Lab con
Upcoming SlideShare
Loading in...5
×
 

Lab con

on

  • 133 views

 

Statistics

Views

Total Views
133
Views on SlideShare
133
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Lab con Lab con Document Transcript

  • Test Method for Density of Hydraulic Cement) 1. ( (Mixed Cement) (Kerosene) 2. 1
  • 2 3. 3.1 (Le Chatelier Flask) 1.1.1 3.2 3.3 3.4 (Thermometer) (Water Bate) 3.5 3.6 0.1 (Kerosene) (Naphtha) 0.731 4. 4.1 Type1 4.2 Type 2 4.3
  • 3 64 1 2 5. 5.1 0 20 - 1 - 0.02 30 3 5.2 5.3 30 3
  • 4 0.2 6. 6.1 P = P = W = V = W V / 3 6.2 2 0.03 / 6.3 7. 3 .
  • 5 ASTM C188-89 “ Standard Test Method for Density of Hydraulic Cement” 8. 8.1 8.1.1 8.1.2 8.2 8.2.1 ( ) 8.2.2 ( ) 8.2.3 (Le Flask) ( - Chatelier )
  • 6 1.1.1 (ASTM C188 – 95)
  • 7
  • 8 9. ……………………………………… …………………………………...... ……………………………. …………………………………..... ……………………………. …………………………………… 1 ( . .) ( + ) ( ( . . .) .) 2
  • 9 ( / . .) (-) (Test Method for Fineness of Portland Cement by Air Permeability Apparatus ) 1. (Hydration)
  • 10 3 ( Blaine Air ) Permeability 2. 3. Blaine Air Permeability 3.1 3.2 (Permeability (Perforated 1.2 Cell) Disk)
  • 11 3.3 (Plunger) 3.4 (Filter Paper) Type1 General Specilication for Paper Filtering (UU- B P-236) 3.5 (Manometer U tube) 1.2.1 3.6 (Liquid Manometer) (DibutylPhthalate) (Dibutyl 1 1.2 benzene-dicarboxylate) (Light Grade of Mineral oil) 3.7 (Timer) 0.5 60 1 60 - 300 3.8 3.9 0.001 ^ CS Reagent Grade
  • 12 3.10
  • 13 1.2 (ASTM C 204) (Density of Mercury Viscosity of Air (  ) and  at Given Temperatures) Room Density of Temperature Mercury C Mg / m 3 Viscosity of Air   Pa.s 18 13.55 17.98 4.24 20 13.55 18.08 4.25 22 13.54 18.18 4.26 24 13.54 18.28 4.28
  • 14 26 13.53 18.37 4.29 28 13.53 18.47 4.30 30 13.52 18.57 4.31 32 13.52 18.67 4.32 34 13.51 18.76 4.33 4. 4.1 NIST 4.2 114p Type 1 , 3 5. 5.1 2 Permeability 5.1.1 (Calibration of Apparatus) (Bulk Volume of Compacted Bed of Powder) Permeability
  • 15 1. 2 (Plunger) 2. 3. (WA ) 4. 2.80±0.001 5. 1 2 (c)
  • 16 6. WB 7. V (W A  WB ) D = ………………………… (1) = V : . . WA = : WB = : D = ( 1.2.1) 8. ±0.005 . .
  • 17 5.1.2 Permeability 1. 120 . . 2 2 2. W = VP(1 -  ) ……………………………………… (2) = W :  = ( / V . ) =  . = (1) (Porosity) ( 0.500±0.005) 3. 3.15 (Cement Bed) 3.1 1
  • 18 3.2 0.001 1 3.3 (Plunger) 90 4. Permeability 4.1 4.2 4.3
  • 19 5. Permeability 5.1 5.2 5.1.1(4) (Plunger) (2) 0.530±0.005 5.3 5.1.2 (3) 5.4 5.5 (Plunger)
  • 20 3 5.6 5.7 3 4 5.8 5.8.1 5.8.2 (Plunger) 5.8.3 5.8.4 5.9 5.10 .
  • 21 6. (Specific Surface) S = SS (3) T TS S = SS S S S (b S ) 3 T = S = 3 TS (b ) S S S (b S ) 3  T  3 S S S =  (b )  S S  S (bS  S )  S 3 T  (b ) 3 TS T S cm 2 / g SS TS  (b  ) 3 S = = cm 2 / g (5) (6) S S  S (bS  S ) 3 = S (4)  TS S T (7) T TS (8)
  • 22 T = TS = S S  = ( Pa.s) S = ( Pa.s )  = S =  = mg/m3 mg/m3 S b g/cm3 g/cm3 = =
  • 23 bs = 0.9 (3) 1. (4) (3) 2. ±30C (4) (5) 3. (6) (3) (4) (7) 4. (3) (8) (4) b ASTM C204 7. ASTM C204 Standard Test Method for Fineness of Portland Cement by Air Permeability Apparatus 8.
