SlideShare a Scribd company logo
1 of 272
Teaching the Arithmetic Facts Using
          Strategies and Games
                     by Joan A. Cotter, Ph.D.
                   JoanCotter@RightStartMath.com


         MCTM
       May 4, 2012
     Duluth, Minnesota



               7         3       8    16   24      32   40



PowerPoint Presentation & Handout
 RightStartMath.com >Resources                          © Joan A. Cotter, Ph.D., 2012
Learning the Facts




                     © Joan A. Cotter, Ph.D., 2012
Learning the Facts
Limited success when:
• Based on counting.
    Whether dots, fingers, number lines, or
    counting words.




                                              © Joan A. Cotter, Ph.D., 2012
Learning the Facts
Limited success when:
• Based on counting.
    Whether dots, fingers, number lines, or
    counting words.

• Based on rote memory.
    Whether by flash cards or timed tests.




                                              © Joan A. Cotter, Ph.D., 2012
Learning the Facts
Limited success when:
• Based on counting.
    Whether dots, fingers, number lines, or
    counting words.

• Based on rote memory.
    Whether by flash cards or timed tests.

• Based on skip counting for multiplication facts.


                                              © Joan A. Cotter, Ph.D., 2012
Counting Model
From a child's perspective




                             © Joan A. Cotter, Ph.D., 2012
Counting Model
            From a child's perspective


Because we’re so familiar with 1, 2, 3, we’ll use letters.


               A=1
               B=2
               C=3
               D=4
               E = 5, and so forth



                                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
From a child's perspective

           F
          +E




                             © Joan A. Cotter, Ph.D., 2012
Counting Model
    From a child's perspective

               F
              +E


A




                                 © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                   F
                  +E


A   B




                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                   F
                  +E


A   B    C




                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E


A   B    C   D   E   F




                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E


A   B    C   D   E   F    A




                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E


A   B    C   D   E   F    A   B




                                     © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E


A   B    C   D   E   F    A   B   C   D   E




                                          © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E


A   B    C   D   E   F    A   B    C   D   E

            What is the sum?
          (It must be a letter.)
                                           © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

                      F
                     +E
                      K

A   B    C   D   E   F    G   H   I   J   K




                                          © Joan A. Cotter, Ph.D., 2012
Counting Model
From a child's perspective

           E
          +G




 Add with your fingers.

                             © Joan A. Cotter, Ph.D., 2012
Counting Model
From a child's perspective

           H
          +D




Add without your fingers.

                             © Joan A. Cotter, Ph.D., 2012
Counting Model
  From a child's perspective

Now memorize the facts!!


             G
            +D



                               © Joan A. Cotter, Ph.D., 2012
Counting Model
  From a child's perspective

Now memorize the facts!!




                               H
                           +
             G




                               F
            +D



                                   © Joan A. Cotter, Ph.D., 2012
Counting Model
  From a child's perspective

Now memorize the facts!!




                               H
                           +
             G




                               F
            +D
 D
+C
                                   © Joan A. Cotter, Ph.D., 2012
Counting Model
  From a child's perspective

Now memorize the facts!!




                               H
                           +
             G




                               F
            +D
 D                      C
+C                     +G
                                   © Joan A. Cotter, Ph.D., 2012
Counting Model
        From a child's perspective

    Now memorize the facts!!




                                     H
E




                                 +
                   G
    I




                                     F
+



                  +D
     D                        C
    +C                       +G
                                         © Joan A. Cotter, Ph.D., 2012
Counting Model
 From a child's perspective

            H
           –E



Subtract with your fingers.


                              © Joan A. Cotter, Ph.D., 2012
Counting Model
     From a child's perspective

                 J
                –F



Subtract without using your fingers.


                                       © Joan A. Cotter, Ph.D., 2012
Counting Model
      From a child's perspective


Try skip counting by B’s to T:
    B, D, . . . T.




                                   © Joan A. Cotter, Ph.D., 2012
Counting Model
      From a child's perspective


Try skip counting by B’s to T:
    B, D, . . . T.

What is D x E?



                                   © Joan A. Cotter, Ph.D., 2012
Memorizing Math




                  © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math
Some research:

                 Percentage Recall
          Immediately After 1 day After 4 wks
Rote         32           23           8
Concept      69           69          58




                                        © Joan A. Cotter, Ph.D., 2012
Memorizing Math       9
                              +7
Flash cards:




                           © Joan A. Cotter, Ph.D., 2012
Memorizing Math            9
                                     +7
Flash cards:
• Are often used to teach rote.




                                  © Joan A. Cotter, Ph.D., 2012
Memorizing Math                      9
                                               +7
Flash cards:
• Are often used to teach rote.
• Are liked by those who don’t need them.




                                            © Joan A. Cotter, Ph.D., 2012
Memorizing Math                       9
                                                +7
Flash cards:
• Are often used to teach rote.
• Are liked by those who don’t need them.
• Don’t work for those with learning disabilities.




                                             © Joan A. Cotter, Ph.D., 2012
Memorizing Math                       9
                                                +7
Flash cards:
• Are often used to teach rote.
• Are liked by those who don’t need them.
• Don’t work for those with learning disabilities.
• Give the false impression that math isn’t about
thinking.




                                             © Joan A. Cotter, Ph.D., 2012
Memorizing Math                       9
                                                +7
Flash cards:
• Are often used to teach rote.
• Are liked by those who don’t need them.
• Don’t work for those with learning disabilities.
• Give the false impression that math isn’t about
thinking.
• Often produce stress – children under stress stop
learning.


                                             © Joan A. Cotter, Ph.D., 2012
Memorizing Math                       9
                                                +7
Flash cards:
• Are often used to teach rote.
• Are liked by those who don’t need them.
• Don’t work for those with learning disabilities.
• Give the false impression that math isn’t about
thinking.
• Often produce stress – children under stress stop
learning.
• Are not concrete – they use abstract symbols.

                                             © Joan A. Cotter, Ph.D., 2012
AN ALTERNATIVE:

  SUBITIZING
     and
    GAMES

                  © Joan A. Cotter, Ph.D., 2012
Subitizing Quantities
Identifying without counting




                               © Joan A. Cotter, Ph.D., 2012
Subitizing Quantities
     Identifying without counting

• Five-month-old infants can subitize to 3.




                                              © Joan A. Cotter, Ph.D., 2012
Subitizing Quantities
     Identifying without counting

• Five-month-old infants can subitize to 3.

• Three-year-olds can subitize to 5.




                                              © Joan A. Cotter, Ph.D., 2012
Subitizing Quantities
     Identifying without counting

• Five-month-old infants can subitize to 3.

• Three-year-olds can subitize to 5.

• Five-year-olds can subitize 6 to 10 by
using five as a subbase.




                                              © Joan A. Cotter, Ph.D., 2012
Adding
Name the quantity (practice subitizing).




                                      © Joan A. Cotter, Ph.D., 2012
Adding
Name the quantity (practice subitizing).




                                      © Joan A. Cotter, Ph.D., 2012
Adding
Name the quantity (practice subitizing).




                                      © Joan A. Cotter, Ph.D., 2012
Adding
4+3=




           © Joan A. Cotter, Ph.D., 2012
Adding
4+3=




           © Joan A. Cotter, Ph.D., 2012
Adding
4+3=




           © Joan A. Cotter, Ph.D., 2012
Adding
4+3=7




           © Joan A. Cotter, Ph.D., 2012
Adding
4+3=




           © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game




                          © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.




                                         © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.
  • Incorporates manipulatives.




                                         © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.
  • Incorporates manipulatives.
  • Teaches strategies.




                                         © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.
  • Incorporates manipulatives.
  • Teaches strategies.
  • Encourages mental work.




                                         © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.
  • Incorporates manipulatives.
  • Teaches strategies.
  • Encourages mental work.
  • Detects errors; provides continuous assessment.




                                             © Joan A. Cotter, Ph.D., 2012
Characteristics of a Good Game
  • Produces learning through playing.
  • Incorporates manipulatives.
  • Teaches strategies.
  • Encourages mental work.
  • Detects errors; provides continuous assessment.
  • Is enjoyable.



