Energy, carbon, climate, action

768 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
768
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Energy, carbon, climate, action

  1. 1. Energy => CarbonClimate => Action ENGR40 Foothill College
  2. 2. Overview• Historic carbon emissions => ppm CO2• CO2 and warming => forcing models• Economy (GDP) => energy intensity (BTU/$) => carbon intensity => CO2• 2030 ppm CO2 => current trajectory• Getting to $100T GDP staying under 450 ppm CO2 => how much clean energy?
  3. 3. GHG Emissions by Source
  4. 4. Carbon Burned Becomes CO2• If you burn carbon, it must go somewhere• Plot ATM [CO2] as a function of [carbon]• It is a perfect straight line (r2 x 100 = 99%) – Slope = 2.55 e10-4 *M tons C / ppm CO2 – Intercept = 297 ppm CO2 – Correlation = .994• Perfect way to model future carbon emissions• And the effect of carbon mitigation strategies
  5. 5. Carbon Burned and CO2• Plot atmospheric CO2 as a function of cumulative carbon burned (mega tons)• Linear regression has an almost perfect correlation coefficient (r2*100) of 99%• Allows a confident prediction of future CO2 based on future carbon burned.• Since forcing can be calculated directly from CO2, it is a very important modelDevin Cormia ‘The Gaia Hypothesis’ Carlmont High School AP Bio Term Project 2005
  6. 6. Global Fossil Emissions Through 2000Historic amounts of petroleum, coal, natural gas, and cement production
  7. 7. Carbon Emissions and CO2 • Carbon burned => CO2Year C burned ppm CO2 1900 12307 295 • Linear from 1850 to 2000 1910 19174 300 - ppm CO2 =2.55 e10-4 *M tons C 1920 28050 305 + 297 ppm (r2*100=99%) 1930 37914 310 1940 48566 310 • ~ 50% of carbon goes 1950 62324 315 into atmospheric CO2 1960 83453 320 – 30% missing carbon 1970 115935 325 1980 164083 340 • Trend is constant over 1990 219365 350 100 years – is this how 2000 283373 370 the biosphere will react over the next 500 years?
  8. 8. Carbon Emissions and CO2 Carbon Emissions and CO2 390 Atmospheric CO2 in ppm 370 350 330 310 290 270 250 0 50000 100000 150000 200000 250000 300000 Carbon Emissions in Million Tons Carbon emissions can be used to predict atmospheric CO2 with 99% confidence using simple linear regression data
  9. 9. Wealth and Energy• There is a strong correlation between wealth and energy – more income => more energy• Plot log income as a function of log energy – 85% correlation (r=0.92) – Slope = 0.73 – Intercept = 5.11• In 2025, income at 10,000, population ~8x109• Energy => 108 BTU x 8x109 people = 800 Quads
  10. 10. Affluence and Energy Use
  11. 11. Log Income vs. Log Energy Country Income Energy in BTU log income log energy Kenya 350 4.00E+06 2.54 6.60• RFF Report - population Vietnam Pakistan 390 440 7.30E+06 1.27E+07 2.59 2.64 6.86 7.10 India 450 1.15E+07 2.65 7.06• Resources For the Future Zimbabwe Armenia 460 520 1.13E+07 2.00E+07 2.66 2.72 7.05 7.30 Congo 570 3.00E+06 2.76 6.48• http://www.rff.org/ Indonesia Georgia 570 630 1.15E+07 2.50E+07 2.76 2.80 7.06 7.40 China 840 2.70E+07 2.92 7.43• Three groups of countries Iran South Africa 1680 3020 7.70E+07 9.40E+07 3.23 3.48 7.89 7.97 Turkey 3100 5.10E+07 3.49 7.71 – Low income Brazil Venzuala 3580 4310 3.60E+07 9.20E+07 3.55 3.63 7.56 7.96 Chile 4590 5.40E+07 3.66 7.73 – Medium income Mexico South Korea 5070 8910 6.00E+07 1.41E+08 3.71 3.95 7.78 8.15 New Zealand 12990 1.70E+08 4.11 8.23 – High income Isreal Italy 16710 20160 1.21E+08 1.20E+08 4.22 4.30 8.08 8.08 Australia 20420 2.64E+08 4.31 8.42• 800 BTU rise / $1 income Canada France 21130 24090 3.32E+08 1.28E+08 4.32 4.38 8.52 8.11 United Kingdom 24430 1.40E+08 4.39 8.15• Baseline of ~ 125,000 BTU Germany United States 25120 34100 1.72E+08 3.07E+08 4.40 4.53 8.24 8.49 Japan 35620 1.43E+08 4.55 8.16
  12. 12. EIA Global Energy Demand
  13. 13. Future CO2 – the Next 30 Yrs Year Emissions CO2 2000 283,373 369 2005 318,465 378 2010 357,209 388 2015 399,986 399 2020 447,216 411 2025 499,360 424 2030 556,932 439
  14. 14. Vostok Ice Core Data•A perfect correlation between CO2, temperature, and sea level•For every one ppm CO2, sea level rises 1 meter, temp rises .05 C (global)•Process takes 100 years to add 1 ppm CO2, and reach thermal equilibriumThis is not just a correlation, this is a complex and dynamic process, with multipleinputs. Touching one input affects all other inputs, and increases in temperaturebecomes a further feedback and multiplier of these inputs.
