Masjid (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 

ICE_Handout(5) for CI fuel injection.pdf

  • 1. FUEL INJECTION SYSTEM FOR CI ENGINES The function of a fuel injection system is to meter the appropriate quantity of fuel for the given engine speed and load to each cylinder, each cycle, and inject that fuel at the appropriate time in the cycle at the desired rate with the spray configuration required for the particular combustion chamber employed. It is important that injection begin and end cleanly, and avoid any secondary injections. To accomplish this function, fuel is usually drawn from the fuel tank by a supply pump, and forced through a filter to the injection pump. The injection pump sends fuel under pressure to the nozzle pipes which carry fuel to the injector nozzles located in each cylinder head. Excess fuel goes back to the fuel tank. CI engines are operated unthrottled, with engine speed and power controlled by the amount of fuel injected during each cycle. This allows for high volumetric efficiency at all speeds, with the intake system designed for very little flow restriction of the incoming air. FUNCTIONAL REQUIREMENTS OF AN INJECTION SYSTEM For a proper running and good performance of the engine, the following requirements must be met by the injection system: • Accurate metering of the fuel injected per cycle. Metering errors may cause drastic variation from the desired output. The quantity of the fuel metered should vary to meet changing speed and load requirements of the engine. • Correct timing of the injection of the fuel in the cycle so that maximum power is obtained. • Proper control of rate of injection so that the desired heat-release pattern is achieved during combustion. • Proper atomization of fuel into very fine droplets. • Proper spray pattern to ensure rapid mixing of fuel and air. • Uniform distribution of fuel droplets throughout the combustion chamber • To supply equal quantities of metered fuel to all cylinders in case of multi-cylinder engines. • No lag during beginning and end of injection i.e., to eliminate dribbling of fuel droplets into the cylinder. TYPES OF INJECTION SYSTEMS There are basically two types of injection systems: Air injection system and solid injection system. Air Injection System: In this system, fuel is forced into the cylinder by means of compressed air. This system is little used nowadays, because it requires a bulky multi-stage air compressor. This causes an increase in engine weight and reduces the brake power output further. One advantage that is claimed for the air injection system is good mixing of fuel with the air resulting in higher mean effective pressure. Another advantage is its ability to utilize fuels of high viscosity which are less expensive than those used by the engines with solid injection systems. These advantages are off-set by the requirement of a multistage compressor thereby making the air-injection system obsolete. Solid Injection System: In this system the liquid fuel is injected directly into the combustion chamber without the aid of compressed air. Hence, it is also called airless mechanical injection or solid injection system. It can be classified into four types. i. Individual pump and nozzle system ii. Unit injector system iii. Common rail system iv. Distributor system Individual Pump and Nozzle System: In this system, each cylinder is provided with one pump and one injector. A separate metering and compression pump is provided for each cylinder. The pump may be placed close to the cylinder. The high pressure pump plunger is actuated by a cam, and produces the fuel pressure necessary to open the injector valve at the correct time. The amount of fuel injected depends on the effective stroke of the plunger.
  • 2. Unit Injector System: In this system a pump and the injector nozzle are combined in one housing. Each cylinder is provided with one of these unit injectors. Fuel is brought up to the injector by a low pressure pump, where at the proper time, a rocker arm actuates the plunger and thus injects the fuel into the cylinder. The amount of fuel injected is regulated by the effective stroke of the plunger. Common Rail System: In the common rail system, a HP pump supplies fuel, to a fuel header. High pressure in the header forces the fuel to each of the nozzles located in the cylinders, at proper time. A mechanically operated (by means of a push rod and rocker arm) valve allows the fuel to enter the proper cylinder through the nozzle. The pressure in the fuel header must be so high it must enable to penetrate and disperse the fuel in the combustion chamber. The amount of fuel entering the cylinder is regulated by varying the length of the push rod stroke. Distributor System: In this system the pump which pressurizes the fuel also meters and times it. The fuel pump after metering the required amount of fuel is supplied to a rotating distributor at the correct time for supply to each cylinder. The number of injection strokes per cycle for the pump is equal to the number of cylinders. Since there is one metering element in each pump, a uniform distribution is automatically ensured. Not only that, the cost of the fuel-injection system also reduces.
