SlideShare a Scribd company logo
1 of 10
Download to read offline
Jurnal Teknik Pertanian Lampung– Vol. 1, No. 1, Oktober 2012: 1 - 10
1
ANALISIS NERACA AIR TANAMAN JAGUNG (Zea Mays) DI BANDAR
LAMPUNG
[Analysis Of Water Balance Of Corn (Zea Mays) In Bandar Lampung]
Oleh :
Muamar1, Sugeng Triyono2, Ahmad Tusi3, Bustomi Rosadi4
1) Mahasiswa S1 Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung
2,3,4) Staf Pengajar Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung
komunikasi penulis, email : muamaralkadzim@gmail.com
Naskah ini diterima pada 27 September 2012; revisi pada 11 Oktober 2012;
disetujui untuk dipublikasikan pada 15 Oktober 2012
ABSTRACT
Indonesia needs of the community against corn continues to increase with increasing population growth as
well. One effort to support the increased productivity of corn agribusiness development program is the
provision of adequate water for plant growth. This aims of the research were (1) calculate the amount of
corn crop water requirements, (2) quantify the potential of rainwater that can be utilized and stored, (3)
analyze the potential evapotranspiration, percolation and runoff rate, (4) to calculate Kc plants. Field
experiment was conducted at the Integrated Field Laboratory College of Agriculture, University of Lampung
from 26 August to 4 December 2011. Field observations carried out on two experimental treatment with four
repettition, the treatment were plots with plastic liner (plot A) and without plastic liner (plot B) where are
each equipped with a water storage pond at the downstream. The results showed that (1) The consumptive
use (ETc) during the study water requirements of corn is 614,3 mm. (2) Total runoff that occurs on a plot
with plastic liner adn without plastic liner of land is 58,96 mm and 37,24 mm. (3) Percolation that occurred
during the study in the plot of land without plastic liner is 40,58 mm. (4) The corn crop coefficient (Kc) on
average in the early developmental stages, vegetative stage, stage of flowering and seed formation, and
aging stage were 1,26; 1,72; 1,66 and 1,02. (5) the water productivity on plot A was 1,88 kg/m3 while on the
plot B was 2,48 kg/m3.
Keywords: water balance, corn, evapotranspiration, percolation, surface runoff.
ABSTRAK
Kebutuhan masyarakat Indonesia terhadap tanaman jagung terus meningkat seiring dengan pertumbuhan
penduduk yang semakin meningkat juga. Salah satu upaya peningkatan produktifitas guna mendukung
program pengembangan agribisnis tanaman jagung adalah penyediaan air yang cukup untuk
pertumbuhan tanaman. Penelitian bertujuan untuk (1) menghitung besarnya kebutuhan air tanaman
jagung, (2) menghitung besarnya potensi air hujan yang dapat di manfaatkan (3) menganalisis
evapotranspirasi, laju perkolasi dan limpasan, (4) menghitung Kc tanaman. Penelitian ini dilaksanakan di
Laboraturium Lapang Terpadu Fakultas Pertanian Universitas Lampung pada tanggal 26 Agustus – 4
Desember 2011. Pengamatan lapangan dilakukan terhadap delapan plot percobaan dengan dua
perlakuan dan empat kali ulangan, perlakuan tersebut adalah menggunakan terpal (plot A) dan tanpa
terpal (plot B) yang masing-masing dilengkapi dengan kolam penampungan air pada bagian hilirnya.
Hasil penelitian menunjukan bahwa (1) Total evapotranspirasi tanaman (ETc) selama penelitian sebesar
614,3 mm. (2) Total limpasan pada plot lahan berterpal dan tanpa terpal adalah 58,96 mm dan 37,24 mm.
(3) Perkolasi selama penelitian di plot lahan tanpa terpal sebesar 40,58 mm.(4) Nilai koefisien tanaman
jagung (Kc) rata-rata pada tahap perkembangan awal, tahap vegetatif, tahap pembungaan dan formasi biji,
dan tahap penuaan masing-masing adalah 1,26; 1,72; 1,66 dan 1,02. (5) Produktivitas penggunaan air
pada plot A sebesar 1,88 kg/m3 dan plot B sebesar 2,48 kg/m3.
Kata Kunci: neraca air, jagung, evapotranspirasi, perkolasi, limpasan permukaan.