  15. 15. GHGs and Vostok DataJames Kirchner Department of Earth and Planetary Science, University of California, Berkeley
  16. 16. Forcing Models• Calculating greenhouse numbers – Start with some basic physics – Get out your log calculator• CO2 is straightforward to calculate – Generate forcing in watts, temps in degrees C, factor in thermal inertia• Data validated by NASA / NOAA – Model fits observed ocean warming well – Also explains the Vostok ice core data
  17. 17. Calculating Radiative Forcing [current ppm CO2] 5.35 watts x ln _______________ [historic ppm CO2]Temperature increase C = 2/3 Watts radiative forcing
  18. 18. Forcing Model from GISS• http://www.giss.nasa.gov/• Definitive work in March 2005• 1,800 ocean buoys sampling temperatures at depth of 0 to 2,500 meters from 1900 - 2000• Temps must rise 0.66 0C per 1 W of forcing• ‘Thermal inertia’ of oceans requires 25 to 50 years to experience 60% of total ‘equilibration’• http://www.giss.nasa.gov/research/news/20050428/
  19. 19. Earth Out of Balance http://www.giss.nasa.gov/research/news/20050428/
  20. 20. Effect of Climate Feedbacks Missing feedbacks, asymmetric uncertainties, and the underestimation of future warming Margaret S. Torn and John Harte AGU GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L10703
  21. 21. Estimating the Effect of Climate Feedbacks to an Initial Thermal Input Final PPM CO2 Temp input Feedback (g) Temperature 0.5 1.0 C 350 0.50 C 0.7 1.7 C 0.5 1.5 C 400 0.75 C 0.7 2.3 C 0.5 2.0 C 450 1.00 C 0.7 3.3 C 0.5 2.5 C 500 1.25 C 0.7 4.2 C 0.5 3.0 C 550 1.50 C 0.7 5.0 C
  22. 22. Spreadsheet ModelingYear G tons C Cum C ppm CO2 forcing (W) temp force temp felt temp owed temp 2000 6.00 306.00 372.0 1.66 1.99 1.00 0.99 58.00 2001 6.12 312.12 373.5 1.69 2.02 1.02 1.00 58.02 2002 6.24 318.36 375.0 1.71 2.05 1.05 1.00 58.05 2003 6.37 324.73 376.6 1.73 2.08 1.07 1.01 58.07 2004 6.49 331.22 378.1 1.76 2.11 1.10 1.01 58.10 2005 6.62 337.85 379.8 1.78 2.14 1.13 1.01 58.13 2006 6.76 344.61 381.4 1.81 2.17 1.15 1.02 58.15 2007 6.89 351.50 383.1 1.83 2.20 1.18 1.03 58.18 2008 7.03 358.53 384.8 1.86 2.23 1.20 1.03 58.20 2009 7.17 365.70 386.6 1.89 2.26 1.23 1.04 58.23 2010 7.31 373.01 388.4 1.91 2.30 1.25 1.04 58.25 2011 7.46 380.47 390.2 1.94 2.33 1.28 1.05 58.28 2012 7.61 388.08 392.1 1.97 2.36 1.31 1.06 58.31 2013 7.76 395.84 394.0 2.00 2.40 1.33 1.07 58.33 2014 7.92 403.76 395.9 2.03 2.43 1.36 1.07 58.36 2015 8.08 411.84 397.9 2.06 2.47 1.39 1.08 58.39 2016 8.24 420.07 399.9 2.09 2.50 1.41 1.09 58.41 2017 8.40 428.47 402.0 2.12 2.54 1.44 1.10 58.44 2018 8.57 437.04 404.1 2.15 2.58 1.47 1.11 58.47 2019 8.74 445.78 406.2 2.18 2.61 1.50 1.12 58.50 2020 8.92 454.70 408.4 2.21 2.65 1.52 1.13 58.52 2021 9.09 463.79 410.6 2.24 2.69 1.55 1.14 58.55 2022 9.28 473.07 412.9 2.27 2.73 1.58 1.15 58.58 2023 9.46 482.53 415.2 2.31 2.77 1.61 1.16 58.61 2024 9.65 492.18 417.6 2.34 2.81 1.64 1.17 58.64 2025 9.84 502.03 420.0 2.37 2.85 1.67 1.18 58.67
  23. 23. Forcing / Heat From CO2 Year CO2 Forcing (W) 0 C / 0F 1900 300 0.40 .27 / .48 1950 310 0.60 .40 / .71 1975 325 0.87 .58 / 1.05 2000 370 1.78 1.2 / 2.1 2025 420 2.37 1.6 / 2.8 2050 480 3.15 2.1 / 3.8 2075 510 3.50 2.3 / 4.2 2100 540 3.84 2.6 / 4.6
