SlideShare a Scribd company logo
1 of 29
ResNetと派生研究の紹介
2016-06-04
Masataka Nishimori
主旨
● ResNetとは何か?
● ResNetの派生研究ではどういったものがあるのか?
● TensorFlowで実装してみて気づいたこと
ResNetとは
● 概要
- Deep Residual Network[1]の略称
- MSRA開発のImageNet 2015優勝アルゴリズム
- 残差(Residual)を取り入れることで多層でも性能劣化軽減
- ImageNetでは152層と非常に多層(従来は20層程度)
[1]. He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015).
引用: He, Kaiming, et al. "Identity mappings in deep residual networks." arXiv preprint arXiv:1603.05027 (2016).
どれぐらい深いのか?
引用: Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions
- 2014年優勝アルゴリズムの7倍近く層数が増加.
- 1000層以上のネットワークも論文中で提案.
深ければ良いのか?
● 少なくとも広いよりは深い方が良いらしい.[1]
[1]. Eldan, Ronen, and Ohad Shamir. "The Power of Depth for Feedforward Neural Networks." arXiv preprint
arXiv:1512.03965 (2015).
単純に多層にすると...
引用: He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015).
● 従来は性能が悪くなる
● CIFAR 10の例(左: 従来, 右: ResNet)
● 多層だと従来は誤差増加
なぜ多層にするのが難しいのか?
● 勾配の消失
○ 原因
■ 逆誤差伝播で小さな重みが何度も乗算されるため[1]
○ 緩和方法
■ Careful Initialization[2]
■ Hidden Layer Supervision[3]
■ Batch Normalization[4]
■ ResNetのIdentity Mapping(後述)
[1]. Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).
[2]. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International conference on artificial intelligence and statistics. (2010) 249–256
[3] Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. arXiv preprint arXiv:1409.5185 (2014)
[4] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)
なぜ多層にするのが難しいのか?
● 特徴量情報の劣化
○ 原因
■ FeedWorwardでランダムに初期化された重みによって特徴が消
えてしまい,後ろの層に伝わってくれないため[1]
○ 緩和方法
■ ResNetのIdentity Mapping(後述)
[1]. Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).
なぜ多層にするのが難しいのか?
● 学習に時間がかかる
○ 原因
■ 層数が増えるほど計算時間も増加.
■ ResNetもImageNet用に数週間学習に費やす[1].
■ TITAN X(1台)だとCIFAR10で20層:2時間, 110層:半日程度
○ 緩和方法
■ 金と時間(ResNet)[2]
■ Dropoutで確率的に層数を変更[1](後述)
[1]. Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).
[2]. He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv preprint arXiv:1512.03385 (2015).
ResNetのIdentity Mappingとは
従来のネットワーク
ショートカットする道を作り,何層も前の層を情報を足す.
この足し上げる部分のことをIdentity Mappingと呼ぶ.
引用: Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions
なぜ解決できているのか?
うまく学習できているとき
● xが最適であれば,weight
layer部分は0になってショ
ートカット部分のみで良い.
● 最適付近なら,重みを少し
だけ更新してあげれば良い
なぜ解決できているのか?
● 前の前の層を足すことで,
Feed Forward時に特徴量の
情報の消失を防いでいる.
● 逆誤差伝播時にも消失が起
こりづらい形式で学習でき
るようになっている.
CIFAR 10での実験
左: 従来手法, 右: ResNet. 太線: テスト誤差, 破線: 検証誤差
ResNetをCIFAR 10で実験してみても,層数が増えるほど精度が上がる
ただ,いろいろと疑問は残る
● モデル構造
○ ほんとにその構造が最良?[1,2,3]
● 最適化手法
○ SGD+Momentumが最良?[3]
● 学習時間
○ なんとか節約できないか?[4]
結果,派生研究が大量に出現する.
[1]. He, Kaiming, et al. "Identity mappings in deep residual networks." arXiv
preprint arXiv:1603.05027 (2016).
[2]. Szegedy, Christian, Sergey Ioffe, and Vincent Vanhoucke. "Inception-v4,
inception-resnet and the impact of residual connections on learning." arXiv
preprint arXiv:1602.07261 (2016).
[3]. Training and investigating Residual Nets
[4]. Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint
arXiv:1603.09382 (2016).
派生研究: モデル構造
● ResNet考案者の追加実験.
● BN(Batch Norm)とRELUの位置での性能評価
○ BNとReLUを畳み込みの前に行う方式が一番性能がよいとの報告
引用: He, Kaiming, et al. "Identity mappings in deep residual networks." arXiv preprint arXiv:1603.05027 (2016).
派生研究: モデル構造
注). NSize=18は110層の意, BN: Batch Norm
そもそも最後のReLUが要らないという報告
引用: Training and investigating Residual Nets
実験: モデル構造
● 32層でCIFAR 10に適用
● 元の論文通りが最良
● 層数が増えると,BN, ReLU両方前が良いのかも
派生研究: モデル構造
● Googleの論文
● Image Net ClassificationでResNet
を超える精度を出せるよう改良し
てみたという内容
● Top Error-5
○ ResNet: 3.57%
○ 本論文: 3.08%
[1]. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
こうやって
これがこうなって
...
こうじゃ!
知見
● 1000層を超えると不安定になってく
るので,0.1 〜 0.3倍をInception部分
にかけてあげると良い
派生研究: 最適化手法の変更
● 110層ReNetでCIFAR 10に適用
● 論文通りが最良
引用: Training and investigating Residual Nets
実験: 最適化手法の変更
自前でやってみても論文通りが最良
(32層ResNetでCIFAR 10に適用)
派生研究: 時間短縮
● 確率的にショートカットのみを残すようにす
ることで,時間短縮を実現.
● 従来のResNetよりも精度向上
引用: Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).
実装時に気づいたこと
● 重みの初期化方法に気をつける.
○ 0.01のガウス分布で適当に初期化とかするとダメ.
○ std = √(2/(k*k*c)) で初期化(k = カーネルサイズ, c = チャンネル数)[1]
● 畳み込み層ではバイアスを追加しないようにする.
● Adamを使っとけば良いとか思わない.
● Global Average Poolingは[2]参照
[1]. He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." Proceedings of the IEEE International Conference on Computer Vision. 2015.
[2]. Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).
結論
● ResNet
○ 残差で100層以上でも安定して学習できるようになった
● 派生研究
○ モデル構造
■ 畳み込む前にBN+ReLUが良さそう
○ 最適化手法
■ SGD+Momentumが現状では最良
○ 時間短縮
■ Dropoutを使う.
● リポジトリ
○ https://github.com/namakemono/cifar10-tensorflow
References
[1] He, Kaiming, et al. "Deep Residual Learning for Image Recognition." arXiv preprint
arXiv:1512.03385 (2015).
ResNetの論文
[2] Ioffe, Sergey, and Christian Szegedy. "Batch normalization: Accelerating deep network training by
reducing internal covariate shift." arXiv preprint arXiv:1502.03167 (2015).
Batch Normについての論文
[3]. He, Kaiming, et al. "Identity mappings in deep residual networks." arXiv preprint arXiv:1603.05027
(2016).
ResNetのモデル構造に関する考察
[4]. He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification." Proceedings of the IEEE International Conference on Computer Vision. 2015.
ResNetの重みの初期化方法記載
References
[5]. Training and investigating Residual Nets,
ResNetのモデルと最適化手法の変更による性能比較
[6]. CS231n Convolutional Neural Networks for Visual Recognition,
Leaning Rate変更による考察
[7]. Eldan, Ronen, and Ohad Shamir. "The Power of Depth for Feedforward Neural Networks." arXiv
preprint arXiv:1512.03965 (2015).
広くより深くのほうが性能高いことを説明している論文
[8]. Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint arXiv:1603.09382 (2016).
Dropoutの導入で時間短縮を実現