  • 24 8.1 8.1.1 2 2% 2 8.1.2 8.2 8.2.1 8.2.2 8.2.3 Hydration Heat of Hydration 8.2.4 W C (E) 9. 9.1 9.2 9.3 (Plunger)
  • 25 9.4 9.5 10. 10.1 10.2
  • 26 – ASTM C305 (Practice for Mechanical Mixing of Hydraulic Cement Paste and Mortars) 1. ( ASTM C305 + ) ( + + ) ASTM
  • 27 2. ASTM C305 3. 3.1 (Mixer) 2 140 ± 5 rpm 285 0.8 2.1.1 ± 10 – 2.5 rpm . 4.37 3.2 . (Scraper) 50 3.3 150 . 75 . (Balance) 3.4 4. 4.1 1
  • 28 4.2 4.3 5. 5.1 5.2 5.3 30 140 ± 5 rpm 30 15 5.4 ± 10 6. 6.1 6.2 6.3 285 rpm 1
  • 29 6.4 ± 5 140 rpm 30 6.5 10 rpm 285 ± 30 6.6 6.7 90 15 285 ± 10 rpm 60 7. ASTM C305-82 (Reapproved 1987) “ Standard Practice for Mechanical Mixing of Paste and Mortars” 8. 8.1 8.2 Hydraulic Cement
  • 30 8.3 8.4 9. 9.1 9.2
  • 31 2.1.1 (ASTM C 305)
  • 32 (Test for Normal Consistency of Hydraulic Cement) 1. ASTM (Normal Consistency) 2. 3. 3.1 (Mixer)
  • 33 2 140 ± 5 rpm 285 0.8 ± – 10 rpm 2.5 . 2.1.1 4.37 3.2 : ± 0.05 % 0.0125 % 1 3.3 ASTM 200 C40 : 250 3.4 (Vicat Apparatus) 2.2.1 3.4.1 A 3.4.2 3.4.3 B B C
  • 34 D 3.4.4 B E 3.4.5 F 3.4.6 G 3.4.7 H 3.5 3.6 (Scoop) (Scraper)
  • 35 2.2.1 (ASTM C 187 – 98) 4. 4.1 4.2 5. 5.1 650 5.2 6 15 5.3 Ring . Conical (G)
  • 36 5.4 1 5.5 Ring BasePlate H 5.4 5.6 Base Plate Ring Plunger (C) 5.7 Plunger (C) Ser-Screw 5.8 ( Indicator ) 30 5.9 (E) (F) E E
  • 37 5.10 Plunger Plunger 10 ± 1 . 5.11 5.1 5.10 Plunger 5.12 10 . 5.13 0.1% 0.5 % 6. 6.1 ASTM C187 - 98 Standard Test Method for Normal Consistency of Hydraulic Cement
  • 38 6.2 ASTM C1005 - 91 Standard Specification for Weights and Weighting Devices Use in the Physical Testing of Hydraulic Cements 7. 7.1 7.1.1 7.1.2 7.1.3 (%) 7.2 7.2.1 (%) 7.2.2 ……………………………… ………………….. ………………………….. ………………………………………………………..
  • 39 ……………………………………………………. (C) ( (W) ) ( ) W (%) C ( .)
  • 40 (Test for Time of Setting of Hydraulic Cement by Vicat Needle) 1. (Setting or Stiffening) (Hardening) 2 (Initial Time) Time) Setting (Final Setting
  • 41 1.1 : 25 . 30 1.2 2. :
  • 42 3. 3.1 : ± 0.1 % 3.2 : 200 – 250 ml ASTM C490 3.3 2.2.1 2.2 4. 4.1 4.2 5. 500 2.1 6. 6.1 ( ASTM C191) 6.2 Ring Conical 30 1.0
  • 43 . 6.3 30 ( 6.4 (6.2) ) – (6.3) 6.4 . 15 30 10 25 ( . 3 ) 6.5 6.6 (6.2) – (6.4) 7.1 “Properties of Concrete” A.M. Neville ELES 7. and Pitman Publishing 1981 7.2 ASTM C191-82 “Standard Test Method for Time of Setting of Hydraulic Cement by Vicat Needle” 8. 8.1 8.1.1
  • 44 8.1.2 8.1.3 8.2 8.2.1 8.2.2 8.2.3 ………………………
  • 45 ………………………… ………………….. ……………………………………………………… ………………………………………………….. ( ) ( .)
  • 46
  • 47 (Resistance to Abrasion of Small Size Course Aggregate by Los Angeles Machine) 1.
  • 48 (Gradation) (ASTM C131) 20 20 1 12 500 35 2. 11 2 Los Angeles Machine
  • 49 3. 3.1 Los Angeles Machine 3.2 390 445 3.3 12 ASTM E 11 3.4 0.1 3.5 105 C 4. 110  5 C ( ) 3.1 3.1 – 110
  • 50 ( ( ) ) A 1 1250 ± 1 25 1250 ± 1 25 B C D - - - - - - - - - - 1250 ± 2500 ± 25 10 1250 ± 2500 ± 25 10 # 4 - 2500 ± 10 2500 ± - ) 5. # 8 (2.38 ) - - - - 5000 ± 5000 ± 5000 ± 10 # 4 (4.76 ) - 5000 ± (4.78 10 10 10 10 5000 ± 10
  • 51 5.1 1 5.2 3.2 3.2 . . ( ) A 12 5000 ± 25 B 11 4584 ± 25 C 8 3330 ± 20 D 6 2500 ± 15 5.3 30 – 33 500 5.4 12 1 1 5.5 12 1
  • 52 5.6 12 12 110  ( ( 1 C ) ) 2 6. 12 7.
  • 53 8.
  • 54
  • 55 ……………………………………………… …………………………………………… …………………………………. ……………………………….............. ( ( 1 1/2 ) 1 1 1/4 1/4 # 4 (4.76 # 4 (4.78 ) ) # 8 (2.38 ) )
  • 56 ……………….. …………………………….. 9. . ……………………………… (1) # ……………………………... 12 . (2) # 12 (1) – (2) ………………………………… (3) (3) (1) 100  …………………………… % # …………………………….. 12 . (4) 12 ……………………… (1) – (4) (5) (5) (1) ………………………….. % .  100
  • 57 (Specific Gravity and Absorption of Aggregate) 1.
  • 58 1.1 3 (1) (2) (Impermeable Pore) (3) (Permeable Pore) 1.2 (Density) / 1.2.1 ( ) (Density) :
  • 59 X (at X)= Density / Density (at X) = / 1.2.2 (Absolute Density) Absolute Density (at X) = / 1.2.3 (Apparent Density) Apparent Density (at X)= / Oven Dry Apparent Density (at X) = (Oven Dry)/ 1.2.4 (Bulk Density)
  • 60 (Permeable Pore) Bulk Density (at X)= / Bulk Density (Saturated Surface Dry) Bulk Density (at X and SSD Basis) = SSD / 1.3 (Specific Gravity of Density) ( 1.3.1 Relative : -) (Specific Gravity) ( ) X ( ) Y Specific Gravity (at X,Y) = Density (of Material) (at X)/Density of Water (at Y) 1.4 (Apparent Specific Gravity) Apparent Specific Gravity (at X,Y) = Apparent Density Y) (at X)/Density of Water (at
  • 61 . Density of Water at 20 Y / C=1 . = 20 C . Apparent Specific Gravity (at X,20) = Apparent Density (at X) 1.5 (Bulk Specific Gravity) Bulk Specific Gravity (at X,Y) = Bulk Density (at X)/ Density of Water (at Y) Density / . . Y = 20 Bulk C Bulk Specific Gravity (at X,20) = Bulk Density (at X) 1.6 4 (SSD) 2 2.1 (
  • 62 2.2 ( ) 3 3.1 3.1.1 : 1 . 0.1 ±0.1 % 3.1.2 500 (Pycnometer) . . 3.1.3 40±3 90±3 . 75±3 3.1.4 . . (Tamper) 340±15 25±3 . 3.2 3.2.1 . : 5 0.5 3.2.2 0.05 % :
  • 63 3.1.1 3.2.3 : 3.35 3.2.4 . : 3.2.5 : 4 4.75 . 4 4.1 1 000 4.2 5 5.1 Quartering ASTM C125 C125 ASTM ASTM D75 5.2 5.2.1 1 000 110 ± 5 3-4 . ( 30 ) 24±4
  • 64 24 . 5.2.2 5.2.1 37.5 . ( ) 30 24±4 6 6.1 6.1.1 (SSD) 5 . 25 (SSD)
  • 65 6.1.2 500 ml( B ) 6.1.3 (SSD) 500±10 90 (500 ml) 0.1 % ( C ) 6.1.4 1.3 110±5 0.1 A) 6.2 6.2.1 (SSD)
  • 66 0.5 B ) 6.2.2 ( C ) 6.2.3 6.1.4 ( A) 7 7.1 Bulk Specific Gravity (Oven Dry) = Bulk Specific Gravity (SSD) = Apparent specific Gravity (Oven Dry) = A (B  S  C) S (B  S  C) A (B  A  C) Absorption (%) A =  100 = S ( S  A) A = B = SSD
  • 67 C = 7.2 Bulk Specific Gravity (Oven Dry) = Bulk Specific Gravity (SSD) = Apparent specific Gravity (Oven Dry) = A (B  C) B (B  C) A ( A  C) Absorption (%) A C Specific Gravity 7.3 100 ) = ( SSD ( B  A)  A = ( B = ) = ( Absorption (Specific Gravity) )
  • 68 G Avg. = 1/(P1/100G1)+(P2/100G2)+…………(Pn/100Gn ) G Avg. Specific Gravity = G1,G2…Gn= Specific Gravity 1,2…n P1,P2… Pn= 1,2…n 7.4 (Absorption) G Avg. = (P1A1/100)+(P2A2/100)+…………..(PnAn/100) G Avg. = A1,A2…An = Absorption Absorption 1,2…n 8 8.1 8.1.1 Bulk Specific Gravity 8.1.2 Bulk Specific Gravity (SSD) 8.1.3 Apparent Specific Gravity
  • 69 8.1.4 Absorption Capacity (% over Oven-Dry Basis) 8.2 8.2.1 What is difference between Apparent and Bulk Specific Gravity? 8.2.2 If sample of sand sample is drier that SSD condition, what would the determination of Bulk Specific Gravity (SSD) be affected assuming the sample becomes saturated during the test. 8.2.3 Would the apparent specific gravity be affected in the same manner,explain? 9 Reference 9.1 ASTM C127 Standard Test Method for Specific Gravity and Absorption of Coarse Aggregate 9.2 ASTM C128 Standard Test Method for Specific Gravity and Absorption of Fine Aggregate 9.3 ASTM C70 Standard Test Method for Surface Moisture in Fine Aggregate
  • 70 ––
  • 71
  • 72 (Test for Sieve Analysis of Fine and Coarse Aggregates) 1. (Gradation)
  • 73 (Segregation) 5.1 5.1 2. 3.
  • 74 3.1 9.5 .) ( : 0.1 0.1 0.1 % 3.2 ( 9.5 .) : 0.5 0.1 % 3.3 1 1 2 ,1, 3 4 : , 1 2 , 3 8 No.4 3.4 :3, 8 No. 4, No. 8 , No. 16 , No. 30 No. 50 No. 100 3.5 4. 4.1 : Quartering ( ASTM 075 4.2 95 % 8 # 300 85 % 4 5% #8 # 500
  • 75 4.3 : . ( ) 9.5 (3/8) 1 12.5 (1/2) 2 19.0 (3/4) 5 25.0 (1) 10 37.5 (1 ½) 15 5. 5.1 110±5 (
  • 76 5.2 5.3 ( ) 5.4 1 1 % 5.5 5.6 : 0.1 % (Fineness Modulus) 6. 6.1 ASTM C33-86 “Standard Specification for Concrete Aggregates”
  • 77 6.2 ASTM C 136-84a “Standard Method for Sieve Analysis of fine and Coarse Aggregates” 7. 7.1 7.1.1 Weight Retained % Weight Retained (or % Coarser) % Cumulative Retained (% Coarser) % Passing 7.1.2 7.1.3 (Fineness Modulus) Grading 7.1.4 Curves Grading ASTM Curves 5.1 7.2 7.2.1 7.2.2 7.2.3 Fineness Modulus)
  • 78
  • 79 …………………. Weight / % Sieve Retained % Weight Cumulative No. (g) Retained Retained (% Coarser) 1 1/2 1 % Passing
  • 80 3/4 No 4 No 8 No 16 No 30 No 50 No 100 Pan Total Fineness Modulus = X 100 Xi = % Cumulative Retained on Sieve I I = Each Sieve of the Standard Set from Maximum one to Sieve No 100
  • 81 (Unit Weight of an Aggregate) 1. (Voids) (particles) (1) (Loose unit weight) (2) (Rodded weight) (Grading) . .( .( . .) ) 12 ( 1 ) 2 1 2700 ( 10 ) 25 (1) 9000 ( 13 ) 37 (1 12 ) 13500 ( 12 ) unit
  • 82 100 (4) 27000 (1) 2. 3. 3.1 3 13500 . 2700 , 9000 . 3.2 3.3 50 . ± 50 4. 3 4.1 uniform 9 4.2 grading . uniform 25 – 50 4.3 well 50 . grading . graded
  • 83 5. 5.1 5.2 5.3 3 25 5.4 5.5 2 3 2 2 700 cm 3 9 000 cm 3 13 500 cm 3
  • 84 +  9 . . + . . . .  . . 9 . . + . . . .  . . 25–50 . . . + . . . .  . . 25–50
  • 85 . . . + . . . .  . . 50 . . . + . . . .  . . 2 700 cm 3 50 . . . .  . . + . . . 9 000 cm 3 13 500 cm 3
  • 86 (Tensile Tests of Reinforcement Steel Steel Plate and Aluminum) 1.