  24. 24. Forcing, Predicted Temperature, and Climate Lag, 2000 - 2100 5 4.5 4 3.5 3 Forcing 2.5 Felt 2 Owed 1.5 1 0.5 0 2000 2025 2050 2075 2100 0 F -Model built assuming ~60% of forcing is felt in 25 – 50 years
  25. 25. Ocean AcidificationOcean acidification is equally as dangerous as climate change, and actually slows the rate of the ocean’s CO2 pump, making GHG emissions more significant.
  26. 26. So What Can We Do?• Stop burning fossil fuels – quickly• Invest in energy efficiency - lower BTU/$• Develop biofuels at scale – quickly• Replace coal with natural gas and wind• Put solar PV on EVERY viable rooftop• Lower building energy by at least 50%• Increase vehicle fuel efficiency => 50 mpg• Rethink nuclear power => thorium / PBMR
  27. 27. Clean Energy Economy
  28. 28. Honda Insight – MPG Champ 61 / 70 MPG Seating for two 1 liter - 3 cylinders ‘electric turbocharger’ 2,000 pounds All aluminum body
  29. 29. No Gas Required
  30. 30. Move Differently• SolarSegway™• Range ~8 - 12 miles• Battery packs can be charged locally (~5 hrs)• Emission free vehicle – Solar panels ‘extra’• Projected cost of $2,500 in quantity
  31. 31. Sustainability Base
  32. 32. Will it be Enough?• Probably not, but it’s the right direction• Focus on efficiency and fuel switching• Phasing out fossil fuels is necessary for pollution and geopolitical reasons alone• Building and vehicle efficiency save $s• Need to counter the effect of I=PAT – population => wealth => energy => IMPACT
  33. 33. Global Carbon Profiles USA 5.1 Canada 4.0 England 2.5 Germany 2.2Developing World France 2.0 North America Mexico 1.0 Europe China 0.6 India 0.3 Tons of carbon per person – year 2000 average = ~1.1 2025 at least 1.25
  34. 34. Calculating I=PAT• Calculating I=PAT – Population – Affluence – Technology• Look at 6.6 x 109 people growing to ~8 x 109• Carbon per person grows from ~1.2 to ~1.5• Global GHG emissions rise by 50% by 2025• Cannot have global energy based on carbon
  35. 35. The Population Problem 8 billion people @ 1.25 tons each = 10 G tons of carbon / year That is 50% more carbon emissions than today!
  36. 36. Numbers Matter• Get BTU per dollar GDP from 8,000 to 5,000 – stretch goal is 2500 BTU/$ , radical efficiency• At $100T GDP => still at 500 quads energy• Lower carbon intensity from %85 to <50%• Increase efficiency while simultaneously lowering carbon intensity => diet / exercise• Produce energy locally with PV and wind• Replace all of coal with advanced nuclear
  37. 37. From Information to Choices We can do this, but the clock is running!
  38. 38. What You Can Do• Drive less, drive smart• Invest in clean energy• Conserve on energy use• We need to cut CO2 emissions by 80%• Be deeply aware of the problem – This is the most significant problem facing the planet over the next 50 to 100 years – Single largest economic opportunity ever!
  39. 39. References• http://www.realclimate.org/• http://www.giss.nasa.gov/• http://www.sc.doe.gov/ober/CCRD/model.html• http://www.nersc.gov/projects/gcm_data/• http://www.fuelcells.org/• http://www.solarelectricpower.org/• http://www.nrel.gov/• http://www.eia.doe.gov/• http://en.wikipedia.org/wiki/Peak_oil

×