                                             © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
Objective:
 To learn the facts that total 10:
                1+9
                2+8
                3+7
                4+6
                5+5




                                     © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
Objective:
 To learn the facts that total 10:
                1+9
                2+8
                3+7
                4+6
                5+5
Object of the game:
 To collect the most pairs that equal ten.



                                             © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
   6+   = 10




                      © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
   6+   = 10




                      © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
   6 + 4 = 10




                      © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game




       Starting

                      © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

            72 7 9 5




 72 1 3 8              4 6 34 9


            Starting

                                  © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5




 72 1 3 8                   4 6 34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5




 72 1 3 8                   4 6 34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5




 72 1 3 8                   4 6 34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5


                            4    6


 72 1 3 8                       34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5


                            4    6


 72 1 3 8                       34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

             72 7 9 5


                            4    6


 72 1 3 8                       34 9


            Finding pairs

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

              72 7 9 5


 7   3                       4    6


 2 1     8                       34 9


             Finding pairs

                                        © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

          72 7 9 5


 2   8                   4    6


     1                       34 9


         Finding pairs

                                    © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game

         72 7 9 5


 2   8              4    6


     1                  34 9


         Playing

                               © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                             BlueCap, do you
                                have an3?
                                 have a 3?
         72 7 9 5


 2   8              4    6


     1                  34 9


         Playing

                                  © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                              BlueCap, do you
                                 have an3?
                                  have a 3?
         72 7 9 5 3


 2   8                4   6


     1                    4 9


         Playing

                                   © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                   7   3       BlueCap, do you
                                  have an3?
                                   have a 3?
         2 7 9 5


 2   8                 4   6


     1                     4 9


         Playing

                                    © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                   7   3       BlueCap, do you
                                  have an3?
                                   have a 8?
         2 7 9 5


 2   8                 4   6


     1                     4 9


         Playing

                                    © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                   7   3        BlueCap, do you
                                   have an3?
                                    have a 8?
         2 7 9 5


 2   8                 4    6


     1                      4 9


                           Go to the dump.
         Playing

                                     © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                     7   3        BlueCap, do you
                                     have an3?
                                      have a 8?
         2 2 7 9 5


 2   8                   4    6


     1                        4 9


                             Go to the dump.
          Playing

                                       © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                     7   3


         2 2 7 9 5


 2   8                   4   6


     1                       4 9


          Playing

                                   © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                     7   3


         2 2 7 9 5


 2   8                   4    6


     1                        4 9

                             PinkCap, do you
          Playing               have a 6?
                                     © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                              7   3


                  2 2 7 9 5


         2   8                    4    6


             1                         4 9

                                      PinkCap, do you
Go to the dump.
                   Playing               have a 6?
                                              © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                     7   3


         2 2 7 9 5


 2   8                   4    6


     1                       5 4 9


          Playing

                                     © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                     7   3


         2 2 7 9 5


 2   8                   4    6


     1                       5 4 9


          Playing

                                     © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                            7   3


                2 2 7 9 5


        2   8                   4    6


            1                       5 4 9

YellowCap, do
you have a 9?    Playing

                                            © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                               7   3


                2 2 7      5


        2   8                      4    6


            1                          5 4 9

YellowCap, do
you have a 9?    Playing

                                               © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                                7   3


                 2 2 7      5


        2   8                       4    6


            19                          5 4 9

YellowCap, do
you have a 9?     Playing

                                                © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                        7   3


         2 2 7      5


 2
 1   8
     9                      4    6


                                5 4 9


          Playing

                                        © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                           7   3


            2 2 7      5


 2
 1   8
     9                         4    6


2 9 1 7 7                          5 4 9


             Playing

                                           © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                   9   1




 4   6                 5   5




         Winner?

                               © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game
                 9
                 1




 4
 6                   5




       Winner?

                         © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game


            9
            1

        4
        6       5




       Winner?

                      © Joan A. Cotter, Ph.D., 2012
Go to the Dump Game




      Play it again.

                       © Joan A. Cotter, Ph.D., 2012
Fact Strategies




                  © Joan A. Cotter, Ph.D., 2012
Fact Strategies

• A strategy is a way to learn a new fact or
recall a forgotten fact.




                                       © Joan A. Cotter, Ph.D., 2012
Fact Strategies

• A strategy is a way to learn a new fact or
recall a forgotten fact.

• A visualizable representation is part of a
powerful strategy.




                                       © Joan A. Cotter, Ph.D., 2012
Fact Strategies
        Complete the Ten

9+5=




                           © Joan A. Cotter, Ph.D., 2012
Fact Strategies
        Complete the Ten

9+5=




                           © Joan A. Cotter, Ph.D., 2012
Fact Strategies
        Complete the Ten

9+5=




                           © Joan A. Cotter, Ph.D., 2012
Fact Strategies
             Complete the Ten

 9+5=



Take 1 from
the 5 and give
it to the 9.



                                © Joan A. Cotter, Ph.D., 2012
Fact Strategies
             Complete the Ten

 9+5=



Take 1 from
the 5 and give
it to the 9.



                                © Joan A. Cotter, Ph.D., 2012
Fact Strategies
             Complete the Ten

 9+5=



Take 1 from
the 5 and give
it to the 9.



                                © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Complete the Ten

 9 + 5 = 14



Take 1 from
the 5 and give
it to the 9.



                                 © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

8+6=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

8+6=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

8+6=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

8+6=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Two Fives

8+6=
10 + 4 = 14




                          © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

7+5=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Two Fives

7+5=




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
             Two Fives

7 + 5 = 12




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Going Down

15 – 9 =




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Going Down

15 – 9 =




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Going Down

 15 – 9 =



Subtract 5;
then 4.




                            © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Going Down

 15 – 9 =



Subtract 5;
then 4.




                            © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Going Down

 15 – 9 =



Subtract 5;
then 4.




                            © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Going Down

 15 – 9 = 6



Subtract 5;
then 4.




                            © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Subtract from 10

15 – 9 =




                              © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Subtract from 10

 15 – 9 =



Subtract 9
from 10.




                                 © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Subtract from 10

 15 – 9 =



Subtract 9
from 10.




                                 © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Subtract from 10

 15 – 9 =



Subtract 9
from 10.




                                 © Joan A. Cotter, Ph.D., 2012
Fact Strategies
              Subtract from 10

 15 – 9 = 6



Subtract 9
from 10.




                                 © Joan A. Cotter, Ph.D., 2012
Fact Strategies
           Going Up

15 – 9 =




                         © Joan A. Cotter, Ph.D., 2012
Fact Strategies
                Going Up

 15 – 9 =



Start with 9;
go up to 15.




                             © Joan A. Cotter, Ph.D., 2012
Fact Strategies
                Going Up

 15 – 9 =



Start with 9;
go up to 15.




                             © Joan A. Cotter, Ph.D., 2012
Fact Strategies
                Going Up

 15 – 9 =



Start with 9;
go up to 15.




                             © Joan A. Cotter, Ph.D., 2012
Fact Strategies
                Going Up

 15 – 9 =



Start with 9;
go up to 15.




                             © Joan A. Cotter, Ph.D., 2012
Fact Strategies
                Going Up

 15 – 9 =
 1+5=6

Start with 9;
go up to 15.




                             © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
Objective:
  To find a total of 15 by adding 2, 3, or 4
cards in row or column.




                                           © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
Objective:
  To find a total of 15 by adding 2, 3, or 4
cards in row or column.

Object of the game:
 To collect the most cards.