  • 87 (Heat Treatment) 38 38 5.5 D (D (Tensile “ Stress) ”(Strain)
  • 88 = P A =(Lo) (Proportional Limit) (Elastic) (Elastic Limit) (Mild Steel)
  • 89 (Yield Point) Strain Hardening (Ultimate (Necking) 2. 2.1 Strength)
  • 90 2.2 2.3 (Rupture) 3. 3.1 (Universal Testing Machine) 1000 KN (100 ton) 3.2 3.3 3 3.4 (Round bar) RB9 (SR24) 3.5 (Deformed DB12 (SD30 bar) SD40) 3.6 (Brass) 10 3.7 15 mm. (Aluminum) 10 3.8 (Flat 2 3.9 15 mm. bar) 4 mm.
  • 91 7.1 4. 4.1 (7850 kgf/m3) 4.2 (Gage mark) 4 (Percent elongation) Gage mark
  • 92 4.3 (Grip) UTM Extensometer Gage length Gage length Grip 4.4 Load Cell Gage UTM 4.5 0.0345 1.15-11.5 MPa/E/s 0.345 m/min Strain /second) (Ultimate load) ASTM 370 E8 4.6 1/10 load Ultimate 5 KN ( Ultimate load 0.5 ton)
  • 93 4.7 Gage mark 7.2 5. 5.1 (KN) (mm) 5.2 (MPa)
  • 94 (Stress-strain curve) 5.3 5.4 (Proportional 5.5 Offset (Yield Strain strength) 0.002 5.6 constant Limit) (Elasticity Young’s modulus 5.7 modulus of elasticity) (Ultimate strength) 5.8 (Percent elongation) (Percent reduction of area) 5.9 2.2 2.3 5.10 6. ASTM 370 E8 Test Methods for Tension Testing of Metallic Materials
  • 95 7. 7.1 7.2 Control (Universal Testing Machine)
  • 96 Length ………………………………………….. mm. Weight ……………………………... g. Diameter …………………………………… mm. Gage Length ……………………………..….. mm. Cross Section Area ………………………………. mm2 Date ……………………………….… Readin Load Stress Deforma g No. (ton) (kg/mm tion 2) (mm.) 1 2 3 4 5 6 7 8 9 10 11 Strain Remark
  • 97 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Length …………………………………………….mm. Weight ……………………………... g. Diameter …………………………………………….mm. Gage Length ………………………….. mm. Cross Section Area ………………………………… mm2 Date ………………………………..
  • 98 Readin Load Stress Deforma g No. (ton) (kg/mm tion 2) (mm.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Strain Remark
  • 99 20 21 22 23 24 25 Length ……………………………………….. mm. Weight …………………….…………... g. Diameter …………………………………………….mm. Gage Length …………………………... mm. Cross Section Area ………………………………… mm2 Date ………………………….…….. Readin Load Stress Deforma g No. (ton) (kg/mm tion 2) (mm.) 1 2 3 4 5 Strain Remark
  • 100 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
  • 101 (Flow Test and Preparation of Mortar Cube) 1. ASTM C109 50 × 50 × 50 ( . ) Silica (Ottawa Sand) 20 30 ASTM C190 Briquet 1991 ASTM Committee C-1 1:2.75 0.485 0.460 (Flow) 110±5% Flow
  • 102 2. 3. 3.1 3.2 4. 4.1 C1005 4.2 ASTM C40 4.3 50 × 50 × 50 4.4 ASTM C305 4.5 ASTM C230 4.6 .
  • 103 5. 5.1 5.2 1 5.3 6. 3 7. 7.1 7.2 Parafin 7.3 8. 8.1 8.2 1 8.1
  • 104 A ) C D I ( B I I I 740 500 500 500 E F I 500 500 2035 1250 1500 1375 1375 1375 ( ) ( ) 242. 242. 5 5 0.48 0.48 0.48 5 W/C 359 5 275 300 0.55 0.6 5 (%) 9 3 3 3 3 2.75 Sand/Cement 3 2.5 3 2.75 2.75 2.75 1, 3, 7 7 7 7 7 (by weight) ( ) 7 8.3 8.3.1 8.3.2 8.3.3 20 25 .
  • 105 8.3.4 8.3.5 8.3.6 1 13 . 25 15 8.3.7 4 8 8.4 8.4.1 Flow Test ( 2) 15 8.4.2 2 30 25 4 8 8.4.3 . 10
  • 106 8.4.4 8.5 8.5.1 24 . 8.5.2 1 8.6 % = Davg Dorg ( Davg  Dorg ) Dorg × 100 = = 9. 9.1 9.1.1 W C
  • 107 9.1.2 1% 2.65 / 9.1.3 . . A E 9.2 9.2.1 W C 9.2.2 9.2.3 110±5 % 10. 10.1 ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortar 10.2 ASTM C230 Standard Specification for Flow Table for Use in Tests of Hydraulic Cement
  • 108 8.1 (ASTM C230)
  • 109 (Test Method for Compressive Strength of Hydraulic Cement Mortars) 1.
