SlideShare a Scribd company logo
1 of 35
Irrotational Flow(Potential Flow)
• Bernoulli Equation
• Velocity Potential
• Two-Dimensional, Irrotational,
Incompressible Flow
• Elementary Plane Flows
• Superposition of Elementary Plane Flows
Irrotational Flow
Fluid elements moving in the flow field do
not undergo any rotation
0,0 =×∇=ω V

0=
∂
∂
−
∂
υ∂
=
∂
∂
−
∂
∂
=
∂
υ∂
−
∂
∂
y
u
xx
w
z
u
zy
w
0
111
=
θ∂
∂
−
∂
∂
=
∂
∂
−
∂
∂
=
∂
∂
−
θ∂
∂ θθ rzrr V
rr
rV
rr
V
z
V
z
VV
r
Rectangular coordinate
Cylindrical coordinate
Bernoulli Equation
If the flow is irrotational,
( )VVkgp

ˆ1
∇⋅=−∇
ρ
− ( ) ( ) ( )VVVVVV

×∇×−⋅∇=∇⋅
2
1
= 0
( ) ( )2
2
1
2
1ˆ1
VVVkgp ∇=⋅∇=−∇
ρ
−

[ ] rd

⋅
dzkdyjdxird ˆˆˆ ++=

z
k
y
j
x
i
∂
∂
+
∂
∂
+
∂
∂
=∇ ˆˆˆ
( )2
2
1
Vdgdz
dp
=−
ρ
− 0
2
2
=





++
ρ
gz
Vp
d
constant
2
2
=++
ρ
gz
Vp valid between any two points
in an irrotational flow
0=×∇ V

Example: Flow field with tangential motion
- Forced Vortex
( )rfVVr == θand0
Forced Vortex (rigid body rotation)
( ) rrfV ω==θ
( ) 





θ∂
∂
−
∂
∂
=×∇=ω θ r
zz
V
rr
rV
r
V
11
2
1
2
1 
( ) ω=ω=








∂
ω∂
= r
rr
r
r
2
2
11
2
1 2
a
b ra
rb
∫ ρω=∫ 





∂
∂
=− ar
br
ar
brba rdrdr
r
p
pp 2
( ) 0
2
22
2
>−
ρω
= ba rr
Example: Flow field with tangential motion
- Free Vortex
( )rfVVr == θand0
Free Vortex (irrotational vortex)
( )
r
r
r
C
rfV a ω
===θ
2
( ) 





θ∂
∂
−
∂
∂
=×∇=ω θ r
zz
V
rr
rV
r
V
11
2
1
2
1 
0
1
2
1
=





∂
∂
=
r
C
r
a
b ra
rb
( )22
2
abba VVpp −
ρ
=−








−
ρ
=
22
2 11
2 ab rr
C
thenIf 2ω= arC ( ) 0
2
222
2
>−
ρω
=− babba rrrpp
Velocity Potential
If the flow is irrotational, a potential function, φ,
can be formulated to represent the velocity field.
From the vector identity, 0=φ∇×∇
The velocity field of an irrotational
flow can be defined by a potential
function so that
φ−∇≡V

z
w
yx
u
∂
φ∂
−=
∂
φ∂
−=υ
∂
φ∂
−=
z
V
r
V
r
V zr
∂
φ∂
−=
θ∂
φ∂
−=
∂
φ∂
−= θ
1
Stream Function and Velocity Potential
For a two-dimensional, incompressible, irrotational
flow, the velocity field can be expressed in terms of
both ψ and φ.
xy
u
∂
ψ∂
−=υ
∂
ψ∂
=
yx
u
∂
φ∂
−=υ
∂
φ∂
−=
According to the irrotationality condition,
0=
∂
∂
−
∂
υ∂
y
u
x
02
2
2
2
=
∂
ψ∂
+
∂
ψ∂
yx
According to the continuity equation,
0=
∂
υ∂
+
∂
∂
yx
u
02
2
2
2
=
∂
φ∂
+
∂
φ∂
yx
} Laplace’s
equation
Solution of Laplace’s equation represents a possible 2-
D, incompressible, irrotational flow field.
Slope of Velocity Potential Line
Along a line of constant φ, dφ=0 and
0=
∂
φ∂
+
∂
φ∂
=φ dy
y
dx
x
d
The slope of a line of constant φ is given by υ
−=
∂φ∂
∂φ∂
−=


φ
u
y
x
dx
dy
uuy
x
dx
dy υ
=
υ−
−=
∂ψ∂
∂ψ∂
−=


ψ
1−=
υ
×
υ
−=


×


ψφ u
u
dx
dy
dx
dy
The slope of a line of constant ψ is given by
Lines of constant ψ and constant φ are orthogonal.
Example: Determine the Velocity Potential
Line of a Flow
The flow streamline function is .2axy=ψ