  • 3. COMPONENTS OF FUEL INJECTION SYSTEMS All the above systems comprise mainly of the following components. i. Fuel tank. ii. Fuel feed pump to supply fuel from the main fuel tank to the injection system iii. Injection pump to meter and pressurize the fuel for injection. iv. Governor to ensure that the amount of fuel injected is in accordance with variation in load. v. Injector to take the fuel from the pump and distribute it in the combustion chamber by atomizing it into fine droplets. vi. Fuel filters to prevent dust and abrasive particles from entering the pump and injectors thereby minimizing the wear and tear of the components. FUEL INJECTION SYSTEM The fuel from the tank is filtered before passing to the pumps, and the metered fuel is then passed to the injector which is fitted to the engine cylinder. The jerk pump system is the one which is used almost universally over the whole range of oil engines. The jerk pump is a piece of precision equipment, and consists of a barrel with plunger; the close fit is required to prevent leakage at the high pressures.
  • 4. The plunger is driven from the camshaft. Fuel is injected into the engine cylinders toward the end of the compression stroke, just before the desired start of combustion, by one or more injectors located in each cylinder combustion chamber. The liquid fuel, usually injected at high velocity as one or more jets through small orifices or nozzles in the injector tip, atomizes into small drops and penetrates into the combustion chamber. Injection time is usually about 20 of crankshaft rotation, starting at about 15 bTDC and ending about 5 aTDC. Fuel vaporizes and mixes with the high-temperature high-pressure cylinder air. Swirl and turbulence of the air is needed to spread the fuel throughout the cylinder and cause it to mix with the air. Since the air temperature and pressure are above the fuel’s ignition point, spontaneous ignition of portions of the already-mixed fuel and air occurs after a delay period of a few crank angle degrees. Ignition Delay: is the time lapsed from the issuance of the spray pulse by the pump to the commencement of regular ignition/combustion. Typically = 0.6 to 0.7 ms. Ignition Delay = Mechanical delay + Chemical delay Mechanical Delay is the time lapsed from the issuance of the spray pulse by the pump to the start of fuel injection. Chemical Delay is the time lapsed from the start of fuel injection to the start of regular combustion. It dominantly depends on fuel properties. Ignition delay is fairly constant in real time, so at higher engine speeds fuel injection must be started slightly earlier in the cycle. As it takes a short period of time for the fuel to evaporate, mix with air, and then self-ignite, so combustion starts shortly before TDC. The cylinder pressure increases as combustion of the fuel-air mixture occurs. The consequent compression of the unburned portions of the charge shortens the delay before ignition for the fuel and air which has mixed to within combustible limits, which then burns rapidly. It also reduces the evaporation time of the remaining liquid fuel. Injection continues until the desired amount of fuel has entered the cylinder. Atomization, vaporization, fuel-air mixing, and combustion continue until essentially all the fuel has passed through each process. In addition, mixing of the air remaining in the cylinder with burning and already burned gases continues throughout the combustion and expansion processes. A distribution of fuel droplet sizes is desirable so that the start of combustion of all fuel particles is not simultaneous, but is spread over a short period of cycle time. This slows the start of the pressure pulse on the piston and gives smoother engine operation. Time duration of injection in a CI engine must be much higher than that in SI engines. Injection pressure for CI engines must be much higher than that required for SI engines. The cylinder pressure into which the fuel is first injected is very high near the end of the compression stroke, due to high compression ratio of CI engines. By the time the final fuel is injected, peak pressure during combustion is being experienced. Pressure must be high enough so that fuel spray will penetrate across the entire combustion chamber. The fuel is introduced into the cylinder of a diesel engine through a nozzle with a large pressure differential across the nozzle orifice. The cylinder pressure at injection is typically in the range 50 to 100 atmospheres. Fuel injection pressures in the range of 200 to 2000 atmospheres are used depending on the engine size and type of combustion system employed. These large pressure differences across the injector nozzle are required so that the injected liquid fuel jet will enter the chamber at sufficiently high velocity to (a) Fuel sucked in (b) Fuel compressed into injector (c) delivery ends and plunger completes stroke (d) the engine is stopped when the plunger is rotated so the angular groove meets the spillway port just