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
2
I. PENDAHULUAN
Kebutuhan masyarakat Indonesia terhadap
tanaman pangan ini terus meningkat seiring
dengan pertumbuhan penduduk yang terus
meningkat. Menurut Wakil Mentri Pertanian
RI, Bayu Krisnamurthi, dari sisi produksi
jagung nasional cukup, namun belum dapat
memenuhi kebutuhan pakan ternak. Hal
tersebut dikarenakan produksi jagung
nasional memiliki spesifikasi berbeda-beda
untuk pakan ternak, sehingga untuk
memenuhi pakan ternak tersebut
pemerintah masih melakukan impor jagung
yang mencapai 1 juta ton tiap tahunya
(Suhendra, 2010).
Untuk memenuhi kebutuhan nasional jagung
maka perlu adanya peningkatan
produktivitas dengan perluasan penanaman
ataupun dengan teknologi
pembudidayaannya. Masalah lain dalam
pembudidayaan tanaman jagung yaitu
kebutuhan air tanaman tersebut. Salah satu
upaya peningkatan produktifitas guna
mendukung program pengembangan
agribisnis tanaman jagung adalah
penyediaan air yang cukup untuk
pertumbuhan tanaman (Ditjen Tanaman
Pangan, 2005).
Kegiatan budidaya tanaman jagung di
Indonesia hingga saat ini masih bergantung
pada air hujan. Menyiasati hal tersebut,
pengelolaan air harus diusahakan secara
optimal, yaitu tepat waktu, tepat jumlah, dan
tepat sasaran, sehingga efisien dalam upaya
peningkatan produksifitas maupun
perluasan areal tanam dan peningkatan
intensitas pertanaman. Selain itu, antisipasi
kekeringan tanaman akibat ketidakcukupan
pasokan air hujan perlu disiasati dengan
berbagai upaya, antara lain pemanfaatan dan
pemanenan air hujan yang berlebih.
Analisis neraca air pada penelitian
sebelumnya menggunakan komoditi
tanaman cabai yang dilaksanakan oleh sdr.
Andika Gustama di Lapang Terpadu Fakultas
Pertanian Universitas Lampung. Pada
penelitian ini penulis menggunakan
komoditi lain yaitu tanaman jagung.
Penelitian ini bertujuan untuk menghitung
kebutuhan air tanaman jagung, menghitung
besarnya potensi air hujan yang dapat di
manfaatkan, menganalisis laju perkolasi dan
limpasan, dan menghitung koefisien
tanaman.
II. BAHAN DAN METODE
Penelitian dilaksanakan di Laboratorium
Lapang Terpadu Fakultas Pertanian
Universitas Lampung pada lokasi 050 22’ LS
dan 1050 14’ BT, dengan ketinggian 148 m
dpl. Penelitian dilaksanakan dengan
menggunakan dua perlakuan dan empat
ulangan, perlakuan tersebut adalah
menggunakan terpal (model lisimeter
dengan alas) dan tanpa terpal (model
lisimeter tanpa alas). Penelitian lapang
dilakukan selama 100 hari terhitung mulai
tanggal 26 Agustus 2011 sampai 4 Desember
2011. Peralatan yang digunakan adalah
sekop, cangkul, mistar ukur, timbangan,
jangka sorong, dan peralatan laboratorium
lainnya. Bahan yang digunakan yaitu: model
lahan pertanian, benih jagung hibrida
varietas SHS 4.
2.1. Pengumpulan Data
Variabel yang diamati di laboratorium
adalah sifat fisik tanah yang meliputi tekstur
tanah, kadar air kapasitas lapang (field
capacity, θfc), kadar air titik layu (permanent
wilting point, θpwp), dan berat isi tanah (bulk
density, γb). Pada kegiatan pengamatan di
lapangan, variabel yang diamati meliputi
kadar air tanah harian, curah hujan (CH),
suhu (T), kelembaban udara (RH), kecepatan
angin pada ketinggian di atas 2 meter (U2),
radiasi matahari (Rn), perkolasi (P), tinggi
tanaman, dan produksi tanaman.
Penentuan tekstur tanah menggunakan
contoh tanah tidak utuh pada kedalaman 0 –
20 cm diambil dari tiga titik berbeda dengan
cara mencangkul sampai kedalaman
tersebut. Pengambilan contoh tanah utuh
menggunakan ring sampel diambil setelah
pengolahan lahan. Contoh tanah dianalisis di
Laboratorium Ilmu Tanah Politeknik Negeri
Lampung untuk mengetahui komposisi fraksi
Jurnal Teknik Pertanian Lampung– Vol. 1, No. 1, Oktober 2012: 1 - 10
3
pasir, debu, dan liat. Selanjutnya, kelas
tekstur ditentukan dengan segitiga USDA.
Kadar air titik layu ditentukan dengan
perhitungan setelah diketahui tekstur tanah
dan kadar air kapasitas lapang dengan
persamaan:
θpwp = θfc/1,75 (Phocaides, 2007) (1)
Pengamatan iklim harian (suhu dan
kelembaban udara) dilakukan dengan
menggunakan Professional Instruments
Wireless Weather Stations. Instrumen-
instrumen tersebut diletakkan pada
ketinggian ± 5 m di luar gedung Teknik
Pertanian Universitas Lampung (TEP-Unila).
data kecepatan angin diperoleh dari BMKG
Radin Intan II Branti Lampung Selatan.
Kadar air tanah harian diukur dengan alat
Soil Moisture Meter TDR 100 dengan cara
membenamkan sensor yang panjangnya
11,94 cm. Pengukuran dilakukan di sepuluh
titik berbeda, selanjutnya rata-rata dari nilai
pengukuran merupakan kadar air tanah
harian.
Evaporasi kolam diukur dengan cara
menghitung selisih tinggi muka air kolam
pada hari tertentu (TMAi) dengan hari
sebelumnya (TMAi-1).
Irigasi dilakukan setiap pagi hari atau saat
tanah belum melewati titik kritis (θc) dengan
fraksi penipisan (p) sebesar 0,5. Air irigasi
berasal dari sumber lain dan hasil
pemanfaatan air hujan yang mengalami
limpasan permukaan menuju kolam
penampungan. Untuk menentukan titik
kritis dapat menggunakan rumus:
θc = θfc - θRAW (2)
θRAW = p × θAW (3)
dimana, θc : titik kritis (%); θfc : kapasitas
lapang (%); θRAW : air siap tersedia (%); θAW :
air tersedia (%); dan p : fraksi penipisan.
Kebutuhan air irigasi dihitung berdasarkan
penurunan kadar air tanah harian. Untuk
menentukan irigasi dapat menggunakan
rumus:
I = Drz (θfc Ӎ θi)Llahan (4)
Dimana, I : irigasi (cm3 atau ml); Llahan : luas
lahan (cm2); Drz : kedalaman zona perakaran
(cm).
2.2. Kondisi Hidrologis
Evapotranspirasi tanaman harian dihitung
berdasarkan perubahan kadar air tanah.
Evapotranspirasi dapat disimpulkan dari
perubahan kandungan air tanah (∆SW)
selama periode waktu tertentu (James,
1993):
ET = Drz (θi – θi-1) + I + P – RO – DP (5)
Pada kondisi tidak ada hujan (P, RO, dan DP
sama dengan nol), maka:
ET = Drz (θi – θi-1) + I (6)
Dimana, I : irigasi (mm); P : curah hujan
(mm); ET : evapotranspirasi (mm); RO:
aliran permukaan keluar volume kontrol
(mm); DP : perkolasi (mm).
Neraca air memiliki hubungan keseimbangan
sebagai berikut (James, 1993):
∆SW = Drz (θi – θi-1) = Inflow – Outflow (7)
Dimana, Inflow dan Outflow: total aliran
masuk dan keluar volume kontrol selama
interval waktu tertentu (mm); ∆SW:
perubahan kadar air tanah (mm); Drz:
kedalaman zona perakaran (mm); (θi – θi-1):
kadar air tanah volumetrik pada hari
tertentu dan hari sebelumnya.
Pengukuran laju perkolasi dihitung
menggunakan persamaan :
DP = (ROA Ӎ ROB) + (θi Ӎ θfc) (8)
Dimana, DP: perkolasi (mm); ROA: limpasan
pada plot lahan berterpal (mm); ROB:
limpasan pada plot lahan tanpa terpal (mm);
θi: kadar air tanah (mm); θfc: kapasitas
lapang (mm).
Volume limpasan lahan diukur pada kolam
penampungan air hujan dengan mencatat
kedalaman air pada masing-masing kolam.
RO = VRO / Llahan (9)
VRO = Vpond - Vp (10)
Vpond = ∆TMA × Lpond (11)
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
4
Vp = P × Lpond (12)
Dimana, RO :limpasan (cm); V
limpasan (cm3); Llahan : luas lahan (cm
: volume kolam (cm3); VP: volume curah
hujan yang masuk langsung kedalam kolam
(cm3); Lpond: luas permukaan kolam (cm
curah hujan (cm); ∆TMA: tinggi penambahan
air kolam (cm).
2.3. Pertumbuhan dan Produksi Tanaman
Tinggi tanaman diukur dari pangkal batang
sampai dengan pucuk daun tertinggi pada
empat tanaman di masing-masing plot lahan.
Hasil pengukuran di masing-masing plot
dirata-ratakan yang selanjutnya disebut
sebagai rata-rata tinggi tanaman jagung.
Pengukuran dilakukan setiap satu ming
sekali sampai menjelang panen.
Perhitungan berat biji dilakukan pada empat
tanaman jagung tiap plot lahan. Hasil
pengukuran di masing-masing plot dirata
ratakan yang selanjutnya disebut sebagai
rata-rata berat biji tanaman. Satu petakan
terdapat 14 tanaman jagung. Total berat biji
jagung dihitung dengan mengalikan berat
rata-rata biji per tanaman dan banyaknya
tanaman dalam satu plot lahan.
III. HASIL DAN PEMBAHASAN
3.1. Sifat Fisik Tanah
Hasil analisis laboratorium dengan
menggunakan contoh tanah tidak utuh yang
diambil dari empat titik berbeda di lokasi
penelitian pada kedalaman 0-20 cm, nilai
fraksi pasir sebesar 34,60%, debu 16,10%,
dan liat 49,3%. Berdasarkan penggolongan
pada segitiga tekstur tanah yang dibuat oleh
Departemen Pertanian Amerika Serikat
(USDA), komposisi tanah ini termasuk ke
dalam kelas tekstur berliat.
Dari hasil analisis laboratorium
menggunakan empat sampel tan
dengan kedalaman 0 – 20cm didapatkan
kapasitas lapang (θfc) tanah rata-rata sebesar
39,1%. Perbandingan antara kapasitas
lapang dengan titik layu permanen untuk
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
(12)
VRO: volume
: luas lahan (cm2); Vpond
: volume curah
hujan yang masuk langsung kedalam kolam
: luas permukaan kolam (cm2); P:
: tinggi penambahan
rtumbuhan dan Produksi Tanaman
pangkal batang
sampai dengan pucuk daun tertinggi pada
masing plot lahan.
masing plot
ratakan yang selanjutnya disebut
rata tinggi tanaman jagung.
Pengukuran dilakukan setiap satu minggu
Perhitungan berat biji dilakukan pada empat
tanaman jagung tiap plot lahan. Hasil
masing plot dirata-
ratakan yang selanjutnya disebut sebagai
rata berat biji tanaman. Satu petakan
anaman jagung. Total berat biji
jagung dihitung dengan mengalikan berat
rata biji per tanaman dan banyaknya
Hasil analisis laboratorium dengan
tidak utuh yang
diambil dari empat titik berbeda di lokasi
20 cm, nilai
besar 34,60%, debu 16,10%,
%. Berdasarkan penggolongan
pada segitiga tekstur tanah yang dibuat oleh
rika Serikat
(USDA), komposisi tanah ini termasuk ke
Dari hasil analisis laboratorium
menggunakan empat sampel tanah utuh
cm didapatkan
rata sebesar
antara kapasitas
lapang dengan titik layu permanen untuk
jenis tanah berliat yaitu 1,75:1 (Phocaides,
2007) sehingga titik layu (θ
sebesar 22,35%. Air tersedia bagi tanaman
(θAW), yang merupakan selisih antara
kandungan air kapasitas lapang
layu permanen terhitung sebesar 16,75%.
Data tersebut selanjutnya digunakan untuk
perhitungan irigasi.
Tabel 1. Sifat fisik tanah
Uraian
Tekstur tanah
Kerapatan isi (g/cm3
)
Kapasitas lapang (%)
Titik kritis (%)
Titik layu permanen
3.2. Kadar Air Tanah
Berdasarkan hasil pengukuran kadar air
tanah di lapangan yang telah dikalibrasi,
kadar air tanah tertinggi di pl
bertepal sebesar 40,81% yang terjadi pada
tanggal 2 Desember 2011 dan
tanah terendah terjadi pada tanggal 15
Oktober 2011 yaitu sebesar 30,52
Sedangkan pada plot lahan tanpa terpal, nilai
kadar air tanah tertinggi terjadi pada tanggal
1 Desember 2011 yaitu sebesar 42,19
kadar air tanah terendah terjad
31 Agustus 2011 yaitu sebesar 31,84
Gambar 1. Kadar air tanah harian plot lahan
berterpal
jenis tanah berliat yaitu 1,75:1 (Phocaides,
2007) sehingga titik layu (θpwp) terhitung
sebesar 22,35%. Air tersedia bagi tanaman
(θAW), yang merupakan selisih antara
kandungan air kapasitas lapang dengan titik
layu permanen terhitung sebesar 16,75%.