∂
ψ∂
∂
∂
−





∂
ψ∂
−
∂
∂
=
∂
∂
−
∂
υ∂
=ω
yyxxy
u
x
z2 ( ) ( ) 022 =
∂
∂
−−
∂
∂
= ax
y
ay
x
ay
x
ax
y
u 22 −=
∂
ψ∂
−=υ=
∂
ψ∂
=
The flow is irrotational.
In term of velocity
potential, the velocity
components are
ay
y
ax
x
u 22 −=
∂
φ∂
−=υ=
∂
φ∂
−=
( ) ( ) 2
22
22 caxxgax
dx
dg
uxgayay
y
+−=⇒=−=⇒+=φ⇒−=
∂
φ∂
−=υ
( ) ( ) 1
22
22 cayyfay
dy
df
yfaxax
x
u +=⇒−=−=υ⇒+−=φ⇒=
∂
φ∂
−=
caxay +−=φ 22
Elementary Plane Flows
Uniform Flow
3c=ψ
2c=ψ
1c=ψ
0=ψ
1c−=ψ
2c−=ψ
3c−=ψ
=φ 3k 2k 1k 0 1k− 2k− 3k−
U
x
y
x
y
Uu =
0=υ
Uy=ψ
U
y
u =
∂
ψ∂
=
0=
∂
ψ∂
−=υ
x
Ux−=φ
U
x
u =
∂
φ∂
−=
0=
∂
φ∂
−=υ
y
Γ=0 around any closed curve
Inclined uniform flow
=φ 3k
2k
1k 0
1k−
2k− 3k−
x
yα= cosVu
α=υ sinV
( ) ( )xVyV α−α=ψ sincos
α=
∂
ψ∂
= cosV
y
u
α=
∂
ψ∂
−=υ sinV
x
( ) ( )xVyV α−α−=φ cossin
α=
∂
φ∂
−= cosV
x
u
α=
∂
φ∂
−=υ sinV
y
V
x
y
α
0
3c
2c
1c
1c−
2c−
3c−
=ψ
Γ=0 around any closed curve
Source Flow
r
q
Vr
π
=
2
0=θV
θ
π
=ψ
2
q
r
q
ln
2π
−=φ
x
y
3c=ψ
2c=ψ
1c=ψ
0=ψ4c=ψ
5c=ψ
6c=ψ
7c=ψ
1k−=φ
2k−=φ
x
y
Origin is singular point
q: volume flow rate per unit depth
Γ=0 around any closed curve
Sink Flow
r
q
Vr
π
−=
2
0=θV
θ
π
−=ψ
2
q
r
q
ln
2π
=φ
x
y
3c−=ψ
2c−=ψ
1c−=ψ
0=ψ4c−=ψ
5c−=ψ
6c−=ψ
7c−=ψ
1k=φ
2k=φ
x
y
Origin is singular point
q: volume flow rate per unit depth
Γ=0 around any closed curve
Irrotational Vortex
x
y
3c−=ψ
2c−=ψ
1c−=ψ
4c−=ψ
3k−=φ
2k−=φ
1k−=φ
0=φ4k−=φ
5k−=φ
6k−=φ
7k−=φ
x
y
r
K
V
π
=θ
2
0=rV
θ
π
−=φ
2
K
r
K
ln
2π
−=ψ
Origin is singular point
K: strength of the vortex
Γ=K around any closed curve enclosing origin
Γ=0 around any closed curve not enclosing origin
Doublet
3c−=ψ
2c−=ψ
1c−=ψ
0=ψ
1c=ψ
2c=ψ
3c=ψ
2k=φ
1k=φ 1k−=φ
2k−=φ
x
y
x
y
θ
Λ
−=θ sin2
r
Vθ
Λ
−= cos2
r
Vr
r
θΛ
−=φ
cos
r
θΛ
−=ψ
sin
Origin is singular point
Λ: strength of the doublet
Γ=0 around any closed curve
Superposition of Elementary Plane Flows
∀ φ and ψ satisfy Laplace’s equation.
• Laplace’s equation is linear and homogeneous.
• Solutions of Laplace’s equation may be added
together (superposed) to develop more complex
flow patterns.
• If ψ1 and ψ2 satisfy Laplace’s equation, so does ψ3
= ψ1 + ψ2 .
• Any streamline contour can be imagined to
represent a solid surface (there is no flow across a
streamline).
Source + Uniform Flow
θ+θ
π
=+θ
π
=ψ+ψ=ψ sin
22
flowuniformsource Ur
q
Uy
q
θ−
π
−=−
π
−=φ+φ=φ cosln
2
ln
2
flowuniformsource Urr
q
Uxr
q
x
y
U
Stagnation point
Flow past a half body
Solid surface formed
by two streamlines
Source + Sink Flow
( )2121sinksource
222
θ−θ
π
=θ
π
−θ
π
=ψ+ψ=ψ
qqq
1
2
21sinksource ln
2
ln
2
ln
2 r
rq
r
q
r
q
π
=
π
+
π
−=φ+φ=φ
Source and sink with equal
strength, origin separated 2a
apart
Source + Sink+Uniform Flow
( ) θ+θ−θ
π
=+θ
π
−θ
π
=ψ+ψ=ψ sin
222
2121flowuniformsource Ur
q
Uy
qq
θ−
π
=−
π
+
π
−=φ+φ=φ cosln
2
ln
2
ln
2 1
2
21flowuniformsource Ur
r
rq
Uxr
q
r
q
x
y
U
Stagnation point
(Flow past a Rankine body)
Solid surface formed
by two streamlines
Stagnation point
Doublet+Uniform Flow