  • 5. 1) atomize into small-sized droplets to enable rapid evaporation and 2) traverse the combustion chamber in the time available and fully utilize the air charge. Average fuel droplet size generally decreases with increasing pressure. Orifice hole size of injectors is typically in the range of 0.2 to 1.0 mm diameter. It is desirable that the crank angle of rotation through which injection take place be almost constant for all speeds. To do this, as engine speed changes, requires that injection pressure be related to speed. It requires very high injector pressure at higher engine speeds. On some modern injectors, orifice flow area can be varied some to allow greater flow at higher speeds. Big, slow engines with large open combustion chambers have low air motion and turbulence within the cylinder. The injector is mounted near the center of the chamber, often with five or six orifices to spray over the entire chamber. Because of the low turbulence, evaporation and mixing are slower and real time between start of injection and start of combustion is longer. However, engine speed is slower, so injection timing in cycle time is about the same. Large engine must have vary high injection pressure and high spray velocity. With lower air motion and turbulence, high liquid spray velocity is needed to enhance evaporation and mixing. Also, high velocity is needed to assure that some spray reaches fully across the large combustion chamber. Injector with multiple orifices require higher pressure to obtain the same injection velocity and penetration distance. Fuel velocity leaving the injector is usually about 100 to 200 m/s but it can be as high as 250 m/s. However, viscous drag, evaporation and combustion chamber swirl reduce this very quickly. For optimum fuel viscosity and spray penetration, it is important to have fuel at correct temperature. Often, engines are equipped with temperature sensors and means of heating or cooling the incoming fuel. The vapor jet extends past the liquid jet and ideally just reaches the far walls of the combustion chambers. Evaporation occurs on the outside of the fuel jet while the center remains liquid. Figure shows how the inner liquid core is surrounded by successive vapor zones of air-fuel that are: A: too rich to burn B: rich combustible C: stoichiometric D: lean combustible E: too lean to burn Self-ignition starts mainly in zone B. Solid carbon soot is generated mostly in zones A and B.
  • 6. Liquid drop diameter size leaving the injector is on the order of 0.01 mm and smaller, generally with some normal distribution of sizes. Factors that affect droplet size include pressure differential across the nozzle, nozzle size and geometry, fuel properties, and air temperature and turbulence. Higher nozzle pressure differentials give smaller droplets. Small high-speed engines need much faster evaporation and mixing of the fuel due to shorter real time available during the cycle. This occurs because of the high turbulence and motion within the cylinder caused by high engine speed. As speed is increased, the level of turbulence and air motion increases. This increases evaporation and mixing and shortens ignition delay, resulting in fairly constant injection timing for all speeds. Injectors with high swirl are designed to spray the fuel jet against the cylinder wall. This speeds the evaporation process but can only be done in those engines that operate with very hot walls. This practice is not needed and should not be done with large engines operating at slower speeds. These have low swirl and cooler walls, which would not evaporate the fuel efficiently. This would lead to high specific fuel consumption and high HC emissions in the exhaust. Example: An automobile has a 3.2-liter, five-cylinder, four stroke cycle diesel engine operating at 2400 RPM. Fuel injection occurs from 20° bTDC to 5° aTDC. The engine has a volumetric efficiency of 0.95 and operates with fuel equivalence ratio of 0.80. Light diesel fuel is used. Calculate 1. time for one injection 2. fuel flow rate through an injector Solution: For one cylinder for one cycle: The mass of the air: The mass of fuel needed: 1. Time for injection: 2. Injection rate: