Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Convolutional Neural Netwoks で自然言語処理をする

17,017 views

Published on

全脳アーキテクチャ若手の会第20回カジュアルトーク発表資料

Published in: Technology
  • Hello! Get Your Professional Job-Winning Resume Here - Check our website! https://vk.cc/818RFv
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Convolutional Neural Netwoks で自然言語処理をする

  1. 1. 全脳アーキテクチャ若⼿の会 カジュアルトーク (2017.1.31) Convolutional Neural Networks で⾃然⾔語処理をする 全脳アーキテクチャ若⼿の会 法政⼤学⼤学院 理⼯学研究科 修⼠課程 島⽥ ⼤樹
  2. 2. ⾃⼰紹介 島⽥ ⼤樹 (SHIMADA Daiki) @sheema_sheema (Twitter) • 法政⼤学⼤学院 理⼯学研究科 M2 • 知的情報処理研究室(彌冨研) • 画像解析による授業受講者の態度推定 • 画像の半教師あり学習 • ⾃然⾔語⾔語処理 (⽇本語) • 全脳アーキテクチャ若⼿の会 副代表 • 会全体の運営 (運営メンバー⼤募集中!!) 1
  3. 3. 前回までのあらすじ l カジュアルにCNN系画像認識⽂献64本ノック! http://www.slideshare.net/sheemap/convolutional-neural-networks-wbafl2 2016/02: Convolutional Neural Networks (CNN) の動向 2 l 2016年前半までのGANによる画像⽣成事例を紹介 http://www.slideshare.net/sheemap/adversarial-networks-wbafl3 2016/06: Generative Adversarial Nets (GAN) の画像⽣成 しかし,今回は ”⾃然⾔語処理 (NLP)” 特集…
  4. 4. 今⽇のおはなし l なんでNLPでCNNなのか l 実際のところNLPでどれだけCNNが使えるのか l 近年のCNN x NLPの動向をチェック l どんなタスクがどれだけ上⼿くいっているのか l ⽇本語は? 2017/01: ⾃然⾔語処理にCNNの波はやってくるか? 3
  5. 5. ⽬次 全脳アーキテクチャ若⼿の会 カジュアルトーク (17.1.31) ConvNetで⾃然⾔語処理をする 1. Why CNN in NLP? 2. CNN x NLPの研究動向 3. ⽇本語NLPへのCNN適⽤の試み 4. まとめ 4
  6. 6. Why CNN in NLP? l もともと画像を処理することを想定して提案された l ⾃然⾔語処理では,1次元⽅向のみの畳み込みを⾏う Convolutional Neural Networks (LeCun & Bengio, 1995), (LeCun+, 1998) 5 Y. LeCun, et al.: Gradient Based Learning Applied to Document Recognition. Procs. of IEEE, 1998. Y. LeCun and Y. Bengio.: Convolutional Networks for Images, Speech, and Time-Series. The handbook of brain theory and neural networks, 1995. 2D-conv. 1D-conv.
  7. 7. Why CNN in NLP? RNN vs. CNN 6 Recurrent Neural Networks Convolutional Neural Networks l 前時間の隠れ状態をフィードバック l 時間⽅向にforward / backward を 展開する (BPTT) l 時間⽅向にカーネルを⾛査 l 計算の並列化がし易いため⾼速 l 時間的に離れた情報間の関係も学習出来る
  8. 8. ⽬次 全脳アーキテクチャ若⼿の会 カジュアルトーク (17.1.31) ConvNetで⾃然⾔語処理をする 1. Why CNN in NLP? 2. CNN x NLPの研究動向 3. ⽇本語NLPへのCNN適⽤の試み 4. まとめ 7
  9. 9. CNN x NLPの研究動向 l 単語ベクトルをword2vecによって予め学習 l Sentence-levelの分類タスク7つについて評価 l 5 / 7で従来⼿法を上回る性能 Sentence Classification (Kim, 2014) 8 Y. Kim: Convolutional Neural Networks for Sentence Classification. EMNLP, 2014.
  10. 10. CNN x NLPの研究動向 l ⽂字レベルでテキストを扱った⽂書分類 l アルファベット, 数字, 記号を one-hot encoding l シソーラスを使って類語で置換 (data augmentation) Character-level Document Classification (Zhang+, 2015) 9 X. Xhang et al.: Character-level Convolutional Networks for Text Classification. NIPS, 2015. CNNの畳み込み層のパラメータ
  11. 11. CNN x NLPの研究動向 Character-level Document Classification (Zhang+, 2015) 10 X. Xhang et al.: Character-level Convolutional Networks for Text Classification. NIPS, 2015. Lg. :深いモデル Sm. :浅いモデル Th. :類語置換 w2v :word2vec Lk. :lookup table Full :⼤⽂字/⼩⽂字
  12. 12. CNN x NLPの研究動向 l RNNベースの画像⽣成⼿法を提案 l convolutionでRNNライクな計算をする⽅法の提案 l masked convolution l 現時間より先の情報を畳み込んでしまわないように, 畳み込みカーネルをマスクする Pixel Recurrent Neural Networks (Van den Oord+, 2016a) 11 A. Van den Oord, et al.: Pixel Recurrent Neural Networks. ICML, 2016.
  13. 13. CNN x NLPの研究動向 l ByteNet と呼ばれるCNNベースのニューラル翻訳モデル l Dilated CNN による Encoder-Decoderモデル Machine Translation (Van den Oord+, 2016b) 12 A. Van den Oord et al.: Neural Machine Translation in Liner Time. arXiv: 1610.10099, 2016. Negative log-likelihood of bits/byte on Hutter Prize Wikipedia
  14. 14. CNN x NLPの研究動向 l ByteNet と呼ばれるCNNベースのニューラル翻訳モデル l 近年のRNN系の⼿法に近く,より⾼速に動作する Machine Translation (Van den Oord+, 2016b) 13 A. Van den Oord et al.: Neural Machine Translation in Liner Time. arXiv: 1610.10099, 2016.
  15. 15. CNN x NLPの研究動向 l ゲート関数を導⼊したCNNを提案 (Gated CNN) Language Modeling (Dauphin+, 2016) 14 Y. N. Dauphin et al.: Language Modeling with Gated Convolutional Networks. arXiv: 1612.08083, 2016. ゲート⽤畳み込みフィルタを⽤意し, 他の畳み込み結果と要素毎に積を取る
  16. 16. CNN x NLPの研究動向 l ゲート関数を導⼊したCNNを提案 (Gated CNN) l 他のRNN系⾔語モデルよりも良好な結果 Language Modeling (Dauphin+, 2016) 15 Y. N. Dauphin et al.: Language Modeling with Gated Convolutional Networks. arXiv: 1612.08083, 2016.
  17. 17. CNN x NLPの研究動向 l Gated CNN よりもLSTMライクなゲート関数がついたCNN (fo-pooling) Quasi-RNN (Bradbury & Merity+, 2016) 16 J. Bradbury, S. Merity, et al.: Quasi-Recurrent Neural Networks. arXiv: 1611.01576, 2016.
  18. 18. CNN x NLPの研究動向 l Sentiment Classification Quasi-RNN (Bradbury & Merity+, 2016) 17 J. Bradbury, S. Merity, et al.: Quasi-Recurrent Neural Networks. arXiv: 1611.01576, 2016. l Single model perplexity on Penn Treebank
  19. 19. CNN x NLPの研究動向 l そして,速い Quasi-RNN (Bradbury & Merity+, 2016) 18 J. Bradbury, S. Merity, et al.: Quasi-Recurrent Neural Networks. arXiv: 1611.01576, 2016. LSTM (cuDNN)との速度⽐較Training Speed Comparision
  20. 20. ⽬次 全脳アーキテクチャ若⼿の会 カジュアルトーク (17.1.31) ConvNetで⾃然⾔語処理をする 1. Why CNN in NLP? 2. CNN x NLPの研究動向 3. ⽇本語NLPへのCNN適⽤の試み 4. まとめ 19
  21. 21. ⽇本語にCNN + NLPを使う l ⽇本語をローマ字にしてCNNを⼊⼒ l データ数が多い場合に⾼い性能が出ることを確認 Character-level CNN の⽇本語ローマ字列への適⽤ (佐藤+, 2016) 20 佐藤ら:⽂字レベル深層学習によるテキスト分類と転移学習. ⼈⼯知能学会⼈⼯知能基本問題研究会, 2016.
  22. 22. ⽇本語にCNN + NLPを使う l Image-based Character Embedding l Wildcard Training (単語分割不要な data augmentation) Character-level CNN による⽇本語⽂書分類 (⼩⾕+, 2016), (Shimada+, 2016) 21 ⼩⾕ら: ⽂字画像によるCharacter-level Embeddingと⽂書分類. NLP若⼿の会シンポジウム, 2016. D. Shimada et al.: Document Classification through Image-Based Character Embedding and Wildcard Training. BigNLP in IEEE Big Data, 2016.
  23. 23. ⽇本語にCNN + NLPを使う l Image-based Character Embedding (画像⽂字表現) l 従来のNLPでは⽂字の”⾒た⽬”は捨てちゃう l ⽂字を表現するときに,⾒た⽬も使ってみる Character-level CNN による⽇本語⽂書分類 (⼩⾕+, 2016), (Shimada+, 2016) 22 ⼩⾕ら: ⽂字画像によるCharacter-level Embeddingと⽂書分類. NLP若⼿の会シンポジウム, 2016. D. Shimada et al.: Document Classification through Image-Based Character Embedding and Wildcard Training. BigNLP in IEEE Big Data, 2016.
  24. 24. ⽇本語にCNN + NLPを使う Character-level CNN による⽇本語⽂書分類 (⼩⾕+, 2016), (Shimada+, 2016) 23 ⼩⾕ら: ⽂字画像によるCharacter-level Embeddingと⽂書分類. NLP若⼿の会シンポジウム, 2016. D. Shimada et al.: Document Classification through Image-Based Character Embedding and Wildcard Training. BigNLP in IEEE Big Data, 2016. (1)Author Estimation of Japanese Novels Methods Accuracy [%] (proposed) CAE + CLCNN + WT 69.57 (proposed) CAE + CLCNN w/o WT 52.17 (proposed) Lookup Table + CLCNN + WT 69.57 Lookup Table + CLCNN w/o WT 65.22 Character-level 3-gram* + TF-IDF 56.52 Word segmentation* + TF-IDF 47.83 LSI (# topics = 60) 73.90 LDA (# topics = 30) 52.10 * 3-gram and Word segmentation use top-50,000 most frequently tokens.
  25. 25. ⽇本語にCNN + NLPを使う Character-level CNN による⽇本語⽂書分類 (⼩⾕+, 2016), (Shimada+, 2016) 24 ⼩⾕ら: ⽂字画像によるCharacter-level Embeddingと⽂書分類. NLP若⼿の会シンポジウム, 2016. D. Shimada et al.: Document Classification through Image-Based Character Embedding and Wildcard Training. BigNLP in IEEE Big Data, 2016. (2) Publisher Estimation from Japanese Newspaper Articles Methods Accuracy [%] (proposed) CAE + CLCNN + WT 86.72 (proposed) CAE + CLCNN w/o WT 80.95 (proposed) Lookup Table + CLCNN + WT 79.66 Lookup Table + CLCNN w/o WT 73.13 Character-level 3-gram* + TF-IDF 84.27 Word segmentation** + TF-IDF 67.22 LSI (# topics = 2,000) 84.00 LDA (# topics = 70) 56.10 * 3-gram approach uses top-30,000 most frequently tokens. ** Word segmentation approach uses all of morphemes in training data.
  26. 26. ⽬次 全脳アーキテクチャ若⼿の会 カジュアルトーク (17.1.31) ConvNetで⾃然⾔語処理をする 1. Why CNN in NLP? 2. CNN x NLPの研究動向 3. ⽇本語NLPへのCNN適⽤の試み 4. まとめ 25
  27. 27. まとめ l Bag of Words (BoW) のようなNLPテクニックが 画像へ適⽤された歴史をみれば,画像→NLPもうまくいきそう l テキスト分類だけでなく,⾔語モデリングや機械翻訳も すでに⼀定の成果を挙げ始めている. l ⽂字レベルで⽇本語NLPをCNNで攻略する⽅向も l 画像・⾔語だけでなく⾳声のような信号処理もCNNで…! l WaveNet (Van den Oord+, 2016c) CNNでも⾃然⾔語処理が出来る(かも)! 26 A. Van den Oord et al.: WaveNet: A Generative Model for Raw Audio. arxiv: 1609.03499, 2016.
  28. 28. Fin. 27

×