                                           © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       8   7   1   9

       6   4   3   3

       2   2   5   6

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       8   7   1   9

       6   4   3   3

       2   2   5   6

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       8   7   1   9

       6   4   3   3

       2   2   5   6

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
               1   9

       6   4   3   3



       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       7   6   1   9

       6   4   3   3

       2   1   5   1

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       7   6   1   9

       6   4   3   3

       2   1   5   1

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
       7   6   1   9

       6   4   3   3

       2   1   5   1

       6   3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game
               1

       6   4   3   3

           1   5   1

           3   8   8




                       © Joan A. Cotter, Ph.D., 2012
Rows and Columns Game




                   © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
        Basic facts




                        © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
                    Basic facts

6× 4=
(6 taken 4 times)




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
                    Basic facts

6× 4=
(6 taken 4 times)




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
                    Basic facts

6× 4=
(6 taken 4 times)




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
                    Basic facts

6× 4=
(6 taken 4 times)




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
                    Basic facts

6× 4=
(6 taken 4 times)




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

9× 3=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

9× 3=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

9× 3=
30




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
              Basic facts

9× 3=
30 – 3 = 27




                            © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

4× 8=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

4× 8=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

4× 8=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
               Basic facts

4× 8=
20 + 12 = 32




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

7× 7=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

7× 7=




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
         Basic facts

7× 7=
25




                         © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
               Basic facts

7× 7=
25 + 10 + 10




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Strategies
               Basic facts

7× 7=
25 + 10 + 10
+ 4 = 49




                             © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
          Twos

2    4     6     8    10
12   14   16     18   20




                           © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
              Twos

  2      4      6       8    10
12      14     16     18     20


The ones repeat in the second row.




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
              Fours

  4      8     12     16     20
24      28     32     36     40


The ones repeat in the second row.




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
     Sixes and Eights

6    12    18     24    30
36   42    48     54    60


8    16    24     32    40
48   56    64     72    80


                             © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
     Sixes and Eights

6    12    18     24    30
36   42    48     54    60


8    16    24     32    40
48   56    64     72    80


                             © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
     Sixes and Eights

6    12    18     24    30
36   42    48     54    60


8    16    24     32    40
48   56    64     72    80


                             © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sixes and Eights

      6     12     18      24     30
     36     42     48      54     60


      8     16     24      32     40
     48     56     64      72     80

The ones in the 8s show the multiples of 2.
                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sixes and Eights

      6     12     18      24     30
     36     42     48      54     60


      8     16     24      32     40
     48     56     64      72     80

The ones in the 8s show the multiples of 2.
                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sixes and Eights

      6     12     18      24     30
     36     42     48      54     60


      8     16     24      32     40
     48     56     64      72     80

The ones in the 8s show the multiples of 2.
                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sixes and Eights

      6     12     18      24     30
     36     42     48      54     60


      8     16     24      32     40
     48     56     64      72     80

The ones in the 8s show the multiples of 2.
                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sixes and Eights

      6     12     18      24     30
     36     42     48      54     60


      8     16     24      32     40
     48     56     64      72     80

The ones in the 8s show the multiples of 2.
                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
         Sixes and Eights

   6     12      18     24      30        6× 4

  36     42      48     54      60


   8     16      24     32      40
  48     56      64     72      80

6 × 4 is the fourth number (multiple).
                                         © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
          Sixes and Eights

    6     12     18      24     30
   36     42     48      54     60


    8     16     24      32     40
   48     56     64      72     80        8× 7

8 × 7 is the seventh number (multiple).
                                      © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
                  Nines

     9     18     27      36     45
   90      81     72      63     54


The second row is written in reverse order.
Also the digits in each number add to 9.



                                        © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
             Threes

         3     6      9
     2        15      18
     21       24      27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
             Threes

         3     6      9
     2        15      18
     21       24      27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
             Threes

         3     6      9
     2        15      18
     21       24      27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
     Observe the ones.
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
             Threes

         3      6      9
       12      15     18
       21      24     27
       30

  The 3s have several patterns:
The tens are the same in each row.
                                     © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6       9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
Add the digits in the columns.
                                 © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6       9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
Add the digits in the columns.
                                 © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6       9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
Add the digits in the columns.
                                 © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
    Add the “opposites.”
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
    Add the “opposites.”
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
    Add the “opposites.”
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
           Threes

       3      6      9
     12      15     18
     21      24     27
     30

The 3s have several patterns:
    Add the “opposites.”
                                © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sevens

        7     14      21
       28     35      42
       49     56      63
       70

The 7s have the 1, 2, 3… pattern.

                                    © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sevens

        7     14      21
       28     35      42
       49     56      63
       70

The 7s have the 1, 2, 3… pattern.

                                    © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sevens

        7     14      21
       28     35      42
       49     56      63
       70

The 7s have the 1, 2, 3… pattern.

                                    © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
            Sevens

        7     14      21
       28     35      42
       49     56      63
       70

The 7s have the 1, 2, 3… pattern.

                                    © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
        Sevens

    7    14      21
   28    35      42
   49    56      63
   70

   Look at the tens.

                       © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
        Sevens

    7    14      21
   28    35      42
   49    56      63
   70

   Look at the tens.

                       © Joan A. Cotter, Ph.D., 2012
Multiples Patterns
        Sevens

    7    14      21
   28    35      42
   49    56      63
   70

   Look at the tens.

                       © Joan A. Cotter, Ph.D., 2012
Multiples Memory




                   © Joan A. Cotter, Ph.D., 2012
Multiples Memory
Objective:
 To help the players learn the
multiples patterns.




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
Objective:
  To help the players learn the multiples patterns.



Object of the game:
  To be the first player to collect all ten
cards of a multiple in order.




                                              © Joan A. Cotter, Ph.D., 2012
Multiples Memory


              7 14 21
             28 35 42
             49 56 63
             70



The 7s envelope contains 10 cards,
each with one of the numbers listed.


                                       © Joan A. Cotter, Ph.D., 2012
Multiples Memory



         8 16 24 32 40
        48 56 64 72 80




The 8s envelope contains 10 cards,
each with one of the numbers listed.


                                       © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42                             8 16 24 32 40
 49 56 63                            48 56 64 72 80
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42                             8 16 24 32 40
 49 56 63                            48 56 64 72 80
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63    14
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70
                40




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                8



                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70




               8



                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70                      8




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63        56
70                      8




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
                                     8 16 24 32 40
                                    48 56 64 72 80




 7 14 21                  8 16 24 32 40
28 35 42                 48 56 64 72 80
49 56 63
70                      8




                                © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70                       8




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42
 49 56 63
 70




                   7
 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70                       8




                                 © Joan A. Cotter, Ph.D., 2012
Multiples Memory
      7 14 21
     28 35 42
     49 56 63
     70




     7 14 21                   8 16 24 32 40
    28 35 42                  48 56 64 72 80
    49 56 63
    70                       8

7




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Memory
      7 14 21
     28 35 42
     49 56 63
     70




     7 14 21                   8 16 24 32 40
    28 35 42                  48 56 64 72 80
    49 56 63    14
    70                       8

7




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Memory
      7 14 21
     28 35 42
     49 56 63
     70




     7 14 21                   8 16 24 32 40
    28 35 42                  48 56 64 72 80
    49 56 63
    70                       8

7       14




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Memory
      7 14 21
     28 35 42
     49 56 63
     70




                24
     7 14 21                   8 16 24 32 40
    28 35 42                  48 56 64 72 80
    49 56 63
    70                       8

7       14




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Memory
      7 14 21
     28 35 42                             8 16 24 32 40
     49 56 63                            48 56 64 72 80
     70




     7 14 21                   8 16 24 32 40
    28 35 42                  48 56 64 72 80
    49 56 63
    70                       8

7       14




                                     © Joan A. Cotter, Ph.D., 2012
Multiples Memory
  7 14 21
 28 35 42                             8 16 24 32 40
 49 56 63                            48 56 64 72 80
 70




 7 14 21                   8 16 24 32 40
28 35 42                  48 56 64 72 80
49 56 63
70




                                 © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
Objective:
 To help the players master the
multiplication facts.




                                  © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
Objective:
 To help the players master the
multiplication facts.


Object of the game:
  To collect the most cards by matching
the multiplier with the product.