 Λ
−θ=θ+
θΛ
−=+
θΛ
−=ψ+ψ=ψ 2flowuniformdoublet 1sinsin
sinsin
r
U
UrUr
r
Uy
r





 Λ
+θ−=θ−
θΛ
−=−
θΛ
−=φ+φ=φ 2flowuniformdoublet 1coscos
coscos
r
U
UrUr
r
Ux
r
U
Stagnation point
Flow past a cylinder
Solid surface formed
by two streamlines
Stagnation point
a
U
a
Λ
=
Doublet+Vortex+Uniform Flow
r
K
r
a
UrUrr
K
r
ln
2
1sinsinln
2
sin
2
2
flowuniformvortexdoublet
π
+





−θ=θ+
π
+
θΛ
−=ψ+ψ+ψ=ψ
θ
π
+





+θ−=θ−θ
π
+
θΛ
−=φ+φ+φ=φ
2
1coscos
2
cos
2
2
flowuniformvortexdoublet
K
r
a
UrUr
K
r
a
U
a
Λ
=
Flow past a cylinder
with circulation
UaUK Λπ=π< 44
Sink+Vortex
r
Kq
ln
22
vortexsink
π
+θ
π
−=ψ+ψ=ψ
θ
π
−
π
−=φ+φ=φ
2
ln
2
vortexsink
K
r
q
Vortex Pair
1
2
21vortex2vortex1 ln
2
ln
2
ln
2 r
rK
r
K
r
K
π
=
π
+
π
−=ψ+ψ=ψ
( )1221vortex2vortex1
222
θ−θ
π
=θ
π
+θ
π
−=φ+φ=φ
KKK
Example: Flow past a cylinder





 Λ
−θ=ψ+ψ=ψ 2flowuniformdoublet 1sin
r
U
Ur 




 Λ
+θ−=φ+φ=φ 2flowuniformdoublet 1cos
r
U
Ur
U
Stagnation point (a,π)
Stagnation point (a,0)
a U
a
Λ
=






−θ=











+θ
∂
∂
=
∂
φ∂
−= 2
2
2
2
1cos1cos
r
a
U
r
a
Ur
rr
Vr






+θ−=











+θ
θ∂
∂
−=
θ∂
φ∂
−=θ 2
2
2
2
1sin1cos
11
r
a
U
r
a
Ur
rr
V
Example: Flow past a cylinder-
pressure distribution on the surface
U
a
U
a
Λ
=






−θ= 2
2
1cos
r
a
UVr






+θ−=θ 2
2
1sin
r
a
UV
∞p
gz
V
pgz
U
p ++=++∞
22
22
] ] θ=+= =θ=
22222
sin4UVVV arrar
= 0
( ) ( ) ( )θ−ρ=θ−ρ=−ρ=− ∞
2222222
sin41
2
1
sin4
2
1
2
1
UUUVUpp
θ−=
ρ
− ∞ 2
2
sin41
2
1
U
pp
Pressure distribution on the surface
of the cylinder
2
2
1
U
pp
ρ
− ∞
θ
θ−=
ρ
− ∞ 2
2
sin41
2
1
U
pp
Pressure drag force acting on the cylinder
U
∞p
ApdFd

=
a






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
pressure cossin41
2
1
dabUpF Drag

]
ππ
π
∞ 


θρ+


θρ−θ−=
2
0
32
2
0
22
0
sin
3
4
2
1
sin
2
1
sin abUabUabp
0=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure coscos dpabpdAF
ADrag

Lift force acting on the cylinder
U
∞p
ApdFd

=
a
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure sinsin dpabpdAF
ALift

] ( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
pressure sinsin41
2
1
dabUpF Drag

]
ππ
π
∞ 








θ−
θ
ρ+


θρ+θ=
2
0
3
2
2
0
22
0
cos4
3
cos4
2
1
cos
2
1
cos abUabUabp
0=
θ
Example: Flow past a cylinder with circulation
r
K
r
a
Ur ln
2
1sin 2
2
flowuniformvortexdoublet
π
+