Data tersebut selanjutnya digunakan untuk
Keterangan
Liat
1,41
39,1
30,7
22,3
Berdasarkan hasil pengukuran kadar air
tanah di lapangan yang telah dikalibrasi,
kadar air tanah tertinggi di plot lahan
% yang terjadi pada
tanggal 2 Desember 2011 dan nilai kadar air
tanah terendah terjadi pada tanggal 15
011 yaitu sebesar 30,52%.
Sedangkan pada plot lahan tanpa terpal, nilai
kadar air tanah tertinggi terjadi pada tanggal
sember 2011 yaitu sebesar 42,19% dan
kadar air tanah terendah terjadi pada tanggal
gustus 2011 yaitu sebesar 31,84%.
Gambar 1. Kadar air tanah harian plot lahan
3.3. Irigasi
Irigasi diberikan apabila kadar air tanah saat
pengukuran dilapangan melewati titik
(θc) yaitu sebesar 30,7%. Irigasi d
hanya sampai 33%, ini dikarenakan
minimumnya sumber air untuk irigasi dan
juga dengan pertimbangan apabila terjadi
hujan, tanah masih dapat menampung air.
Selama 100 hari penelitian pada tanggal 26
Agsutus – 4 Desember 2011 dengan total
curah hujan 188,50 mm, plot lahan bertepal
memerlukan irigasi sebesar 630,3 mm (rata
rata 6,30 mm/hari) dan plot lahan tanpa
terpal memerlukan irigasi 574,46 mm (rata
rata 5,74 mm/hari).
Gambar 3. Pemberian air irigasi setiap plot lahan
Setiap dasarian, plot lahan berterpal
membutuhkan irigasi lebih banyak daripada
plot lahan tanpa terpal (Gambar 3).
3.4. Evapotranspirasi Tanaman
Evapotranspirasi merupakan gabungan dua
proses yang terpisah dimana satu sisi
Gambar 2. Kadar air tanah harian plot lahan tanpa terpal
Jurnal Teknik Pertanian Lampung– Vol.
Irigasi diberikan apabila kadar air tanah saat
dilapangan melewati titik kritis
%. Irigasi diberikan
%, ini dikarenakan
minimumnya sumber air untuk irigasi dan
juga dengan pertimbangan apabila terjadi
hujan, tanah masih dapat menampung air.
penelitian pada tanggal 26
4 Desember 2011 dengan total
curah hujan 188,50 mm, plot lahan bertepal
memerlukan irigasi sebesar 630,3 mm (rata-
rata 6,30 mm/hari) dan plot lahan tanpa
terpal memerlukan irigasi 574,46 mm (rata-
mbar 3. Pemberian air irigasi setiap plot lahan
Setiap dasarian, plot lahan berterpal
membutuhkan irigasi lebih banyak daripada
plot lahan tanpa terpal (Gambar 3).
3.4. Evapotranspirasi Tanaman
Evapotranspirasi merupakan gabungan dua
h dimana satu sisi
penguapan terjadi pada permukaan tanah
dan air (evaporasi) dan satu sisi lain
penguapan terjadi pada tanaman
(transpirasi), Evapotranspirasi dalam
kondisi standar adalah evapotranspirasi dari
tanaman yang bebas penyakit, ditanam di
lahan luas, dalam kondisi air tanah optimal
dan mencapai produksi penuh (Allen dkk,
1998).
ETc rata-rata di plot lahan berterpal pada
tahap perkembangan awal (0
mm/hari, tahap vegetati
mm/hari, tahap pembungaan dan formasi
biji (41 – 80 hari) 7,46 mm/hari, dan tahap
penuaan (81 - 100 hari) 4,87 mm/hari. ETc
rata-rata di plot lahan tanpa terpal pada
tahap perkembangan awal 6,
tahap vegetatif 5,77 mm/hari,
pembungaan dan formasi biji 6,18 mm/hari,
dan tahap penuaan 6,08 mm/hari.
Gambar 4. Evapotranspirasi tanaman
Gambar 2. Kadar air tanah harian plot lahan tanpa terpal
Vol. 1, No. 1, Oktober 2012: 1 - 10
5
penguapan terjadi pada permukaan tanah
dan air (evaporasi) dan satu sisi lain
penguapan terjadi pada tanaman
(transpirasi), Evapotranspirasi dalam
kondisi standar adalah evapotranspirasi dari
tanaman yang bebas penyakit, ditanam di
luas, dalam kondisi air tanah optimal
dan mencapai produksi penuh (Allen dkk,
rata di plot lahan berterpal pada
tahap perkembangan awal (0 – 15 hari) 5,19
mm/hari, tahap vegetatif (16 – 40 hari) 7,25
mm/hari, tahap pembungaan dan formasi
80 hari) 7,46 mm/hari, dan tahap
100 hari) 4,87 mm/hari. ETc
rata di plot lahan tanpa terpal pada
tahap perkembangan awal 6,79 mm/hari,
5,77 mm/hari, tahap
pembungaan dan formasi biji 6,18 mm/hari,
dan tahap penuaan 6,08 mm/hari.
Gambar 4. Evapotranspirasi tanaman
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
6
Total evapotranspirasi acuan (ETo) selama
penelitian adalah 143,29 mm dan total
evapotranspirasi tanaman jagung selama
100 hari penelitian pada plot lahan berterpal
adalah 659,5 dan pada plot lahan tanpa
terpal adalah 614,29 mm.
Gambar 6. Nilai koefisien tanaman (Kc)
berdasarkan tahap pertumbuhan
Nilai koefisien tanaman jagung rata
pada plot lahan berterpal untuk tahap
perkembangan awal, tahap vegetatif
pembungaan dan formasi biji, dan tahap
penuaan adalah 1,26; 1,72; 1,66 dan 1,02.
Pada plot lahan tanpa terpal nilai koefisien
Gambar 5. Evapotranspirasi kumulatif
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
Total evapotranspirasi acuan (ETo) selama
penelitian adalah 143,29 mm dan total
evapotranspirasi tanaman jagung selama
100 hari penelitian pada plot lahan berterpal
adalah 659,5 dan pada plot lahan tanpa
sien tanaman (Kc)
berdasarkan tahap pertumbuhan
Nilai koefisien tanaman jagung rata-rata
pada plot lahan berterpal untuk tahap
bangan awal, tahap vegetatif, tahap
pembungaan dan formasi biji, dan tahap
penuaan adalah 1,26; 1,72; 1,66 dan 1,02.
plot lahan tanpa terpal nilai koefisien
tanaman jagung rata-rata pada tahap awal
perkembangan, tahap vegetatif (1), tahap
pembungaan dan formasi biji, dan tahap
penuaan berturut-turut memiliki nilai
sebesar 1,17; 1,37; 1,38; 1,19 (Gambar 6).
3.5. Hubungan Curah Hujan Dengan
Limpasan Permukaan
Dari 20 hari kejadian hujan selama
penelitian, 13 kejadian hujan menghasilkan
limpasan pada plot lahan bertepal sebesar
58,96 mm dan 14 kejadian hujan
menghasilkan limpasan pada plot lahan
tanpa terpal sebesar 37,24 mm yang berarti
bahwa limpasan pada plot lahan tanpa terpal
36,8% lebih kecil dari pada plot lahan
berterpal.
Dari analisis regresi diatas dapat diketahui
bahwa diperlukan lebih dari 0,02 mm curah
hujan untuk dapat menghasilan limpasan
pada plot lahan tanpa terpal. Nilai koefisien
determinasi pada plot lahan tanpa terpal
adalah 0.9127 yang berarti hubungan antara
curah dengan limpasan yang sangat kuat
yaitu sebesar 91,27%.
Gambar 5. Evapotranspirasi kumulatif
rata pada tahap awal
perkembangan, tahap vegetatif (1), tahap
pembungaan dan formasi biji, dan tahap
turut memiliki nilai
sebesar 1,17; 1,37; 1,38; 1,19 (Gambar 6).