                                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory



Materials Needed:




                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
1       2       3       4       5

    6       7       8       9       10


        Materials Needed:
        • Ten basic cards, numbered 1 to 10




                                              © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                                         3
1       2       3       4       5
                                          3 6 9
                                         12 15 18
    6       7       8       9       10   21 24 27
                                         30




        Materials Needed:
        • Ten basic cards, numbered 1 to 10
        • A set of product cards (3s used here)




                                                    © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                                         3
1       2       3       4       5                   3x
                                          3 6 9
                                         12 15 18
    6       7       8       9       10   21 24 27
                                         30




        Materials Needed:
        • Ten basic cards, numbered 1 to 10
        • A set of product cards (3s used here)
        • A stickie note with “3 x” written on it



                                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                                         3
1       2       3       4       5                   3x
                                          3 6 9
                                         12 15 18
    6       7       8       9       10   21 24 27
                                         30         =


        Materials Needed:
        • Ten basic cards, numbered 1 to 10
        • A set of product cards (3s used here)
        • A stickie with “3 x” written on it
        • A stickie with “=” written on it


                                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                                         3
1       2       3       4       5                   3x
                                          3 6 9
                                         12 15 18
    6       7       8       9       10   21 24 27
                                         30         =


        Materials Needed:
        • Ten basic cards, numbered 1 to 10
        • A set of product cards (3s used here)
        • A stickie with “3 x” written on it
        • A stickie with “=” written on it
        • A manipulative with groups of five

                                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
         5
3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
         5
3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
         5
3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                  5
3x                               =




3 taken 5 times
   equals 15.

                       3 6 9
                      12 15 18
                      21 24 27
                      30




                                     © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                  5                  21
3x                               =




3 taken 5 times
   equals 15.

                       3 6 9
                      12 15 18
                      21 24 27
                      30




                                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18
              21 24 27
              30




                             © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =
             7




                  3 6 9
                 12 15 18
                 21 24 27
                 30




                                © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =
             7




                  3 6 9
                 12 15 18
                 21 24 27
                 30




                                © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =
             7




                  3 6 9
                 12 15 18
                 21 24 27
                 30




                                © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =
             7




                                3 taken 7 times
                                   equals 21.

                  3 6 9
                 12 15 18
                 21 24 27
                 30




                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                                21
3x                          =
             7




                                3 taken 7 times
                                   equals 21.

                  3 6 9
                 12 15 18
                 21 24 27
                 30




                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




                                 3 taken 7 times
                                    equals 21.

               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =
     2




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =
     2
     3




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =
     2
     3




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =
     2
     3




                                 3 taken 3 times
                                    equals 9.

               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =
     2
     3                                           12




                                 3 taken 3 times
                                    equals 9.

               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                          © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                       =




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
         5
3x                       =




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
         5
3x                       =




               3 6 9
              12 15 18       7   21
              21 24 27
              30




                                      © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                  5
3x                               =




3 taken 5 times
   equals 15.

                       3 6 9
                      12 15 18       7   21
                      21 24 27
                      30




                                              © Joan A. Cotter, Ph.D., 2012
Multiplication Memory
                  5
3x                               =
                                              15




3 taken 5 times
   equals 15.

                       3 6 9
                      12 15 18       7   21
                      21 24 27
                      30




                                                   © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                                =




3 taken 5 times
   equals 15.


            5     15
                        3 6 9
                       12 15 18       7   21
                       21 24 27
                       30




                                               © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =




        5   15
                  3 6 9
                 12 15 18       7   21
                 21 24 27
                 30




                                         © Joan A. Cotter, Ph.D., 2012
Multiplication Memory

3x                          =




        8   24
                  3 6 9
                 12 15 18       1   3
                 21 24 27
                 30




                                        © Joan A. Cotter, Ph.D., 2012
Framing the Future of Mathematics in
             Minnesota


Math in Minnesota starts with the youngest.

Let’s build on their natural ability to subitize.

Keep joy in math; use games, not flash cards.

Help them to use their minds to visualize.




                                               © Joan A. Cotter, Ph.D., 2012
Teaching the Arithmetic Facts Using
          Strategies and Games
                     by Joan A. Cotter, Ph.D.
                   JoanCotter@RightStartMath.com


         MCTM
       May 4, 2012
     Duluth, Minnesota



               7         3       8    16   24      32   40



PowerPoint Presentation & Handout
 RightStartMath.com >Resources                          © Joan A. Cotter, Ph.D., 2012

More Related Content

More from rightstartmath

Fraction Mass HOPE April 2013
Fraction Mass HOPE April 2013Fraction Mass HOPE April 2013
Fraction Mass HOPE April 2013rightstartmath
 
Learning Disabilities Mass HOPE April 2013
Learning Disabilities Mass HOPE April 2013Learning Disabilities Mass HOPE April 2013
Learning Disabilities Mass HOPE April 2013rightstartmath
 
Personalized Learning Bridges Middle School Math with a Geometric Approach
Personalized Learning Bridges Middle School Math with a Geometric ApproachPersonalized Learning Bridges Middle School Math with a Geometric Approach
Personalized Learning Bridges Middle School Math with a Geometric Approachrightstartmath
 
Math Puzzles and Brain Teasers
Math Puzzles and Brain TeasersMath Puzzles and Brain Teasers
Math Puzzles and Brain Teasersrightstartmath
 
Mastering Math Facts with Card Games
Mastering Math Facts with Card GamesMastering Math Facts with Card Games
Mastering Math Facts with Card Gamesrightstartmath
 
A Plus 2012 The Future of Primary Math
A Plus 2012 The Future of Primary MathA Plus 2012 The Future of Primary Math
A Plus 2012 The Future of Primary Mathrightstartmath
 
Basics of AL Abacus.rsg
Basics of AL Abacus.rsgBasics of AL Abacus.rsg
Basics of AL Abacus.rsgrightstartmath
 
RightStart™ Mathematics Research Summary
RightStart™ Mathematics Research SummaryRightStart™ Mathematics Research Summary
RightStart™ Mathematics Research Summaryrightstartmath
 
Math and the Young Child
Math and the Young ChildMath and the Young Child
Math and the Young Childrightstartmath
 
AHEA: Winning Math Games April 2011
AHEA: Winning Math Games April 2011AHEA: Winning Math Games April 2011
AHEA: Winning Math Games April 2011rightstartmath
 
Understanding Abacus Math
Understanding Abacus MathUnderstanding Abacus Math
Understanding Abacus Mathrightstartmath
 
RightStart™ Mathematics Strategies Handout
RightStart™ Mathematics Strategies HandoutRightStart™ Mathematics Strategies Handout
RightStart™ Mathematics Strategies Handoutrightstartmath
 
Enriching Montessori Math with Visualization
Enriching Montessori Math with VisualizationEnriching Montessori Math with Visualization
Enriching Montessori Math with Visualizationrightstartmath
 
IMF: Visualization October 2011
IMF: Visualization October 2011IMF: Visualization October 2011
IMF: Visualization October 2011rightstartmath
 

More from rightstartmath (20)

Fraction Mass HOPE April 2013
Fraction Mass HOPE April 2013Fraction Mass HOPE April 2013
Fraction Mass HOPE April 2013
 
Learning Disabilities Mass HOPE April 2013
Learning Disabilities Mass HOPE April 2013Learning Disabilities Mass HOPE April 2013
Learning Disabilities Mass HOPE April 2013
 
NCSM April 2013
NCSM April 2013NCSM April 2013
NCSM April 2013
 
Personalized Learning Bridges Middle School Math with a Geometric Approach
Personalized Learning Bridges Middle School Math with a Geometric ApproachPersonalized Learning Bridges Middle School Math with a Geometric Approach
Personalized Learning Bridges Middle School Math with a Geometric Approach
 
Math Puzzles and Brain Teasers
Math Puzzles and Brain TeasersMath Puzzles and Brain Teasers
Math Puzzles and Brain Teasers
 
Mastering Math Facts with Card Games
Mastering Math Facts with Card GamesMastering Math Facts with Card Games
Mastering Math Facts with Card Games
 
Focusing on Fractions
Focusing on FractionsFocusing on Fractions
Focusing on Fractions
 
A Plus 2012 The Future of Primary Math
A Plus 2012 The Future of Primary MathA Plus 2012 The Future of Primary Math
A Plus 2012 The Future of Primary Math
 
2012 A Plus AL Abacus
2012 A Plus AL Abacus2012 A Plus AL Abacus
2012 A Plus AL Abacus
 
MCTM Games
MCTM GamesMCTM Games
MCTM Games
 
Basics of AL Abacus.rsg
Basics of AL Abacus.rsgBasics of AL Abacus.rsg
Basics of AL Abacus.rsg
 