  • 110 2. 2.1 8.2 8.2 24 ± 2.2 24 (1 ) 1 1 23 ± 1.7
  • 111 2.3 Compression Machine 3. 3.1 3.2 3.3 20-80 3.4 ( ) 4. 4.1 fa = fa P A = / P A = . = 2
  • 112 ±1.5% 4.2 10 2 10 % % 5. 5.1 5.1.1 5.1.2 5.1.3 W C 5.1.4 5.2 5.2.1 5.2.2 5.2.3 5.2.4 W C
  • 113 6. 6.1 ASTM C109 Standard Test Method for Compressive Strength of Hydraulic Cement Mortar 6.2 ASTM C230 Standard Specification for Flow Table for Use in Tests of Hydraulic Cement
  • 114
  • 115 (Calibration of Testing Machine) 1. (Testing Machine) Load Cell Proving Ring (Elastic) Load Load Cell Proving Ring
  • 116 Load 2. 3. 3.1 (Universal Testing Machine) 3.2 Load Cell 3.3 Load Proving Ring Proving Ring 3.4 Data Logger) Cell
  • 117 4. 4.1 Load Cell Proving Ring (Cross Head) 4.2 Load Cell Proving Ring (Universal Testing Machine) Load Cell Proving Ring 4.3 Load Cell 4.4 Proving Ring Load Cell Proving Ring 4.5 (Percent of Error) Percent of Error R T Cell Proving Ring = R T T × 100% = Reading Load = True Load Load
  • 118 4.6 4.7 Load Cell Proving Ring 9.1.1
  • 119 (Data Logger) Name ………………………………………………… Type …………………………………….. Capacity ……………………………………………….. Owner …………………………………… Tested by………………………………………………. Group No. …………………………….. Date ………………………………………………. Read Reading ing Load No. True Load True Load (Load Cell or (Load Cell or (Compressi Proving ring) Proving ring) Average (ton)
  • 120 ve Machine) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 (ton) 2 (ton)
  • 121 23 24
  • 122 1. Bolts Bolts Bolts Bolts Bolts Bolts Bolts Bolts Bolts 1.High – Strength Bolts ASTM A325 2.Non – High - Strength Bolts A307 A490 ASTM
  • 123 9.2.1 (Bolt) (a) (Shear Failure) Bolt cdef Bolts Single Shear (S) Bolts Shear (b) Bolts Double Shear (D) Plan Bolts
  • 124 9.2.2 (Shear Failure) Bolt High-Strength Bolt (Thread) (Included N) (Excluded X) Bolt Shear Plan Shear Plan Shear Plan % N Bolt X Bolt Bolt AISC Volumn II Second Edition
  • 125 Bolt Rn = n Ø= (Fv Ab)n = Fv Ø Rn Bolt = Bolt (Nominal Shear Strength) Ab = Bolt (Nominal Bolt Area) Bolt 2. 2.1 Bolt 2.2 Bolt 3. 3.1 Shear Stress at Proportional Limit (  PL ) 3.2 Ultimate Shear Stress (  u ) 3.3 Modulus of Rigidity Bolt 3.4 4. Type of Failure Shear Modulus
  • 126 Bolt 1.5 5. 5.1 (Universal Testing Machine) 5.2 5.3 Shear Tool Box Bolt 6. 6.1 6.2 Box Bolt Bolt Shear Tool Shear Tool Box 6.3 6.4 Apply Load Head Cross 0.8 (Deformation) kg. (Failure) 6.5 Bolt 100
  • 127 6.6 (Shear Force) (Deformation) Proportional Limit (Yield Point) 6.7 6.7.1 Shear Stress at Proportional Limit 6.7.2 Ultimate Shear Stress 6.8 Modulus Modulus of Shear Bolt 6.9 6.10 Rigidity Bolt (Sketch) 7. AISC Volume II Part 8 Bolt
  • 128 Shear Tool Box Bolt Specimen No. ………………………………………………Diameter …………………………… mm. Length……………………………………………mm. Type of Bolt……………………........... Type of Shear Failure …………………………………………. Tested by……………………………………………………… Group No. ………………………….. Date ……………………………………………………… Readi Load Deformatio Shearing Average ng No. (kg) n Stress (ton)
  • 129 (mm.) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 (kg./m2)
  • 130 23 24 25
  • 131 (Flexure Test and Shear Test of Concrete) 1. 2. 2.1 2.2 3. 3.1 (Modulus of Rupture R)
  • 132 3.2 4. 3 5. 5.1 (Universal Testing Machine) Third –Point Loading 5.2 Transducer 5.3 Displacement Dial Gauge Vernier 5.4 6. 6.1 2 (b 6.2 × d) Support 10.1.1
  • 133 10.1.1 Third – Point Loading 6.3 2 6.4 6.5 (Apply Load) Cross (Central Head Deformation) 6.6 6.7 (Load) (Deflection) 100 kg.
  • 134 6.8 6.9 (Tension Surface) Load Modulus R = of Rupture PL bd 2 6.9.1 (Tension Load Surface) “Outside of the Middle Third of the Span Length” 5% Span Length Modulus of Rupture R = R = Modulus of Rupture (ksc.) P = Maximum Load (kg) L = Span Length (cm.) b = Average Width of d = Average Depth of 3PL bd 2 Specimen (cm.) Specimen (cm.)
  • 135 a = Average Distance between line of Fracture and the Nearest Support measured on the Tension of the Beam (cm.) 5% (Discard) 7. ASTM C78 AASHTO T97 Flexural Strength of Concrete (Torsion Test of Steel Cast Iron and Brass) 1.