Hubungan Curah Hujan Dengan
Dari 20 hari kejadian hujan selama
penelitian, 13 kejadian hujan menghasilkan
limpasan pada plot lahan bertepal sebesar
58,96 mm dan 14 kejadian hujan
menghasilkan limpasan pada plot lahan
r 37,24 mm yang berarti
bahwa limpasan pada plot lahan tanpa terpal
36,8% lebih kecil dari pada plot lahan
Dari analisis regresi diatas dapat diketahui
bahwa diperlukan lebih dari 0,02 mm curah
hujan untuk dapat menghasilan limpasan
ahan tanpa terpal. Nilai koefisien
determinasi pada plot lahan tanpa terpal
adalah 0.9127 yang berarti hubungan antara
curah dengan limpasan yang sangat kuat
Gambar 7. Analisis regresi linear curah hujan
terhadap limpasan plot
3.6. Perkolasi
Perkolasi merupakan bagian output dari
analisis neraca air. Perkolasi terjadi karena
kadar air tanah telah melebihi kapasitas
lapang. Beberapa faktor yang mempengaruhi
perkolasi adalah sifat fisik tanah, tinggi muka
air, dan kemiringan lahan. Dari 20 hari
kejadian hujan selama penelitian, 8 kejadian
hujan menghasilkan perkolasi pada plot
lahan tanpa terpal yaitu sebesar 40,58 mm.
3.7. Evaporasi Kolam Penampungan
Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal
Jurnal Teknik Pertanian Lampung– Vol.
Gambar 7. Analisis regresi linear curah hujan
terhadap limpasan plot tanpa terpal
Perkolasi merupakan bagian output dari
analisis neraca air. Perkolasi terjadi karena
lah melebihi kapasitas
Beberapa faktor yang mempengaruhi
perkolasi adalah sifat fisik tanah, tinggi muka
dan kemiringan lahan. Dari 20 hari
kejadian hujan selama penelitian, 8 kejadian
hujan menghasilkan perkolasi pada plot
lahan tanpa terpal yaitu sebesar 40,58 mm.
Evaporasi Kolam Penampungan
Rata-rata evaporasi harian pada kolam
penampungan air hujan selama 100 hari
penelitian di plot lahan bertepal sebesar 2,37
mm dan pada plot lahan tanpa terpal sebesar
2,21 mm. Data yang dihasilkan dapat
digunakan sebagai acuan
kolam dan juga digunakan untuk
menentukan koefisien evaporasi (k) yaitu
dengan cara menghitung nisbah antara
evaporasi pengukuran dengan
evapotranspirasi acuan (E/ETo). Rata
nilai koefisien kolam di plot lahan bertepal
sebesar 0,66 dan nilai koefisien kolam di plot
lahan tanpa terpal sebesar 0,58.
3.8. Analisis Neraca Air
Memperhatikan data perhitungan neraca air
secara keseluruhan, input yang terjadi
selama penelitian pada plot lahan berterpal
sebesar 818,53 mm, dan pada plot lah
tanpa terpal sebesar 762,96 mm. Output
yang terjadi selama penelitian pada plot
lahan berterpal sebesar 721,85 mm, dan
pada plot lahan tanpa terpal sebesar 700,2
mm. Selisih antara input dan output pada
plot lahan berterpal dan plot lahan tanpa
terpal masing-masing adalah 92,35 mm dan
61,54 mm. Sehingga didapat eror pada plot
Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal
Vol. 1, No. 1, Oktober 2012: 1 - 10
7
rata evaporasi harian pada kolam
penampungan air hujan selama 100 hari
penelitian di plot lahan bertepal sebesar 2,37
mm dan pada plot lahan tanpa terpal sebesar
2,21 mm. Data yang dihasilkan dapat
digunakan sebagai acuan tinggi muka air
kolam dan juga digunakan untuk
menentukan koefisien evaporasi (k) yaitu
dengan cara menghitung nisbah antara
evaporasi pengukuran dengan
evapotranspirasi acuan (E/ETo). Rata-rata
nilai koefisien kolam di plot lahan bertepal
an nilai koefisien kolam di plot
lahan tanpa terpal sebesar 0,58.
3.8. Analisis Neraca Air
Memperhatikan data perhitungan neraca air
secara keseluruhan, input yang terjadi
selama penelitian pada plot lahan berterpal
sebesar 818,53 mm, dan pada plot lahan
tanpa terpal sebesar 762,96 mm. Output
yang terjadi selama penelitian pada plot
lahan berterpal sebesar 721,85 mm, dan
pada plot lahan tanpa terpal sebesar 700,2
mm. Selisih antara input dan output pada
plot lahan berterpal dan plot lahan tanpa
masing adalah 92,35 mm dan
61,54 mm. Sehingga didapat eror pada plot
Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
8
lahan berterpal sebesar 11,28 % dan pada
plot lahan tanpa terpal sebesar 8 %.