−θ=ψ+ψ+ψ=ψ
θ
π
+





+θ−=φ+φ+φ=φ
2
1cos 2
2
flowuniformvortexdoublet
K
r
a
Ur
a
U
a
Λ
= UaUK Λπ=π< 44






−θ−=
∂
φ∂
−= 2
2
1cos
r
a
U
r
Vr
r
K
r
a
U
r
V
π
−





+θ−=
θ∂
φ∂
−=θ
2
1sin
1
2
2
Stagnation points
]
a
K
UV ar
π
−θ−==θ
2
sin2
4
sinandat0 1-






π
=θ==θ
Ua
K
arV
Flow past a cylinder with circulation
- Surface pressure distribution
a
U
a
Λ
= UaUK Λπ=π< 44
]
a
K
UV ar
π
−θ−==θ
2
sin2
] ( )]
2
222
2
sin2 





π
−θ−=+= =θ=
a
K
UVVV arrar
] 01cos 2
2
=





−θ−==
a
a
UV arr






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
2
2
2
2
2
sin
2
sin4 





π
+θ
π
+θ=
Ua
K
Ua
K
U
V














π
−θ
π
−θ−
ρ
+= ∞
2
2
2
2
sin
2
sin41
2 Ua
K
Ua
KU
pp
Pressure distribution on the surface
of the cylinder
2
2
1
U
pp
ρ
− ∞
θ
aUK π=
aUK π= 2
aUK π= 3














π
−θ
π
−θ−
ρ
+= ∞
2
2
2
2
sin
2
sin41
2 Ua
K
Ua
KU
pp
Pressure drag force acting on the cylinder
∞p






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ∫
π
∞ θθ






















π
−θ
π
−θ−ρ+−=
2
0
2
22
pressure cos
2
sin
2
sin41
2
1
dab
aU
K
aU
K
UpF Drag

ApdFd

=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure coscos dpabpdAF
ADrag

a
( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
cossin41
2
1
dabUp ∫
π
θθ














π
+θ
π
ρ+
2
0
2
2
cos
2
sin
2
2
1
dab
Ua
K
Ua
K
U
0=
0sin
22
sin2
2
0
22
=








θ





π
+
θ
π
=
π
ab
Ua
K
Ua
Kab
Lift force acting on the cylinder
∞p






−
ρ
+= ∞ 2
22
1
2 U
VU
pp
] ∫
π
∞ θθ






















π
−θ
π
−θ−ρ+−=
2
0
2
22
pressure sin
2
sin
2
sin41
2
1
dab
aU
K
aU
K
UpF Lift

ApdFd

=
θ
] ( ) ∫∫
π
θθ−=θ−=
2
0
pressure sinsin dpabpdAF
ALift

a
( )∫
π
∞ θθ





θ−ρ+−=
2
0
22
sinsin41
2
1
dabUp ∫
π
θθ














π
+θ
π
ρ+
2
0
2
2
sin
2
sin
2
2
1
dab
Ua
K
Ua
K
U
0=





ρ
=




 π
π
ρ
=








θ





π
+




 θ
−
θ
π
=
π
b
U
KU
b
U
KU
ab
Ua
K
Ua
Kab 2
22
2
2
cos
24
sin
2
2 22
2
0
22
Circulation around on the cylinder
∞p
( ) ∫∫∫
π
θθθ
π
θ
π
θθθ ⋅θ+⋅θ=θ⋅+=Γ
2
0
2
0
2
0
ˆˆˆˆˆˆˆ eerdVeerdVerdeVeV rrrrr
∫ ⋅≡Γ sdV

a
∫
π
θ





π
−θ−=
2
0 2
sin2 rd
Ur
K
U
0=
r
K
UV
π
−θ−=θ
2
sin2






−θ−= 2
2
1cos
r
a
UVr
] K
K
Ur −=

θ
π
−θ=
π
π
2
0
2
0
2
cos2






ρ=
U
K
U
b
FLift 2
2
1 2
Γρ−=ρ= UUK
Home work: 6.51, 6.66, 6.76, 6.93, 6.96, 6.98

More Related Content

What's hot

Boundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum ThicknessBoundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum Thickness
Haroon Rashid
 

What's hot (20)

Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
Stress in Bar of Uniformly Tapering Rectangular Cross Section | Mechanical En...
 