More Related Content

What's hot

[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential EquationsDeep Learning JP
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted WindowsDeep Learning JP
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17Takuya Akiba
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化Yusuke Uchida
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)cvpaper. challenge
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for VisionDeep Learning JP
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法Hirokatsu Kataoka
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language ModelsDeep Learning JP
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスYusuke Uchida
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object DetectionDeep Learning JP
 
【DL輪読会】WIRE: Wavelet Implicit Neural Representations
【DL輪読会】WIRE: Wavelet Implicit Neural Representations【DL輪読会】WIRE: Wavelet Implicit Neural Representations
【DL輪読会】WIRE: Wavelet Implicit Neural RepresentationsDeep Learning JP
 
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~SSII
 
深層学習によるHuman Pose Estimationの基礎
深層学習によるHuman Pose Estimationの基礎深層学習によるHuman Pose Estimationの基礎
深層学習によるHuman Pose Estimationの基礎Takumi Ohkuma
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf幸太朗 岩澤
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 

What's hot (20)

[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
[DL輪読会]Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17分散深層学習 @ NIPS'17
分散深層学習 @ NIPS'17
 
モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化モデルアーキテクチャ観点からのDeep Neural Network高速化
モデルアーキテクチャ観点からのDeep Neural Network高速化
 
自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)自己教師学習(Self-Supervised Learning)
自己教師学習(Self-Supervised Learning)
 
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
SSII2021 [SS1] Transformer x Computer Visionの 実活用可能性と展望 〜 TransformerのCompute...
 