  • 136 Torsion Load (Shearing Torque Stress) Twisting Angle (Torsion) (Shear (Tensile Stress) Stress) (Compressive Stress) (Helicoid) (Buckling) (Twisting Strain (Strain Angle) Hardening)
  • 137 (Shearing Stress) (Shearing  =  =  =  =  = r Strain) = T .r J r L (kg/cm2) (kg – cm) (cm) J = Polar Moment of Inertia  = (Radial) L = (cm4) (cm) (Modulus (Shear G G 2. = of Rigidity) Modulus) TL J T
  • 138 3. 8.2.2 Short Specimen 2 3 3.1 (Steel) 3 3.2 Iron) (Cast 3 3.3 (Brass) 3 10.2.1
  • 139 10.2.2 4. 4.1 (Torsion Test Machine) 10.2.1 4.1.1 Loading Device 4.1.2 Torque Measurement Unit (2) 4.1.3 (1) (Calibration Device) (3) 4.1.4 (Hexagon Socket) (4)
  • 140 4.1.5Track Base (5) 4.1.6Digital Torque Meter (6) 4.2 Vernier) 5. 5.1 Torque Loading Device Measuring Unit Hexagon Socket 5.2 Holder Shifting Specimen Load Device 5.3 Load Hand Wheel Input Measurement Unit 5.4 Worm Gear Torque Digital Torque Meter Indicator Input Output Shaft Worm Gear 5.5 Dial Gauge Compensation Unit Turn – able Scale 5.6 5.7 (Reset) Hand Load Wheel Input Gear (Angle)
  • 141 5.8 (Quarter Rotation 90 0 ) – 180 0 ) 5.9 Twisting Angle (Output Angle of the Gear) 5.10 Hand Wheel (Input) Hand Wheel Steel 5.11 Measurement Deformation Unit Compensation Unit 5.12 Amplifier Torque Hand Wheel Dial Gauge Torque (Display) Twisting 6. 6.1 Scale Reading – Worm Gear Input Angle
  • 142 Load Torque (Nm) (Yield Point) 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.3 6.4 6.5
  • 143 Specimen Data Type ………………………………………………….. Length ………………………………… mm. Weight …………………………………………….. g. Diameter ………………………………… mm Gage Length …………………………………… mm. Cross Section Area …………………… mm.2 Tested by …………………………………………… Group No. …………………………………. Date ………………………………………………….. Readin Scale Reading at 2 3 4 the the (Nm) Specimen (rev) 1 Load Torque Worm Gear Input g No. Twisting Angle at (degree)
  • 144 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Specimen Data
  • 145 Type ……………………………………………….. Length ………………………………… mm. Weight …………………………………………….. g. Diameter ………………………………… mm Gage Length …………………………………… mm. Cross Section Area …………………… mm.2 Tested by …………………………………………… Group No. …………………………………… Date ………………………………………………….. Readin Scale Reading at Twisting Angle at Load Torque g No. the the (Nm) Worm Gear Input Specimen (degree) (rev) 1 2 3 4 5 6 7 8 9 10 11 12
  • 146 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Specimen Data Type ……………………………………………………. Length ………………………………… mm. Weight …………………………………………….. g. Diameter Gage Length ……………………………………… mm. Cross Section ………………………………. mm Area …………………… mm.2 Tested by …………………………………………….. …………………………………. Group No.
  • 147 Date ………………………………………………….. Readin Scale Reading at Twisting Angle at Load Torque g No. the the (Nm) Worm Gear Input Specimen (degree) (rev)
  • 148 26 27 28
  • 149 (Compression Parallel and Perpendicular to Grain Test of Wood) 1. (Annual Growth Rings) 1 1 (Compressive Stress)
  • 150 11.1.1 2. 2.1 Failure 2.2 3. 3.1 Compressive Strength at Proportional Limited (  PL ) 3.2 Yield Stress at 0.05 % Offset (  Y ) 3.3 Ultimate Compressive Strength (  uc ) 3.4 Modulus of Elasticity (  )
  • 151 3.5 Modulus of Resilience 3.6 Type of Failure 4. 2 × 2 ×8 3 5. 5.1 (Universal Testing Machine) 5.2 Compressometer (Gage Length) 15 5.3 5.4 (Dial Gauge) Vernier) 6. 6.1 6.2 3 2 6.3
  • 152 6.4 Upper Lower Plate Plate Spherical Plate Bearing Plate Plate 6.5 (Compressometer) 6.6 Testing Machine 6.7 Dial Gauge 6.8 (Apply Load) Cross Head 0.6 6.9 100 kg Proportional Compressometer (Ultimate Load) 6.10 6.11 6.12 (Load) Proportional Limit (Deformation) Yield Strength Limit
  • 153 6.13 6.13.1 Compressive Strength at Proportional Limited (  PL ) = 6.13.2 = ( y ) Ultimate Compressive Strength (  uc ) UlitmateLo ad Cross sec tionArea 6.13.4 = Yield Stress at 0.05% Offset Loadat 0.05% offset Cross sec tionArea 6.13.3 = LoadatPL Cross  sec tionArea Modulus of Elasticity (  ) StressatPL StrainatPL
  • 154 11.1.2 7 ASTM D143 Standard Methods of Testing Small Clear Specimens of Timber
  • 155 Tested by ……………………………………………………………… Group No. …………………………… Date ……………………………………………………………… Specimen No. Cross Section W × L (cm) Weight (g) Density (g/cm3) Annual Growth Rings per cm. Water Content (%) Compressive Strength at PL Yield Stress (kg/cm2) Ultimate Stress (kg/cm2) 1 2 3
  • 156 Modulus of Elasticity (kg/cm2) Type of Failure 1. (Point Load) 1 3
  • 157 2. 2.1 Failure 2.2 3. 3.1 Compressive Strength at Proportional Limited (  PL ) 3.2 Yield Stress at 0.05% offset (  y ) 3.3 Compressive Strength Deformation 3.4 Modulus of Elasticity (E) 3.5 Modulus of Resilience 4. 2" 2" 6" 3 at 0.1 inch
  • 158 5. 5.1 (Universal Testing Machine) 5.2 Compressometer (Gage Length) 15 5.3 (Dial Gauge) Vernier 6. 6.1 6.2 3 2 6.3 6.4 Upper Lower Plate Plate Spherical Plate Bearing Plate Plate 6.5 Compressometer 6.6 Testing Machine
  • 159 6.7 Dial Gauge 6.8 (Apply Load) Cross Head 0.6 6.9 100 kg. Proportional Limit Compressometer (Ultimate Load) 6.10 6.11 6.12 (Load) (Deformation) Proportional Limit Yield Strength 6.13 6.13.1 Compressive Strength at Proportional Limited (  PL ) = 6.13.2 LoadatPL Cross  sec tionArea Compressive Strength at 0.1 inch Deformation = Loadat 0.01"Deformation Cross sec tionArea
  • 160 6.13.3 Modulus of Elasticity (E) StressatPL StrainatPL = 7 ASTM D143 Standard Methods of Testing Small Clear Specimens of Timber Tested by ………………………………………………………. Group No. ……………………… Date ……………………………………………………………. Specimen No. Cross Section W × L(cm) Weight (g) Density (g/cm3) Annual Growth Rings per cm. Water Content (%) Compressive 1 2 3
  • 161 Strength at PL Compressive Strength at 0.1 " Deformation Yield Stress (kg/cm2) Modulus of Elasticity (kg/cm2) Type of Failure
  • 162 (Shear Parallel to Grain Test of Wood and Flexure Test of Wood) 1.