Navier-Stokes Equation of Motion
 Navier-Stokes Equation of Motion  Navier-Stokes Equation of Motion
Navier-Stokes Equation of Motion
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Eulers equation
Eulers equationEulers equation
Eulers equation
 
Flow through pipes ppt
Flow through pipes pptFlow through pipes ppt
Flow through pipes ppt
 
Fluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid StaticsFluid Mechanics Chapter 2. Fluid Statics
Fluid Mechanics Chapter 2. Fluid Statics
 
Tutorial # 3 +solution
Tutorial # 3  +solution Tutorial # 3  +solution
Tutorial # 3 +solution
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Stress Analysis & Pressure Vessels
Stress Analysis & Pressure VesselsStress Analysis & Pressure Vessels
Stress Analysis & Pressure Vessels
 
Fluid Mechanics 2 ppt
Fluid Mechanics 2 pptFluid Mechanics 2 ppt
Fluid Mechanics 2 ppt
 
Energy quations and its application
Energy quations and its applicationEnergy quations and its application
Energy quations and its application
 
fluid mechanics pt1
fluid mechanics pt1fluid mechanics pt1
fluid mechanics pt1
 
Particle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous MediaParticle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous Media
 
Boundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum ThicknessBoundary Layer Displacement Thickness & Momentum Thickness
Boundary Layer Displacement Thickness & Momentum Thickness
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Hydraulic similitude and model analysis
Hydraulic similitude and model analysisHydraulic similitude and model analysis
Hydraulic similitude and model analysis
 
Dimesional Analysis
Dimesional Analysis Dimesional Analysis
Dimesional Analysis
 
Boundary layer
Boundary layerBoundary layer
Boundary layer
 
Fluid discharge
Fluid dischargeFluid discharge
Fluid discharge
 

Similar to 6 7 irrotational flow

Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
divyanshuprakashrock
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
Tarun Gehlot
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
LucasMogaka
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
Carlos Fuentes
 

Similar to 6 7 irrotational flow (20)

Shell theory
Shell theoryShell theory
Shell theory
 
NS Equation .pdf
NS Equation .pdfNS Equation .pdf
NS Equation .pdf
 
Ideal flow
Ideal flowIdeal flow
Ideal flow
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Vol flowmeasurements 1
Vol flowmeasurements 1Vol flowmeasurements 1
Vol flowmeasurements 1
 
CIVE 572 Final Project
CIVE 572 Final ProjectCIVE 572 Final Project
CIVE 572 Final Project
 
Fountains&pumps&turbines
 Fountains&pumps&turbines Fountains&pumps&turbines
Fountains&pumps&turbines
 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulationTrigonometry and its basic rules and regulation
Trigonometry and its basic rules and regulation
 
Fluid kinemtics by basnayake mis
Fluid kinemtics by basnayake misFluid kinemtics by basnayake mis
Fluid kinemtics by basnayake mis
 
Steam turbine
Steam turbine Steam turbine
Steam turbine
 
Steady axisymetric-torsional-flows
Steady axisymetric-torsional-flowsSteady axisymetric-torsional-flows
Steady axisymetric-torsional-flows
 
Ppt unit 2
Ppt unit 2Ppt unit 2
Ppt unit 2
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
Basic differential equations in fluid mechanics
Basic differential equations in fluid mechanicsBasic differential equations in fluid mechanics
Basic differential equations in fluid mechanics
 
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
electrical-engineering_engineering_power-electronics_controlled-rectifiers_no...
 
19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf19_Class_ThinAirfoilTheory.pdf
19_Class_ThinAirfoilTheory.pdf
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Electrical engg material
Electrical engg material Electrical engg material
Electrical engg material
 

Recently uploaded

Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
 

Recently uploaded (20)

Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
HTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation StrategiesHTML Injection Attacks: Impact and Mitigation Strategies
HTML Injection Attacks: Impact and Mitigation Strategies
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024Manulife - Insurer Innovation Award 2024
Manulife - Insurer Innovation Award 2024
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
Deploy with confidence: VMware Cloud Foundation 5.1 on next gen Dell PowerEdg...
 