Geometry AMS
Geometry AMSGeometry AMS
Geometry AMS
 
RightStart Geometry
RightStart GeometryRightStart Geometry
RightStart Geometry
 
RightStart™ Mathematics Research Summary
RightStart™ Mathematics Research SummaryRightStart™ Mathematics Research Summary
RightStart™ Mathematics Research Summary
 
Math and the Young Child
Math and the Young ChildMath and the Young Child
Math and the Young Child
 
AHEA: Winning Math Games April 2011
AHEA: Winning Math Games April 2011AHEA: Winning Math Games April 2011
AHEA: Winning Math Games April 2011
 
Understanding Abacus Math
Understanding Abacus MathUnderstanding Abacus Math
Understanding Abacus Math
 
RightStart™ Mathematics Strategies Handout
RightStart™ Mathematics Strategies HandoutRightStart™ Mathematics Strategies Handout
RightStart™ Mathematics Strategies Handout
 
Enriching Montessori Math with Visualization
Enriching Montessori Math with VisualizationEnriching Montessori Math with Visualization
Enriching Montessori Math with Visualization
 
IMF: Visualization October 2011
IMF: Visualization October 2011IMF: Visualization October 2011
IMF: Visualization October 2011
 

Recently uploaded

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 

Recently uploaded (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 

MCTM Strategies & Games

  • 1. Teaching the Arithmetic Facts Using Strategies and Games by Joan A. Cotter, Ph.D. JoanCotter@RightStartMath.com MCTM May 4, 2012 Duluth, Minnesota 7 3 8 16 24 32 40 PowerPoint Presentation & Handout RightStartMath.com >Resources © Joan A. Cotter, Ph.D., 2012
  • 2. Learning the Facts © Joan A. Cotter, Ph.D., 2012
  • 3. Learning the Facts Limited success when: • Based on counting. Whether dots, fingers, number lines, or counting words. © Joan A. Cotter, Ph.D., 2012
  • 4. Learning the Facts Limited success when: • Based on counting. Whether dots, fingers, number lines, or counting words. • Based on rote memory. Whether by flash cards or timed tests. © Joan A. Cotter, Ph.D., 2012
  • 5. Learning the Facts Limited success when: • Based on counting. Whether dots, fingers, number lines, or counting words. • Based on rote memory. Whether by flash cards or timed tests. • Based on skip counting for multiplication facts. © Joan A. Cotter, Ph.D., 2012
  • 6. Counting Model From a child's perspective © Joan A. Cotter, Ph.D., 2012
  • 7. Counting Model From a child's perspective Because we’re so familiar with 1, 2, 3, we’ll use letters. A=1 B=2 C=3 D=4 E = 5, and so forth © Joan A. Cotter, Ph.D., 2012
  • 8. Counting Model From a child's perspective F +E © Joan A. Cotter, Ph.D., 2012
  • 9. Counting Model From a child's perspective F +E A © Joan A. Cotter, Ph.D., 2012
  • 10. Counting Model From a child's perspective F +E A B © Joan A. Cotter, Ph.D., 2012
  • 11. Counting Model From a child's perspective F +E A B C © Joan A. Cotter, Ph.D., 2012
  • 12. Counting Model From a child's perspective F +E A B C D E F © Joan A. Cotter, Ph.D., 2012
  • 13. Counting Model From a child's perspective F +E A B C D E F A © Joan A. Cotter, Ph.D., 2012
  • 14. Counting Model From a child's perspective F +E A B C D E F A B © Joan A. Cotter, Ph.D., 2012
  • 15. Counting Model From a child's perspective F +E A B C D E F A B C D E © Joan A. Cotter, Ph.D., 2012
  • 16. Counting Model From a child's perspective F +E A B C D E F A B C D E What is the sum? (It must be a letter.) © Joan A. Cotter, Ph.D., 2012
  • 17. Counting Model From a child's perspective F +E K A B C D E F G H I J K © Joan A. Cotter, Ph.D., 2012
  • 18. Counting Model From a child's perspective E +G Add with your fingers. © Joan A. Cotter, Ph.D., 2012
  • 19. Counting Model From a child's perspective H +D Add without your fingers. © Joan A. Cotter, Ph.D., 2012
  • 20. Counting Model From a child's perspective Now memorize the facts!! G +D © Joan A. Cotter, Ph.D., 2012
  • 21. Counting Model From a child's perspective Now memorize the facts!! H + G F +D © Joan A. Cotter, Ph.D., 2012
  • 22. Counting Model From a child's perspective Now memorize the facts!! H + G F +D D +C © Joan A. Cotter, Ph.D., 2012
  • 23. Counting Model From a child's perspective Now memorize the facts!! H + G F +D D C +C +G © Joan A. Cotter, Ph.D., 2012
  • 24. Counting Model From a child's perspective Now memorize the facts!! H E + G I F + +D D C +C +G © Joan A. Cotter, Ph.D., 2012
  • 25. Counting Model From a child's perspective H –E Subtract with your fingers. © Joan A. Cotter, Ph.D., 2012
  • 26. Counting Model From a child's perspective J –F Subtract without using your fingers. © Joan A. Cotter, Ph.D., 2012
  • 27. Counting Model From a child's perspective Try skip counting by B’s to T: B, D, . . . T. © Joan A. Cotter, Ph.D., 2012
  • 28. Counting Model From a child's perspective Try skip counting by B’s to T: B, D, . . . T. What is D x E? © Joan A. Cotter, Ph.D., 2012
  • 29. Memorizing Math © Joan A. Cotter, Ph.D., 2012
  • 30. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 31. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 32. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 33. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 34. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 35. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 36. Memorizing Math Some research: Percentage Recall Immediately After 1 day After 4 wks Rote 32 23 8 Concept 69 69 58 © Joan A. Cotter, Ph.D., 2012
  • 37. Memorizing Math 9 +7 Flash cards: © Joan A. Cotter, Ph.D., 2012
  • 38. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. © Joan A. Cotter, Ph.D., 2012
  • 39. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. • Are liked by those who don’t need them. © Joan A. Cotter, Ph.D., 2012
  • 40. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. • Are liked by those who don’t need them. • Don’t work for those with learning disabilities. © Joan A. Cotter, Ph.D., 2012
  • 41. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. • Are liked by those who don’t need them. • Don’t work for those with learning disabilities. • Give the false impression that math isn’t about thinking. © Joan A. Cotter, Ph.D., 2012
  • 42. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. • Are liked by those who don’t need them. • Don’t work for those with learning disabilities. • Give the false impression that math isn’t about thinking. • Often produce stress – children under stress stop learning. © Joan A. Cotter, Ph.D., 2012
  • 43. Memorizing Math 9 +7 Flash cards: • Are often used to teach rote. • Are liked by those who don’t need them. • Don’t work for those with learning disabilities. • Give the false impression that math isn’t about thinking. • Often produce stress – children under stress stop learning. • Are not concrete – they use abstract symbols. © Joan A. Cotter, Ph.D., 2012
  • 44. AN ALTERNATIVE: SUBITIZING and GAMES © Joan A. Cotter, Ph.D., 2012
  • 45. Subitizing Quantities Identifying without counting © Joan A. Cotter, Ph.D., 2012
  • 46. Subitizing Quantities Identifying without counting • Five-month-old infants can subitize to 3. © Joan A. Cotter, Ph.D., 2012
  • 47. Subitizing Quantities Identifying without counting • Five-month-old infants can subitize to 3. • Three-year-olds can subitize to 5. © Joan A. Cotter, Ph.D., 2012
  • 48. Subitizing Quantities Identifying without counting • Five-month-old infants can subitize to 3. • Three-year-olds can subitize to 5. • Five-year-olds can subitize 6 to 10 by using five as a subbase. © Joan A. Cotter, Ph.D., 2012
  • 49. Adding Name the quantity (practice subitizing). © Joan A. Cotter, Ph.D., 2012
  • 50. Adding Name the quantity (practice subitizing). © Joan A. Cotter, Ph.D., 2012
  • 51. Adding Name the quantity (practice subitizing). © Joan A. Cotter, Ph.D., 2012