[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision[DL輪読会]MetaFormer is Actually What You Need for Vision
[DL輪読会]MetaFormer is Actually What You Need for Vision
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習
 
CV分野におけるサーベイ方法
CV分野におけるサーベイ方法CV分野におけるサーベイ方法
CV分野におけるサーベイ方法
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models【DL輪読会】Scaling Laws for Neural Language Models
【DL輪読会】Scaling Laws for Neural Language Models
 
ConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティスConvNetの歴史とResNet亜種、ベストプラクティス
ConvNetの歴史とResNet亜種、ベストプラクティス
 
[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection[DL輪読会]Focal Loss for Dense Object Detection
[DL輪読会]Focal Loss for Dense Object Detection
 
【DL輪読会】WIRE: Wavelet Implicit Neural Representations
【DL輪読会】WIRE: Wavelet Implicit Neural Representations【DL輪読会】WIRE: Wavelet Implicit Neural Representations
【DL輪読会】WIRE: Wavelet Implicit Neural Representations
 
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
SSII2019OS: 深層学習にかかる時間を短くしてみませんか? ~分散学習の勧め~
 
深層学習によるHuman Pose Estimationの基礎
深層学習によるHuman Pose Estimationの基礎深層学習によるHuman Pose Estimationの基礎
深層学習によるHuman Pose Estimationの基礎
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)
 
12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf12. Diffusion Model の数学的基礎.pdf
12. Diffusion Model の数学的基礎.pdf
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 

Viewers also liked

5分で分るWebRTCコーデックウォーズ
5分で分るWebRTCコーデックウォーズ5分で分るWebRTCコーデックウォーズ
5分で分るWebRTCコーデックウォーズYusuke Naka
 
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)NTT DATA OSS Professional Services
 
Jupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep LearningJupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep LearningJun-ya Norimatsu
 
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)NTT DATA OSS Professional Services
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~nlab_utokyo
 

Viewers also liked (7)

5分で分るWebRTCコーデックウォーズ
5分で分るWebRTCコーデックウォーズ5分で分るWebRTCコーデックウォーズ
5分で分るWebRTCコーデックウォーズ
 
Apache Sparkのご紹介 (後半:技術トピック)
Apache Sparkのご紹介 (後半:技術トピック)Apache Sparkのご紹介 (後半:技術トピック)
Apache Sparkのご紹介 (後半:技術トピック)
 
Apache Spark の紹介(前半:Sparkのキホン)
Apache Spark の紹介(前半:Sparkのキホン)Apache Spark の紹介(前半:Sparkのキホン)
Apache Spark の紹介(前半:Sparkのキホン)
 
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)
Apache Spark超入門 (Hadoop / Spark Conference Japan 2016 講演資料)
 
Jupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep LearningJupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep Learning
 
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
Apache Sparkに手を出してヤケドしないための基本 ~「Apache Spark入門より」~ (デブサミ 2016 講演資料)
 
Deep Learningと画像認識   ~歴史・理論・実践~
Deep Learningと画像認識 ~歴史・理論・実践~Deep Learningと画像認識 ~歴史・理論・実践~
Deep Learningと画像認識   ~歴史・理論・実践~
 

Similar to Res netと派生研究の紹介

Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Daiki Shimada
 
R-CNNの原理とここ数年の流れ
R-CNNの原理とここ数年の流れR-CNNの原理とここ数年の流れ
R-CNNの原理とここ数年の流れKazuki Motohashi
 
Deep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale nightDeep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale nightRescale Japan株式会社
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺n_hidekey
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksShingo Horiuchi
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化Yusuke Uchida
 
(2022年3月版)深層学習によるImage Classificaitonの発展
(2022年3月版)深層学習によるImage Classificaitonの発展(2022年3月版)深層学習によるImage Classificaitonの発展
(2022年3月版)深層学習によるImage Classificaitonの発展Takumi Ohkuma
 
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGAAn Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGALeapMind Inc
 
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?kazuki ide
 
CVPR 2011 ImageNet Challenge 文献紹介
CVPR 2011 ImageNet Challenge 文献紹介CVPR 2011 ImageNet Challenge 文献紹介
CVPR 2011 ImageNet Challenge 文献紹介Narihira Takuya
 
論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learningKazuki Adachi
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Satoshi Kato
 
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会S_aiueo32
 
Convolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするConvolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするDaiki Shimada
 