6 7 irrotational flow

  • 1. Irrotational Flow(Potential Flow) • Bernoulli Equation • Velocity Potential • Two-Dimensional, Irrotational, Incompressible Flow • Elementary Plane Flows • Superposition of Elementary Plane Flows
  • 2. Irrotational Flow Fluid elements moving in the flow field do not undergo any rotation 0,0 =×∇=ω V  0= ∂ ∂ − ∂ υ∂ = ∂ ∂ − ∂ ∂ = ∂ υ∂ − ∂ ∂ y u xx w z u zy w 0 111 = θ∂ ∂ − ∂ ∂ = ∂ ∂ − ∂ ∂ = ∂ ∂ − θ∂ ∂ θθ rzrr V rr rV rr V z V z VV r Rectangular coordinate Cylindrical coordinate
  • 3. Bernoulli Equation If the flow is irrotational, ( )VVkgp  ˆ1 ∇⋅=−∇ ρ − ( ) ( ) ( )VVVVVV  ×∇×−⋅∇=∇⋅ 2 1 = 0 ( ) ( )2 2 1 2 1ˆ1 VVVkgp ∇=⋅∇=−∇ ρ −  [ ] rd  ⋅ dzkdyjdxird ˆˆˆ ++=  z k y j x i ∂ ∂ + ∂ ∂ + ∂ ∂ =∇ ˆˆˆ ( )2 2 1 Vdgdz dp =− ρ − 0 2 2 =      ++ ρ gz Vp d constant 2 2 =++ ρ gz Vp valid between any two points in an irrotational flow 0=×∇ V 
  • 4. Example: Flow field with tangential motion - Forced Vortex ( )rfVVr == θand0 Forced Vortex (rigid body rotation) ( ) rrfV ω==θ ( )       θ∂ ∂ − ∂ ∂ =×∇=ω θ r zz V rr rV r V 11 2 1 2 1  ( ) ω=ω=         ∂ ω∂ = r rr r r 2 2 11 2 1 2 a b ra rb ∫ ρω=∫       ∂ ∂ =− ar br ar brba rdrdr r p pp 2 ( ) 0 2 22 2 >− ρω = ba rr
  • 5. Example: Flow field with tangential motion - Free Vortex ( )rfVVr == θand0 Free Vortex (irrotational vortex) ( ) r r r C rfV a ω ===θ 2 ( )       θ∂ ∂ − ∂ ∂ =×∇=ω θ r zz V rr rV r V 11 2 1 2 1  0 1 2 1 =      ∂ ∂ = r C r a b ra rb ( )22 2 abba VVpp − ρ =−         − ρ = 22 2 11 2 ab rr C thenIf 2ω= arC ( ) 0 2 222 2 >− ρω =− babba rrrpp
  • 6. Velocity Potential If the flow is irrotational, a potential function, φ, can be formulated to represent the velocity field. From the vector identity, 0=φ∇×∇ The velocity field of an irrotational flow can be defined by a potential function so that φ−∇≡V  z w yx u ∂ φ∂ −= ∂ φ∂ −=υ ∂ φ∂ −= z V r V r V zr ∂ φ∂ −= θ∂ φ∂ −= ∂ φ∂ −= θ 1
  • 7. Stream Function and Velocity Potential For a two-dimensional, incompressible, irrotational flow, the velocity field can be expressed in terms of both ψ and φ. xy u ∂ ψ∂ −=υ ∂ ψ∂ = yx u ∂ φ∂ −=υ ∂ φ∂ −= According to the irrotationality condition, 0= ∂ ∂ − ∂ υ∂ y u x 02 2 2 2 = ∂ ψ∂ + ∂ ψ∂ yx According to the continuity equation, 0= ∂ υ∂ + ∂ ∂ yx u 02 2 2 2 = ∂ φ∂ + ∂ φ∂ yx } Laplace’s equation Solution of Laplace’s equation represents a possible 2- D, incompressible, irrotational flow field.
  • 8. Slope of Velocity Potential Line Along a line of constant φ, dφ=0 and 0= ∂ φ∂ + ∂ φ∂ =φ dy y dx x d The slope of a line of constant φ is given by υ −= ∂φ∂ ∂φ∂ −=   φ u y x dx dy uuy x dx dy υ = υ− −= ∂ψ∂ ∂ψ∂ −=   ψ 1−= υ × υ −=   ×   ψφ u u dx dy dx dy The slope of a line of constant ψ is given by Lines of constant ψ and constant φ are orthogonal.
  • 9. Example: Determine the Velocity Potential Line of a Flow The flow streamline function is .2axy=ψ       ∂ ψ∂ ∂ ∂ −      ∂ ψ∂ − ∂ ∂ = ∂ ∂ − ∂ υ∂ =ω yyxxy u x z2 ( ) ( ) 022 = ∂ ∂ −− ∂ ∂ = ax y ay x ay x ax y u 22 −= ∂ ψ∂ −=υ= ∂ ψ∂ = The flow is irrotational. In term of velocity potential, the velocity components are ay y ax x u 22 −= ∂ φ∂ −=υ= ∂ φ∂ −= ( ) ( ) 2 22 22 caxxgax dx dg uxgayay y +−=⇒=−=⇒+=φ⇒−= ∂ φ∂ −=υ ( ) ( ) 1 22 22 cayyfay dy df yfaxax x u +=⇒−=−=υ⇒+−=φ⇒= ∂ φ∂ −= caxay +−=φ 22