  • 163 (Slide or Slip) “ ” 1. (Shear Parallel to Grain of Wood) 2. (Shear Perpendicular to Grain of Wood) 2. 2.1 (Failure) 2.2 3.
  • 164 11.3.1 4. 4.1 (Universal Testing Machine) 4.2 4.3 (Vernier) (Shear Tool Box) Shear Tool Box
  • 165 5. 5.1 5.2 Shear Tool Box Shear ToolBox 5.3 Apply Load Cross Head Maximum Load 5.4 5.5 Moisture Content 5.6 Specific Gravity SP W V W SP = Specific Gravity W = kg) V = ( cm 3 ) W 5.7 = = Density kg / cm 3 Shearing Stress)
  • 166 Shearing Stress = P m A Pm = Maximum Load A = Shearing Area 6. ASTM D143 Standard Methods of Testing Small Clear Specification of Timber Tested by ………………………………………………… Group No. ……………………………… Date ………………………………………………. Specimen No. Type of Wood (cm × cm) Cross Section w 1 2 3
  • 167 ×l (cm × cm) Shear Force (kg.) Shearing Strength(ksc.) Sketch of Failure Specimen Remark
  • 168 (Bending tests of wood) 1. (Bending Moment) (Bending Stress) 2. 2.1 2.2 (Failure) 3. 3.1 Bending Stress of Proportional Limited (  PL 3.2 Modulus of Rupture (  r ) 3.3 Modulus of Elasticity (  ) 3.4 Modulus of Resilience (R) 3.5 Maximum Shearing Stress (  m ax ) 3.6 Average Total Work to Ultimate Load (W) )
  • 169 3.7 Type of Failure 4. 2 2 30 3 5. 5.1 Testing Machine Universal Support 5.2 Transducer Displacement Dial Gauge 5.3 (Vernier) 5.4 6. 6.1 b × d) Specific Gravity 6.2 (Sketch) (Deflect) (Ring)
  • 170 6.3 Support Support Surface Tangential Cross Head Cross Head 6.4 6.5 Testing Machine 6.6 Cross (Apply Load) Head (Central Deflection) kg. 6.7 6.8 (Water Content) 6.9 (Load) (Deflection) Proportional Limit (PL) 6.10 6.10.1 3P  L 2bd 2 Bending Stress of PL (  PL ) ksc. =
  • 171 6.10.2 Modulus of Rupture (  r ) 3Pm ax  L 2bd 2 6.10.3 PL3 4bd 3 6.10.4 2  PL 18  ksc. Modulus of Elasticity (E) = ksc. Modulus Resilience (R) = Maximum Shearing Stress (  m ax ) = ksc. 6.10.5 3Pm ax 4bd 6.10.6 (W) = = (1 ) 2 P ksc. Average Total Work to Ultimate Load Pm ax  m ax watt = Load at PL = Maximum Load = Span Length = Width of Beam = Depth of Beam (kg.) Pm ax (kg.) L (cm.) b (cm.) d (cm.)
  • 172  = Central Deflection at PL = Maximum Center Deflection (cm.)  m ax (cm.) 11.4 7 ASTM D 143 Standard Methods of Testing Small Clear Specification of Timber
  • 173
  • 174 Tested by…………………………………………………………… Group No. ………………… Date ………………………………………………………… Size of Specimen Width …………………………… mm. Depth …………………… mm. Length …………………………. .mm. Reading No. Load (kg.) Deflection Moment (kg. – (mm.) m.)
  • 175
  • 176 (Mixing Concrete and Slump Test) 1.
  • 177 2. 2.1 (Slump Test) 2.2 2.3 2.4 2.5 3. 3.1 1 3.2 3.3 Slump Test 3.4 3.5 (Air Meter)
  • 178 3.6 150±0.75 . 300±3 3.7 . (Shaking 3600 Table) / 3.8 4. 4.1 4.1.1 Portland 1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 350 . 1 . 4.2.2W/C = 0.55 4.2.3 / 4.2.4 = 35 % =2% 4.2.5 ( , ) 3.15 , 1.00 , 2.65 4.2.6Absorption Capacity 1.75 0.95 % , 2.71
  • 179 4.2.7Moisture Content X Y% 4.2.8 12 4.2.9 1 . 4.2.10 X Y 4.2.11 1 . 4.2.12 1 4.3 4.3.1 1 4.3.2 2-3 4.3.3 3-4 4.3.4 4.3.5 4.3.6 2-3
  • 180 4.3.7 5. 5.1 Slump Test 5.1.1 5.1.2 3 25 12-13 5.1.3 5.1.4 Slump 5.1.5 1 50
  • 181 5.1.6 5.1.7 5.2 (Unit Weight) 5.2.1 5.2.2 0.1% 5.2.3 (a) 0.4 . (b) 0.4 . 1. 75 . 2. 25-75 . 3. 25 . 5.2.4 3 25 25 .
  • 182 5.2.5 600 . 19-38 . 7000 2 3 25 5.2.6 5.2.7 5.2.8 D = Y = A = W = V = W1 = V1 = W V W1 D 100(Y  V ) V1 ./ . ./ . % .