  • 52. Adding 4+3= © Joan A. Cotter, Ph.D., 2012
  • 53. Adding 4+3= © Joan A. Cotter, Ph.D., 2012
  • 54. Adding 4+3= © Joan A. Cotter, Ph.D., 2012
  • 55. Adding 4+3=7 © Joan A. Cotter, Ph.D., 2012
  • 56. Adding 4+3= © Joan A. Cotter, Ph.D., 2012
  • 57. Characteristics of a Good Game © Joan A. Cotter, Ph.D., 2012
  • 58. Characteristics of a Good Game • Produces learning through playing. © Joan A. Cotter, Ph.D., 2012
  • 59. Characteristics of a Good Game • Produces learning through playing. • Incorporates manipulatives. © Joan A. Cotter, Ph.D., 2012
  • 60. Characteristics of a Good Game • Produces learning through playing. • Incorporates manipulatives. • Teaches strategies. © Joan A. Cotter, Ph.D., 2012
  • 61. Characteristics of a Good Game • Produces learning through playing. • Incorporates manipulatives. • Teaches strategies. • Encourages mental work. © Joan A. Cotter, Ph.D., 2012
  • 62. Characteristics of a Good Game • Produces learning through playing. • Incorporates manipulatives. • Teaches strategies. • Encourages mental work. • Detects errors; provides continuous assessment. © Joan A. Cotter, Ph.D., 2012
  • 63. Characteristics of a Good Game • Produces learning through playing. • Incorporates manipulatives. • Teaches strategies. • Encourages mental work. • Detects errors; provides continuous assessment. • Is enjoyable. © Joan A. Cotter, Ph.D., 2012
  • 64. Go to the Dump Game Objective: To learn the facts that total 10: 1+9 2+8 3+7 4+6 5+5 © Joan A. Cotter, Ph.D., 2012
  • 65. Go to the Dump Game Objective: To learn the facts that total 10: 1+9 2+8 3+7 4+6 5+5 Object of the game: To collect the most pairs that equal ten. © Joan A. Cotter, Ph.D., 2012
  • 66. Go to the Dump Game 6+ = 10 © Joan A. Cotter, Ph.D., 2012
  • 67. Go to the Dump Game 6+ = 10 © Joan A. Cotter, Ph.D., 2012
  • 68. Go to the Dump Game 6 + 4 = 10 © Joan A. Cotter, Ph.D., 2012
  • 69. Go to the Dump Game Starting © Joan A. Cotter, Ph.D., 2012
  • 70. Go to the Dump Game 72 7 9 5 72 1 3 8 4 6 34 9 Starting © Joan A. Cotter, Ph.D., 2012
  • 71. Go to the Dump Game 72 7 9 5 72 1 3 8 4 6 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 72. Go to the Dump Game 72 7 9 5 72 1 3 8 4 6 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 73. Go to the Dump Game 72 7 9 5 72 1 3 8 4 6 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 74. Go to the Dump Game 72 7 9 5 4 6 72 1 3 8 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 75. Go to the Dump Game 72 7 9 5 4 6 72 1 3 8 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 76. Go to the Dump Game 72 7 9 5 4 6 72 1 3 8 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 77. Go to the Dump Game 72 7 9 5 7 3 4 6 2 1 8 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 78. Go to the Dump Game 72 7 9 5 2 8 4 6 1 34 9 Finding pairs © Joan A. Cotter, Ph.D., 2012
  • 79. Go to the Dump Game 72 7 9 5 2 8 4 6 1 34 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 80. Go to the Dump Game BlueCap, do you have an3? have a 3? 72 7 9 5 2 8 4 6 1 34 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 81. Go to the Dump Game BlueCap, do you have an3? have a 3? 72 7 9 5 3 2 8 4 6 1 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 82. Go to the Dump Game 7 3 BlueCap, do you have an3? have a 3? 2 7 9 5 2 8 4 6 1 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 83. Go to the Dump Game 7 3 BlueCap, do you have an3? have a 8? 2 7 9 5 2 8 4 6 1 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 84. Go to the Dump Game 7 3 BlueCap, do you have an3? have a 8? 2 7 9 5 2 8 4 6 1 4 9 Go to the dump. Playing © Joan A. Cotter, Ph.D., 2012
  • 85. Go to the Dump Game 7 3 BlueCap, do you have an3? have a 8? 2 2 7 9 5 2 8 4 6 1 4 9 Go to the dump. Playing © Joan A. Cotter, Ph.D., 2012
  • 86. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 87. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 4 9 PinkCap, do you Playing have a 6? © Joan A. Cotter, Ph.D., 2012
  • 88. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 4 9 PinkCap, do you Go to the dump. Playing have a 6? © Joan A. Cotter, Ph.D., 2012
  • 89. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 5 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 90. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 5 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 91. Go to the Dump Game 7 3 2 2 7 9 5 2 8 4 6 1 5 4 9 YellowCap, do you have a 9? Playing © Joan A. Cotter, Ph.D., 2012
  • 92. Go to the Dump Game 7 3 2 2 7 5 2 8 4 6 1 5 4 9 YellowCap, do you have a 9? Playing © Joan A. Cotter, Ph.D., 2012
  • 93. Go to the Dump Game 7 3 2 2 7 5 2 8 4 6 19 5 4 9 YellowCap, do you have a 9? Playing © Joan A. Cotter, Ph.D., 2012
  • 94. Go to the Dump Game 7 3 2 2 7 5 2 1 8 9 4 6 5 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 95. Go to the Dump Game 7 3 2 2 7 5 2 1 8 9 4 6 2 9 1 7 7 5 4 9 Playing © Joan A. Cotter, Ph.D., 2012
  • 96. Go to the Dump Game 9 1 4 6 5 5 Winner? © Joan A. Cotter, Ph.D., 2012
  • 97. Go to the Dump Game 9 1 4 6 5 Winner? © Joan A. Cotter, Ph.D., 2012
  • 98. Go to the Dump Game 9 1 4 6 5 Winner? © Joan A. Cotter, Ph.D., 2012
  • 99. Go to the Dump Game Play it again. © Joan A. Cotter, Ph.D., 2012
  • 100. Fact Strategies © Joan A. Cotter, Ph.D., 2012
  • 101. Fact Strategies • A strategy is a way to learn a new fact or recall a forgotten fact. © Joan A. Cotter, Ph.D., 2012
  • 102. Fact Strategies • A strategy is a way to learn a new fact or recall a forgotten fact. • A visualizable representation is part of a powerful strategy. © Joan A. Cotter, Ph.D., 2012
  • 103. Fact Strategies Complete the Ten 9+5= © Joan A. Cotter, Ph.D., 2012
  • 104. Fact Strategies Complete the Ten 9+5= © Joan A. Cotter, Ph.D., 2012
  • 105. Fact Strategies Complete the Ten 9+5= © Joan A. Cotter, Ph.D., 2012
  • 106. Fact Strategies Complete the Ten 9+5= Take 1 from the 5 and give it to the 9. © Joan A. Cotter, Ph.D., 2012
  • 107. Fact Strategies Complete the Ten 9+5= Take 1 from the 5 and give it to the 9. © Joan A. Cotter, Ph.D., 2012
  • 108. Fact Strategies Complete the Ten 9+5= Take 1 from the 5 and give it to the 9. © Joan A. Cotter, Ph.D., 2012
  • 109. Fact Strategies Complete the Ten 9 + 5 = 14 Take 1 from the 5 and give it to the 9. © Joan A. Cotter, Ph.D., 2012
  • 110. Fact Strategies Two Fives 8+6= © Joan A. Cotter, Ph.D., 2012
  • 111. Fact Strategies Two Fives 8+6= © Joan A. Cotter, Ph.D., 2012
  • 112. Fact Strategies Two Fives 8+6= © Joan A. Cotter, Ph.D., 2012
  • 113. Fact Strategies Two Fives 8+6= © Joan A. Cotter, Ph.D., 2012
  • 114. Fact Strategies Two Fives 8+6= 10 + 4 = 14 © Joan A. Cotter, Ph.D., 2012
  • 115. Fact Strategies Two Fives 7+5= © Joan A. Cotter, Ph.D., 2012
  • 116. Fact Strategies Two Fives 7+5= © Joan A. Cotter, Ph.D., 2012
  • 117. Fact Strategies Two Fives 7 + 5 = 12 © Joan A. Cotter, Ph.D., 2012
  • 118. Fact Strategies Going Down 15 – 9 = © Joan A. Cotter, Ph.D., 2012
  • 119. Fact Strategies Going Down 15 – 9 = © Joan A. Cotter, Ph.D., 2012
  • 120. Fact Strategies Going Down 15 – 9 = Subtract 5; then 4. © Joan A. Cotter, Ph.D., 2012
  • 121. Fact Strategies Going Down 15 – 9 = Subtract 5; then 4. © Joan A. Cotter, Ph.D., 2012
  • 122. Fact Strategies Going Down 15 – 9 = Subtract 5; then 4. © Joan A. Cotter, Ph.D., 2012
  • 123. Fact Strategies Going Down 15 – 9 = 6 Subtract 5; then 4. © Joan A. Cotter, Ph.D., 2012
  • 124. Fact Strategies Subtract from 10 15 – 9 = © Joan A. Cotter, Ph.D., 2012
  • 125. Fact Strategies Subtract from 10 15 – 9 = Subtract 9 from 10. © Joan A. Cotter, Ph.D., 2012
  • 126. Fact Strategies Subtract from 10 15 – 9 = Subtract 9 from 10. © Joan A. Cotter, Ph.D., 2012