  • 10. Elementary Plane Flows Uniform Flow 3c=ψ 2c=ψ 1c=ψ 0=ψ 1c−=ψ 2c−=ψ 3c−=ψ =φ 3k 2k 1k 0 1k− 2k− 3k− U x y x y Uu = 0=υ Uy=ψ U y u = ∂ ψ∂ = 0= ∂ ψ∂ −=υ x Ux−=φ U x u = ∂ φ∂ −= 0= ∂ φ∂ −=υ y Γ=0 around any closed curve
  • 11. Inclined uniform flow =φ 3k 2k 1k 0 1k− 2k− 3k− x yα= cosVu α=υ sinV ( ) ( )xVyV α−α=ψ sincos α= ∂ ψ∂ = cosV y u α= ∂ ψ∂ −=υ sinV x ( ) ( )xVyV α−α−=φ cossin α= ∂ φ∂ −= cosV x u α= ∂ φ∂ −=υ sinV y V x y α 0 3c 2c 1c 1c− 2c− 3c− =ψ Γ=0 around any closed curve
  • 14. Irrotational Vortex x y 3c−=ψ 2c−=ψ 1c−=ψ 4c−=ψ 3k−=φ 2k−=φ 1k−=φ 0=φ4k−=φ 5k−=φ 6k−=φ 7k−=φ x y r K V π =θ 2 0=rV θ π −=φ 2 K r K ln 2π −=ψ Origin is singular point K: strength of the vortex Γ=K around any closed curve enclosing origin Γ=0 around any closed curve not enclosing origin
  • 15. Doublet 3c−=ψ 2c−=ψ 1c−=ψ 0=ψ 1c=ψ 2c=ψ 3c=ψ 2k=φ 1k=φ 1k−=φ 2k−=φ x y x y θ Λ −=θ sin2 r Vθ Λ −= cos2 r Vr r θΛ −=φ cos r θΛ −=ψ sin Origin is singular point Λ: strength of the doublet Γ=0 around any closed curve
  • 16. Superposition of Elementary Plane Flows ∀ φ and ψ satisfy Laplace’s equation. • Laplace’s equation is linear and homogeneous. • Solutions of Laplace’s equation may be added together (superposed) to develop more complex flow patterns. • If ψ1 and ψ2 satisfy Laplace’s equation, so does ψ3 = ψ1 + ψ2 . • Any streamline contour can be imagined to represent a solid surface (there is no flow across a streamline).
  • 17. Source + Uniform Flow θ+θ π =+θ π =ψ+ψ=ψ sin 22 flowuniformsource Ur q Uy q θ− π −=− π −=φ+φ=φ cosln 2 ln 2 flowuniformsource Urr q Uxr q x y U Stagnation point Flow past a half body Solid surface formed by two streamlines
  • 18. Source + Sink Flow ( )2121sinksource 222 θ−θ π =θ π −θ π =ψ+ψ=ψ qqq 1 2 21sinksource ln 2 ln 2 ln 2 r rq r q r q π = π + π −=φ+φ=φ Source and sink with equal strength, origin separated 2a apart
  • 19. Source + Sink+Uniform Flow ( ) θ+θ−θ π =+θ π −θ π =ψ+ψ=ψ sin 222 2121flowuniformsource Ur q Uy qq θ− π =− π + π −=φ+φ=φ cosln 2 ln 2 ln 2 1 2 21flowuniformsource Ur r rq Uxr q r q x y U Stagnation point (Flow past a Rankine body) Solid surface formed by two streamlines Stagnation point
  • 20. Doublet+Uniform Flow       Λ −θ=θ+ θΛ −=+ θΛ −=ψ+ψ=ψ 2flowuniformdoublet 1sinsin sinsin r U UrUr r Uy r       Λ +θ−=θ− θΛ −=− θΛ −=φ+φ=φ 2flowuniformdoublet 1coscos coscos r U UrUr r Ux r U Stagnation point Flow past a cylinder Solid surface formed by two streamlines Stagnation point a U a Λ =
  • 23. Vortex Pair 1 2 21vortex2vortex1 ln 2 ln 2 ln 2 r rK r K r K π = π + π −=ψ+ψ=ψ ( )1221vortex2vortex1 222 θ−θ π =θ π +θ π −=φ+φ=φ KKK
  • 24. Example: Flow past a cylinder       Λ −θ=ψ+ψ=ψ 2flowuniformdoublet 1sin r U Ur       Λ +θ−=φ+φ=φ 2flowuniformdoublet 1cos r U Ur U Stagnation point (a,π) Stagnation point (a,0) a U a Λ =       −θ=            +θ ∂ ∂ = ∂ φ∂ −= 2 2 2 2 1cos1cos r a U r a Ur rr Vr       +θ−=            +θ θ∂ ∂ −= θ∂ φ∂ −=θ 2 2 2 2 1sin1cos 11 r a U r a Ur rr V
  • 25. Example: Flow past a cylinder- pressure distribution on the surface U a U a Λ =       −θ= 2 2 1cos r a UVr       +θ−=θ 2 2 1sin r a UV ∞p gz V pgz U p ++=++∞ 22 22 ] ] θ=+= =θ= 22222 sin4UVVV arrar = 0 ( ) ( ) ( )θ−ρ=θ−ρ=−ρ=− ∞ 2222222 sin41 2 1 sin4 2 1 2 1 UUUVUpp θ−= ρ − ∞ 2 2 sin41 2 1 U pp