  • 183 ( ) A = % ( ) 6. Air Meter Type B. 6.1 6.2 Dial Gauge % Dial Gauge 1 ± % 6.2.1 = . 6.2.2 ( Extension Tube 6.2.3 Left Left-hand Ball Valve Main-Air Valve Right BondValves Bleed ) Valve
  • 184 Left-Hand Ball Valve Right-Hand Ball Valve 6.2.4 Dial Pump Gauge 2-3 Bleed Valve Left-hand Ball Valve 6.2.5 Drain Tube Left-Hand Bond Valve Valve 6.2.6 Main-Air Valve Left-hand Ball Valve 400 cc Beaker Main-Air Valve Right-Hand Ball Valve 6.2.7 Valve Right-Hand Ball Left-Hand Ball Bleed Valve 6.2.8 Valve Drain Tube 6.2.9 ( ) Beaker . . 6.2.10 Valve 2-3
  • 185 Main-Air Valve Dial Gauge Ar Ac 6.2.11 Ac = m3/m2 100 % 6.2.12 Ar 10 0.1 Ac % Ac Ball Valve Right-Hand BallValve ( Left-Hand Ball Valve Extension Tube Main-Air Valve ) 10 6.3 6.3.1 3 25 6.3.2 6.3.3 6.2.3 6.3.4 6.2.4 6.3.5 Left Bleed Valve Bleed Valve Left-Hand Ball Valve Main-Air Valve Dial Gauge % 6.3.6 Main-Air Valve Bleed Ball Valve
  • 186 6.4 6.4.1 6.4.2 7. 7.1 7.1.1 7.1..1 Air Meter 7.1..2 100-200 1 35 Air Meter 7.2 7.2.1 × . 35 .
  • 187 7.2.2 20-30 Bleeding 3 . 8. 20 C192) 24 . 9. 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.2 9.2.1 9.2.2 . (ASTM
  • 188 9.2.3Unit Weight 10. 10.1 ASTM C192 Standard Method of Making and Curing Concrete Test Specimens in the Laboratory 10.2 ASTM C138 Standard Method for Unit Weight and Air Content (Gravimetric) of Concrete 10.3 ASTM C231 Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
  • 189 (Splitting Tensile Test of Concrete) 1. (Tensile Strength) (Direct Tension Test) (Tensile Splitting Test) ASTM 689 200lbs/inch^2/min. – 1 380 C496 kPa/min. (100- 12.2.1
  • 190 Indirect Tensile Strength 15% 12.2.1 2. 2.1 Splitting Tensile Test 2.2 3.
  • 191 3.1 10 20 3 3.2 10 10 × 10 × 3 4. 4.1 (UTM) 4.2 2.54 × 2.54 × 30 4.3 4.4 (Vernier) 5. 5.1 W) ( (L) (D) 3 5.2 12.2.1 5.3 5.4 5.5 (Sketch) (Apply Load)
  • 192 5.6 (Splitting Tensile Strength ft) = ft = ft 2P/  LD 2P/  D 2 P = Maximum Load (kg.) L = Length of Cylinder (cm.) D = Diameter of Cylinder Width of Cube (cm.) ft = Splitting Tensile Strength 5.7 (Approximate Tensile Strength) 6. 6.1 6.2 6.3 TensileStrength Splitting Splitting TensileStrength TensileStrength Splitting
  • 193 6.4 (Tensile Strength) Approximate Tensile Strength of Concrete = 0.85 ft 6.5 7. 7.1 Splitting ASTM C 496Standard Test Method for Tensile Strength of Cylindrical Concrete Specimens 7.2 AASHTO T198 Splitting Tensile Strength of Cylindrical Concrete Specimen
  • 194 Type of Specimen: Cylinder Tested by …………………………………………… Group No. ………………………………. Date: ……………………………………….. Age of Concrete Specimen …………….. days Specimen Diameter Length Weight Load Splitting Tensile
  • 195 No. Strength (cm) (mm) (cm) (mm) (kg) (kgf) (KN) (kg/cm2) (Mpa) 1 2 3 Average Splitting Tensile Strength …………………… (kg/cm2) or ……………….. MPa Type of Specimen: Cube Splitting Tensile Specimen No. 1 2 3 Width Length Height (cm) (mm) (cm) (mm) (cm) (mm) Weight (kg) Load Strength (kgf) (KN) (kg/cm2) (M
  • 196 Average Splitting Tensile Strength ……………………….. (kg/cm2) or ……………… MPa (Compression Test of Concrete) 1. (Compressive Strength) (Water-Cement Ratio)
  • 197 (Compression) (Compression Zone) 2. (Cubic and Cylindrical Specimen) 3. 3.1 3.2 Ultimate Compressive Strength Average Compressive Average Compressive Strength 3.3 Strength Average Splitting Tensile Strength 12.2
  • 198 4. 4.1 10 10 × 10 × 3 4.2 10 20 3 5. 5.1 5.2 Compressive Testing Machine Vernier 5.3 12.3.1 6. 6.1
  • 199 6.2 Cap 6.3 6.4 12.3.2 Compression Testing Machine
  • 200 12.3.3 7. 7.1 Ultimate Compressive Strength Ultimate Compressive Strength = P A P = Ultimate Load (kg) A = Cross Section Area (cm2) 7.2 Average Compressive Average Compressive Strength 7.3 Strength Average Splitting Tensile Strength 8. 8.1 ASTM C31 Standard Method of Making and Curing Concrete Test Specimen in the Field. 8.2 ASTM C39 Standard Method for Compressive Strength of Cylindrical Concrete Specimens.
  • 201 8.3 ASTM C192 Standard Method of Making and Curing Concrete Test Specimens in the Laboratory 8.4 ASTM C617 Standard Practice of Capping Cylindrical Concrete Specimens. Type of Specimen: Cylinder
  • 202 Tested by …………………………………………………… Group No. ………………………. Date: ……………………………………… Age of Concrete Specimen ……………... days Compressive Specimen No. Diameter Length Weight (cm) (mm) (cm) (mm) (kg) Load Strength (kgf) (KN) (kg/cm2) (Mpa) 1 2 3 Average Compressive Strength …………………………… (kg/cm2) or ……………… MPa Type of Specimen: Cube Compressi Specimen No. 1 2 Width Length Height (cm) (mm) (cm) (mm) (cm) (mm) Weight (kg) Load Strength (kgf) (KN) (kg/cm2) (M
  • 203 3 Average Compressive Strength ……………………………(kg/cm2) or ……………… MPa 1. 2. 201 221 3. 4. 5. 6. ANNUAL BOOK of ASTM STANDARDS Section 4 Volume 04.02 Concrete and Aggregates 1992
  • 204