  • 127. Fact Strategies Subtract from 10 15 – 9 = Subtract 9 from 10. © Joan A. Cotter, Ph.D., 2012
  • 128. Fact Strategies Subtract from 10 15 – 9 = 6 Subtract 9 from 10. © Joan A. Cotter, Ph.D., 2012
  • 129. Fact Strategies Going Up 15 – 9 = © Joan A. Cotter, Ph.D., 2012
  • 130. Fact Strategies Going Up 15 – 9 = Start with 9; go up to 15. © Joan A. Cotter, Ph.D., 2012
  • 131. Fact Strategies Going Up 15 – 9 = Start with 9; go up to 15. © Joan A. Cotter, Ph.D., 2012
  • 132. Fact Strategies Going Up 15 – 9 = Start with 9; go up to 15. © Joan A. Cotter, Ph.D., 2012
  • 133. Fact Strategies Going Up 15 – 9 = Start with 9; go up to 15. © Joan A. Cotter, Ph.D., 2012
  • 134. Fact Strategies Going Up 15 – 9 = 1+5=6 Start with 9; go up to 15. © Joan A. Cotter, Ph.D., 2012
  • 135. Rows and Columns Game Objective: To find a total of 15 by adding 2, 3, or 4 cards in row or column. © Joan A. Cotter, Ph.D., 2012
  • 136. Rows and Columns Game Objective: To find a total of 15 by adding 2, 3, or 4 cards in row or column. Object of the game: To collect the most cards. © Joan A. Cotter, Ph.D., 2012
  • 137. Rows and Columns Game 8 7 1 9 6 4 3 3 2 2 5 6 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 138. Rows and Columns Game 8 7 1 9 6 4 3 3 2 2 5 6 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 139. Rows and Columns Game 8 7 1 9 6 4 3 3 2 2 5 6 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 140. Rows and Columns Game 1 9 6 4 3 3 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 141. Rows and Columns Game 7 6 1 9 6 4 3 3 2 1 5 1 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 142. Rows and Columns Game 7 6 1 9 6 4 3 3 2 1 5 1 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 143. Rows and Columns Game 7 6 1 9 6 4 3 3 2 1 5 1 6 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 144. Rows and Columns Game 1 6 4 3 3 1 5 1 3 8 8 © Joan A. Cotter, Ph.D., 2012
  • 145. Rows and Columns Game © Joan A. Cotter, Ph.D., 2012
  • 146. Multiplication Strategies Basic facts © Joan A. Cotter, Ph.D., 2012
  • 147. Multiplication Strategies Basic facts 6× 4= (6 taken 4 times) © Joan A. Cotter, Ph.D., 2012
  • 148. Multiplication Strategies Basic facts 6× 4= (6 taken 4 times) © Joan A. Cotter, Ph.D., 2012
  • 149. Multiplication Strategies Basic facts 6× 4= (6 taken 4 times) © Joan A. Cotter, Ph.D., 2012
  • 150. Multiplication Strategies Basic facts 6× 4= (6 taken 4 times) © Joan A. Cotter, Ph.D., 2012
  • 151. Multiplication Strategies Basic facts 6× 4= (6 taken 4 times) © Joan A. Cotter, Ph.D., 2012
  • 152. Multiplication Strategies Basic facts 9× 3= © Joan A. Cotter, Ph.D., 2012
  • 153. Multiplication Strategies Basic facts 9× 3= © Joan A. Cotter, Ph.D., 2012
  • 154. Multiplication Strategies Basic facts 9× 3= 30 © Joan A. Cotter, Ph.D., 2012
  • 155. Multiplication Strategies Basic facts 9× 3= 30 – 3 = 27 © Joan A. Cotter, Ph.D., 2012
  • 156. Multiplication Strategies Basic facts 4× 8= © Joan A. Cotter, Ph.D., 2012
  • 157. Multiplication Strategies Basic facts 4× 8= © Joan A. Cotter, Ph.D., 2012
  • 158. Multiplication Strategies Basic facts 4× 8= © Joan A. Cotter, Ph.D., 2012
  • 159. Multiplication Strategies Basic facts 4× 8= 20 + 12 = 32 © Joan A. Cotter, Ph.D., 2012
  • 160. Multiplication Strategies Basic facts 7× 7= © Joan A. Cotter, Ph.D., 2012
  • 161. Multiplication Strategies Basic facts 7× 7= © Joan A. Cotter, Ph.D., 2012
  • 162. Multiplication Strategies Basic facts 7× 7= 25 © Joan A. Cotter, Ph.D., 2012
  • 163. Multiplication Strategies Basic facts 7× 7= 25 + 10 + 10 © Joan A. Cotter, Ph.D., 2012
  • 164. Multiplication Strategies Basic facts 7× 7= 25 + 10 + 10 + 4 = 49 © Joan A. Cotter, Ph.D., 2012
  • 165. Multiples Patterns Twos 2 4 6 8 10 12 14 16 18 20 © Joan A. Cotter, Ph.D., 2012
  • 166. Multiples Patterns Twos 2 4 6 8 10 12 14 16 18 20 The ones repeat in the second row. © Joan A. Cotter, Ph.D., 2012
  • 167. Multiples Patterns Fours 4 8 12 16 20 24 28 32 36 40 The ones repeat in the second row. © Joan A. Cotter, Ph.D., 2012
  • 168. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 © Joan A. Cotter, Ph.D., 2012
  • 169. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 © Joan A. Cotter, Ph.D., 2012
  • 170. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 © Joan A. Cotter, Ph.D., 2012
  • 171. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D., 2012
  • 172. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D., 2012
  • 173. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D., 2012
  • 174. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D., 2012
  • 175. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 The ones in the 8s show the multiples of 2. © Joan A. Cotter, Ph.D., 2012
  • 176. Multiples Patterns Sixes and Eights 6 12 18 24 30 6× 4 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 6 × 4 is the fourth number (multiple). © Joan A. Cotter, Ph.D., 2012
  • 177. Multiples Patterns Sixes and Eights 6 12 18 24 30 36 42 48 54 60 8 16 24 32 40 48 56 64 72 80 8× 7 8 × 7 is the seventh number (multiple). © Joan A. Cotter, Ph.D., 2012
  • 178. Multiples Patterns Nines 9 18 27 36 45 90 81 72 63 54 The second row is written in reverse order. Also the digits in each number add to 9. © Joan A. Cotter, Ph.D., 2012
  • 179. Multiples Patterns Threes 3 6 9 2 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 180. Multiples Patterns Threes 3 6 9 2 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 181. Multiples Patterns Threes 3 6 9 2 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 182. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 183. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 184. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 185. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 186. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 187. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 188. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 189. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Observe the ones. © Joan A. Cotter, Ph.D., 2012
  • 190. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: The tens are the same in each row. © Joan A. Cotter, Ph.D., 2012
  • 191. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D., 2012
  • 192. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D., 2012
  • 193. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the digits in the columns. © Joan A. Cotter, Ph.D., 2012
  • 194. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D., 2012
  • 195. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D., 2012
  • 196. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D., 2012
  • 197. Multiples Patterns Threes 3 6 9 12 15 18 21 24 27 30 The 3s have several patterns: Add the “opposites.” © Joan A. Cotter, Ph.D., 2012
  • 198. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 The 7s have the 1, 2, 3… pattern. © Joan A. Cotter, Ph.D., 2012
  • 199. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 The 7s have the 1, 2, 3… pattern. © Joan A. Cotter, Ph.D., 2012
  • 200. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 The 7s have the 1, 2, 3… pattern. © Joan A. Cotter, Ph.D., 2012
  • 201. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 The 7s have the 1, 2, 3… pattern. © Joan A. Cotter, Ph.D., 2012
  • 202. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D., 2012
  • 203. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D., 2012
  • 204. Multiples Patterns Sevens 7 14 21 28 35 42 49 56 63 70 Look at the tens. © Joan A. Cotter, Ph.D., 2012
  • 205. Multiples Memory © Joan A. Cotter, Ph.D., 2012
  • 206. Multiples Memory Objective: To help the players learn the multiples patterns. © Joan A. Cotter, Ph.D., 2012
