Introducing to Datamining vs. OLAP - مقدمه و مقایسه ای بر داده کاوی و تحلیل روی خط

951 views
766 views

Published on

این فایل مقدمه ای بر شناسائی و مقایسه میان داده کاوی و تحلیل روی خط است که با شناسائی وجوه تشابه و تناظر میان این دو ابزار به رابطه تکمیل کننده این دو دانش و تکنیک می پردازد.

Published in: Business, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
951
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
72
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • This presentation demonstrates the new capabilities of PowerPoint and it is best viewed in Slide Show. These slides are designed to give you great ideas for the presentations you’ll create in PowerPoint 2010!For more sample templates, click the File tab, and then on the New tab, click Sample Templates.
  • Introducing to Datamining vs. OLAP - مقدمه و مقایسه ای بر داده کاوی و تحلیل روی خط

    1. 1. Yousef Asgari – DBM OLAP & Data Mining (DBM)
    2. 2. OLAP Data Mining OLAP Relationship
    3. 3. Data Mining Engine
    4. 4. DataMiningLifeCycle - - - - -
    5. 5. - - - - -
    6. 6. OLAP
    7. 7. Introduction -(Data Warehouse) -(OLTP) -(OLAP) -(BI)
    8. 8. Data Warehouse - - - -
    9. 9. (W. H. Inmon) Data warehousing: The process of constructing and using data warehouses Data Warehouse
    10. 10. Data Warehouse /Subject-Oriented - - -
    11. 11. Data Warehouse /Integrated - - - - -
    12. 12. Data Warehouse /Time Variant - - - - - -
    13. 13. Data Warehouse /Nonvolatile - - - -
    14. 14.   OLAP 
    15. 15. •(OLTP) – – •(OLAP) – – •(OLTP vs. OLAP) – – – – –
    16. 16. OLAPOLTP OLTP OLAP users clerk, IT professional knowledge worker function day to day operations decision support DB design application-oriented subject-oriented data current, up-to-date detailed, flat relational isolated historical, summarized, multidimensional integrated, consolidated usage repetitive ad-hoc access read/write index/hash on prim. key lots of scans unit of work short, simple transaction complex query # records accessed tens millions #users thousands hundreds DB size 100MB-GB 100GB-TB metric transaction throughput query throughput, response
    17. 17. OLAP OLAP OLAP OLAP
    18. 18.     OLAP
    19. 19. Yousef Asgari – DBM OLAP • • • 0-D
    20. 20. Yousef Asgari – DBM • OLAP (Region) Dimensions: Product, Location, Time Hierarchical summarization paths Industry Region Year Category Country Quarter Item City Month Week Office Day
    21. 21. Yousef Asgari – DBM OLAP
    22. 22. Yousef Asgari – DBM OLAP time,product time,product,location time, product, location, supplier all time product location supplier time,location time,supplier product, location product,supplier location,supplier time,product,supplier time,location,supplier product,location,supplier 0-D(apex) cuboid 1-D cuboids 2-D cuboids 3-D cuboids 4-D(base) cuboid
    23. 23. OLAP  Roll up(Drill-up): Summarize data  Drill down (roll down): reverse of roll-up  Slice and dice: project and select  Pivot (rotate):
    24. 24. (DM vs. OLAP)
    25. 25. Broadcast and compress for seamless delivery
    26. 26. » » » OLAP & Data Mining
    27. 27. »(OLAP & DM) »OLAP » OLAP » OLAP OLAP & Data Mining
    28. 28. »OLAP(BI) » » »OLAP OLAP & Data Mining
    29. 29. »OLAP »OLAP »OLAP »OLAP OLAP & Data Mining
    30. 30. Yousef Asgari – DBM Record your presentation with Create a Video and capture narrations, animations, media, and much more. Upload, embed, and share away!
    31. 31. For a media-rich presentation, you can Optimize for Compatibility or Compress Media to share your presentation reliably without exploding your inbox Spread the Message! Package your presentation for easy sharing
    32. 32. ? But wait… There’s More! View your slides from anywhere!
    33. 33. » Check out the PowerPoint Web App » Access slides wherever you are Access Anywhere
    34. 34. What’s Your Message?POWERPOINT 2010

    ×