  • 26. Pressure distribution on the surface of the cylinder 2 2 1 U pp ρ − ∞ θ θ−= ρ − ∞ 2 2 sin41 2 1 U pp
  • 27. Pressure drag force acting on the cylinder U ∞p ApdFd  = a       − ρ += ∞ 2 22 1 2 U VU pp ] ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 pressure cossin41 2 1 dabUpF Drag  ] ππ π ∞    θρ+   θρ−θ−= 2 0 32 2 0 22 0 sin 3 4 2 1 sin 2 1 sin abUabUabp 0= θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure coscos dpabpdAF ADrag 
  • 28. Lift force acting on the cylinder U ∞p ApdFd  = a ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure sinsin dpabpdAF ALift  ] ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 pressure sinsin41 2 1 dabUpF Drag  ] ππ π ∞          θ− θ ρ+   θρ+θ= 2 0 3 2 2 0 22 0 cos4 3 cos4 2 1 cos 2 1 cos abUabUabp 0= θ
  • 29. Example: Flow past a cylinder with circulation r K r a Ur ln 2 1sin 2 2 flowuniformvortexdoublet π +      −θ=ψ+ψ+ψ=ψ θ π +      +θ−=φ+φ+φ=φ 2 1cos 2 2 flowuniformvortexdoublet K r a Ur a U a Λ = UaUK Λπ=π< 44       −θ−= ∂ φ∂ −= 2 2 1cos r a U r Vr r K r a U r V π −      +θ−= θ∂ φ∂ −=θ 2 1sin 1 2 2 Stagnation points ] a K UV ar π −θ−==θ 2 sin2 4 sinandat0 1-       π =θ==θ Ua K arV
  • 30. Flow past a cylinder with circulation - Surface pressure distribution a U a Λ = UaUK Λπ=π< 44 ] a K UV ar π −θ−==θ 2 sin2 ] ( )] 2 222 2 sin2       π −θ−=+= =θ= a K UVVV arrar ] 01cos 2 2 =      −θ−== a a UV arr       − ρ += ∞ 2 22 1 2 U VU pp 2 2 2 2 2 sin 2 sin4       π +θ π +θ= Ua K Ua K U V               π −θ π −θ− ρ += ∞ 2 2 2 2 sin 2 sin41 2 Ua K Ua KU pp
  • 31. Pressure distribution on the surface of the cylinder 2 2 1 U pp ρ − ∞ θ aUK π= aUK π= 2 aUK π= 3               π −θ π −θ− ρ += ∞ 2 2 2 2 sin 2 sin41 2 Ua K Ua KU pp
  • 32. Pressure drag force acting on the cylinder ∞p       − ρ += ∞ 2 22 1 2 U VU pp ] ∫ π ∞ θθ                       π −θ π −θ−ρ+−= 2 0 2 22 pressure cos 2 sin 2 sin41 2 1 dab aU K aU K UpF Drag  ApdFd  = θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure coscos dpabpdAF ADrag  a ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 cossin41 2 1 dabUp ∫ π θθ               π +θ π ρ+ 2 0 2 2 cos 2 sin 2 2 1 dab Ua K Ua K U 0= 0sin 22 sin2 2 0 22 =         θ      π + θ π = π ab Ua K Ua Kab
  • 33. Lift force acting on the cylinder ∞p       − ρ += ∞ 2 22 1 2 U VU pp ] ∫ π ∞ θθ                       π −θ π −θ−ρ+−= 2 0 2 22 pressure sin 2 sin 2 sin41 2 1 dab aU K aU K UpF Lift  ApdFd  = θ ] ( ) ∫∫ π θθ−=θ−= 2 0 pressure sinsin dpabpdAF ALift  a ( )∫ π ∞ θθ      θ−ρ+−= 2 0 22 sinsin41 2 1 dabUp ∫ π θθ               π +θ π ρ+ 2 0 2 2 sin 2 sin 2 2 1 dab Ua K Ua K U 0=      ρ =      π π ρ =         θ      π +      θ − θ π = π b U KU b U KU ab Ua K Ua Kab 2 22 2 2 cos 24 sin 2 2 22 2 0 22
  • 34. Circulation around on the cylinder ∞p ( ) ∫∫∫ π θθθ π θ π θθθ ⋅θ+⋅θ=θ⋅+=Γ 2 0 2 0 2 0 ˆˆˆˆˆˆˆ eerdVeerdVerdeVeV rrrrr ∫ ⋅≡Γ sdV  a ∫ π θ      π −θ−= 2 0 2 sin2 rd Ur K U 0= r K UV π −θ−=θ 2 sin2       −θ−= 2 2 1cos r a UVr ] K K Ur −=  θ π −θ= π π 2 0 2 0 2 cos2       ρ= U K U b FLift 2 2 1 2 Γρ−=ρ= UUK
  • 35. Home work: 6.51, 6.66, 6.76, 6.93, 6.96, 6.98