  • 207. Multiples Memory Objective: To help the players learn the multiples patterns. Object of the game: To be the first player to collect all ten cards of a multiple in order. © Joan A. Cotter, Ph.D., 2012
  • 208. Multiples Memory 7 14 21 28 35 42 49 56 63 70 The 7s envelope contains 10 cards, each with one of the numbers listed. © Joan A. Cotter, Ph.D., 2012
  • 209. Multiples Memory 8 16 24 32 40 48 56 64 72 80 The 8s envelope contains 10 cards, each with one of the numbers listed. © Joan A. Cotter, Ph.D., 2012
  • 210. Multiples Memory 7 14 21 28 35 42 8 16 24 32 40 49 56 63 48 56 64 72 80 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 211. Multiples Memory 7 14 21 28 35 42 8 16 24 32 40 49 56 63 48 56 64 72 80 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 212. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 213. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 14 70 © Joan A. Cotter, Ph.D., 2012
  • 214. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 215. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 216. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 40 © Joan A. Cotter, Ph.D., 2012
  • 217. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 218. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 219. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 220. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 221. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 222. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 223. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 224. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 56 70 8 © Joan A. Cotter, Ph.D., 2012
  • 225. Multiples Memory 8 16 24 32 40 48 56 64 72 80 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 226. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 227. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 © Joan A. Cotter, Ph.D., 2012
  • 228. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 7 © Joan A. Cotter, Ph.D., 2012
  • 229. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 14 70 8 7 © Joan A. Cotter, Ph.D., 2012
  • 230. Multiples Memory 7 14 21 28 35 42 49 56 63 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 7 14 © Joan A. Cotter, Ph.D., 2012
  • 231. Multiples Memory 7 14 21 28 35 42 49 56 63 70 24 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 7 14 © Joan A. Cotter, Ph.D., 2012
  • 232. Multiples Memory 7 14 21 28 35 42 8 16 24 32 40 49 56 63 48 56 64 72 80 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 8 7 14 © Joan A. Cotter, Ph.D., 2012
  • 233. Multiples Memory 7 14 21 28 35 42 8 16 24 32 40 49 56 63 48 56 64 72 80 70 7 14 21 8 16 24 32 40 28 35 42 48 56 64 72 80 49 56 63 70 © Joan A. Cotter, Ph.D., 2012
  • 234. Multiplication Memory Objective: To help the players master the multiplication facts. © Joan A. Cotter, Ph.D., 2012
  • 235. Multiplication Memory Objective: To help the players master the multiplication facts. Object of the game: To collect the most cards by matching the multiplier with the product. © Joan A. Cotter, Ph.D., 2012
  • 236. Multiplication Memory Materials Needed: © Joan A. Cotter, Ph.D., 2012
  • 237. Multiplication Memory 1 2 3 4 5 6 7 8 9 10 Materials Needed: • Ten basic cards, numbered 1 to 10 © Joan A. Cotter, Ph.D., 2012
  • 238. Multiplication Memory 3 1 2 3 4 5 3 6 9 12 15 18 6 7 8 9 10 21 24 27 30 Materials Needed: • Ten basic cards, numbered 1 to 10 • A set of product cards (3s used here) © Joan A. Cotter, Ph.D., 2012
  • 239. Multiplication Memory 3 1 2 3 4 5 3x 3 6 9 12 15 18 6 7 8 9 10 21 24 27 30 Materials Needed: • Ten basic cards, numbered 1 to 10 • A set of product cards (3s used here) • A stickie note with “3 x” written on it © Joan A. Cotter, Ph.D., 2012
  • 240. Multiplication Memory 3 1 2 3 4 5 3x 3 6 9 12 15 18 6 7 8 9 10 21 24 27 30 = Materials Needed: • Ten basic cards, numbered 1 to 10 • A set of product cards (3s used here) • A stickie with “3 x” written on it • A stickie with “=” written on it © Joan A. Cotter, Ph.D., 2012
  • 241. Multiplication Memory 3 1 2 3 4 5 3x 3 6 9 12 15 18 6 7 8 9 10 21 24 27 30 = Materials Needed: • Ten basic cards, numbered 1 to 10 • A set of product cards (3s used here) • A stickie with “3 x” written on it • A stickie with “=” written on it • A manipulative with groups of five © Joan A. Cotter, Ph.D., 2012
  • 242. Multiplication Memory 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 243. Multiplication Memory 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 244. Multiplication Memory 5 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 245. Multiplication Memory 5 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 246. Multiplication Memory 5 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 247. Multiplication Memory 5 3x = 3 taken 5 times equals 15. 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 248. Multiplication Memory 5 21 3x = 3 taken 5 times equals 15. 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 249. Multiplication Memory 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 250. Multiplication Memory 3x = 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 251. Multiplication Memory 3x = 7 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 252. Multiplication Memory 3x = 7 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 253. Multiplication Memory 3x = 7 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 254. Multiplication Memory 3x = 7 3 taken 7 times equals 21. 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 255. Multiplication Memory 21 3x = 7 3 taken 7 times equals 21. 3 6 9 12 15 18 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 256. Multiplication Memory 3x = 3 taken 7 times equals 21. 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 257. Multiplication Memory 3x = 2 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 258. Multiplication Memory 3x = 2 3 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 259. Multiplication Memory 3x = 2 3 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 260. Multiplication Memory 3x = 2 3 3 taken 3 times equals 9. 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 261. Multiplication Memory 3x = 2 3 12 3 taken 3 times equals 9. 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 262. Multiplication Memory 3x = 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 263. Multiplication Memory 3x = 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 264. Multiplication Memory 5 3x = 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 265. Multiplication Memory 5 3x = 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 266. Multiplication Memory 5 3x = 3 taken 5 times equals 15. 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 267. Multiplication Memory 5 3x = 15 3 taken 5 times equals 15. 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 268. Multiplication Memory 3x = 3 taken 5 times equals 15. 5 15 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 269. Multiplication Memory 3x = 5 15 3 6 9 12 15 18 7 21 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 270. Multiplication Memory 3x = 8 24 3 6 9 12 15 18 1 3 21 24 27 30 © Joan A. Cotter, Ph.D., 2012
  • 271. Framing the Future of Mathematics in Minnesota Math in Minnesota starts with the youngest. Let’s build on their natural ability to subitize. Keep joy in math; use games, not flash cards. Help them to use their minds to visualize. © Joan A. Cotter, Ph.D., 2012
  • 272. Teaching the Arithmetic Facts Using Strategies and Games by Joan A. Cotter, Ph.D. JoanCotter@RightStartMath.com MCTM May 4, 2012 Duluth, Minnesota 7 3 8 16 24 32 40 PowerPoint Presentation & Handout RightStartMath.com >Resources © Joan A. Cotter, Ph.D., 2012