MII conference177 nvidia
MII conference177 nvidiaMII conference177 nvidia
MII conference177 nvidiaTak Izaki
 
PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装Shohei Taniguchi
 
[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像Rei Takami
 
【2017.02】cvpaper.challenge2017
【2017.02】cvpaper.challenge2017【2017.02】cvpaper.challenge2017
【2017.02】cvpaper.challenge2017cvpaper. challenge
 

Similar to Res netと派生研究の紹介 (20)

Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
Convolutional Neural Networks のトレンド @WBAFLカジュアルトーク#2
 
R-CNNの原理とここ数年の流れ
R-CNNの原理とここ数年の流れR-CNNの原理とここ数年の流れ
R-CNNの原理とここ数年の流れ
 
Deep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale nightDeep Learning on Rescale - Oct/11/2016 at Rescale night
Deep Learning on Rescale - Oct/11/2016 at Rescale night
 
大規模画像認識とその周辺
大規模画像認識とその周辺大規模画像認識とその周辺
大規模画像認識とその周辺
 
研究を加速するChainerファミリー
研究を加速するChainerファミリー研究を加速するChainerファミリー
研究を加速するChainerファミリー
 
Image net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural NetworksImage net classification with Deep Convolutional Neural Networks
Image net classification with Deep Convolutional Neural Networks
 
畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化畳み込みニューラルネットワークの高精度化と高速化
畳み込みニューラルネットワークの高精度化と高速化
 
(2022年3月版)深層学習によるImage Classificaitonの発展
(2022年3月版)深層学習によるImage Classificaitonの発展(2022年3月版)深層学習によるImage Classificaitonの発展
(2022年3月版)深層学習によるImage Classificaitonの発展
 
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGAAn Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
An Introduction of DNN Compression Technology and Hardware Acceleration on FPGA
 
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?
 
CVPR 2011 ImageNet Challenge 文献紹介
CVPR 2011 ImageNet Challenge 文献紹介CVPR 2011 ImageNet Challenge 文献紹介
CVPR 2011 ImageNet Challenge 文献紹介
 
論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning論文紹介:Dueling network architectures for deep reinforcement learning
論文紹介:Dueling network architectures for deep reinforcement learning
 
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages. Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
 
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
[cvpaper.challenge] 超解像メタサーベイ #meta-study-group勉強会
 
Convolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をするConvolutional Neural Netwoks で自然言語処理をする
Convolutional Neural Netwoks で自然言語処理をする
 
MII conference177 nvidia
MII conference177 nvidiaMII conference177 nvidia
MII conference177 nvidia
 
PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装PyTorch, PixyzによるGenerative Query Networkの実装
PyTorch, PixyzによるGenerative Query Networkの実装
 
[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像[論文紹介] Convolutional Neural Network(CNN)による超解像
[論文紹介] Convolutional Neural Network(CNN)による超解像
 
【2017.02】cvpaper.challenge2017
【2017.02】cvpaper.challenge2017【2017.02】cvpaper.challenge2017
【2017.02】cvpaper.challenge2017
 
Prometech Particleworks on Rescale
Prometech Particleworks on RescalePrometech Particleworks on Rescale
Prometech Particleworks on Rescale
 

Recently uploaded

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?akihisamiyanaga1
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)Hiroshi Tomioka
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案sugiuralab
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfFumieNakayama
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineerYuki Kikuchi
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)UEHARA, Tetsutaro
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...博三 太田
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfFumieNakayama
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NTT DATA Technology & Innovation
 

Recently uploaded (9)

CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
CTO, VPoE, テックリードなどリーダーポジションに登用したくなるのはどんな人材か?
 
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
業務で生成AIを活用したい人のための生成AI入門講座(社外公開版:キンドリルジャパン社内勉強会:2024年4月発表)
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
 
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdfAWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
AWS の OpenShift サービス (ROSA) を使った OpenShift Virtualizationの始め方.pdf
 
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
自分史上一番早い2024振り返り〜コロナ後、仕事は通常ペースに戻ったか〜 by IoT fullstack engineer
 
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
デジタル・フォレンジックの最新動向(2024年4月27日情洛会総会特別講演スライド)
 
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察  ~Text-to-MusicとText-To-ImageかつImage-to-Music...
モーダル間の変換後の一致性とジャンル表を用いた解釈可能性の考察 ~Text-to-MusicとText-To-ImageかつImage-to-Music...
 
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdfクラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
クラウドネイティブなサーバー仮想化基盤 - OpenShift Virtualization.pdf
 
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
NewSQLの可用性構成パターン(OCHaCafe Season 8 #4 発表資料)
 

Res netと派生研究の紹介