Tabel 2. Neraca air di plot lahan penelitian (mm)
3.9. Pertumbuhan dan Produksi Tanaman
Rata-rata tinggi tanaman jagung pada plot
lahan bertepal maupun plot lahan tanpa
terpal relatif tidak berbeda secaca signifikan.
Pada pengukuran pertama hingga 50 HST
tanaman pada plot lahan tanpa terpal lebih
rendah dibandingkan dengan plot lahan
berterpal. Pada pengukuran 50 sampai 73
HST tanaman plot lahan tanpa terpal lebih
tinggi dibandingkan dengan plot lahan
berterpal.
Abstraksi Hidrologi Plot Lahan
26 Agustus - 4
Desember 2011
Berterpal
Curah Hujan 188,50
Irigasi 630,03
Limpasan 58,96
Perkolasi 0
ETc 659,85
∆SW -0,28
Total Input 818,53
Total Output 721,85
Gambar 9. Rata
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
lahan berterpal sebesar 11,28 % dan pada
plot lahan tanpa terpal sebesar 8 %.
Tabel 2. Neraca air di plot lahan penelitian (mm)
Pertumbuhan dan Produksi Tanaman
rata tinggi tanaman jagung pada plot
lahan bertepal maupun plot lahan tanpa
terpal relatif tidak berbeda secaca signifikan.
Pada pengukuran pertama hingga 50 HST
tanaman pada plot lahan tanpa terpal lebih
rendah dibandingkan dengan plot lahan
al. Pada pengukuran 50 sampai 73
HST tanaman plot lahan tanpa terpal lebih
tinggi dibandingkan dengan plot lahan
Rata-rata berat biji per buah jagung pada
plot lahan berterpal dan tanpa terpal adalah
148,55 dan 179,27 gram. Rata
bonggol per buah jagung pada plot lahan
berterpal dan tanpa terpal adalah 27,37 dan
33,03 gram, dan rata-rata berat klobot per
buah jagung pada plot lahan berterpal dan
tanpa terpal adalah 46,91 dan 56,61 gram.
Berat total biji jagung pada plot berterpal
adalah 2,37 kg dengan pemakaian air irigasi
sebesar 1,26 m3, berat total biji jagung pada
plot tanpa terpal adalah 2,86 kg deng
pemakaian air irigasi sebesar 1,15 m
Potensi hasil biji jagung pada plot lahan
berterpal sebesar 7,43 ton/ha dan potensi
hasil pada plot lahan tanpa terpal sebesar
8,96 ton/ha. Produktifitas penggunaan air
pada plot lahan berterpal adalah 1,88 kg/m
dan produktifitas penggunaan air pada plot
lahan tanpa terpal adalah 2,48 kg/m
Produktifitas tanaman jagung pada plot
lahan berterpal menurun dikarenakan
tanaman jagung mengalami penyakit kahat
kalium (kekurangan kalium) dan
pendangkalan akar. Kekura
dikarenakan terjadinya pendangkalan pada
akar sehingga tidak ada suplai unsur hara
dari lapisan bawah tanah. Penyakit ini
menyebabkan warna kuning atau
kecoklataan pada daun tua, warna tersebut
lot Lahan
Tanpa Terpal
188,50
574,46
37,24
40,58
614,29
1,41
762,96
700,2
Gambar 9. Rata-rata tinggi tanaman jagung selama penelitian
rata berat biji per buah jagung pada
plot lahan berterpal dan tanpa terpal adalah
148,55 dan 179,27 gram. Rata-rata berat
bonggol per buah jagung pada plot lahan
berterpal dan tanpa terpal adalah 27,37 dan
rata berat klobot per
buah jagung pada plot lahan berterpal dan
tanpa terpal adalah 46,91 dan 56,61 gram.
Berat total biji jagung pada plot berterpal
adalah 2,37 kg dengan pemakaian air irigasi
sebesar 1,26 m3, berat total biji jagung pada
plot tanpa terpal adalah 2,86 kg dengan
pemakaian air irigasi sebesar 1,15 m3.
Potensi hasil biji jagung pada plot lahan
berterpal sebesar 7,43 ton/ha dan potensi
hasil pada plot lahan tanpa terpal sebesar
8,96 ton/ha. Produktifitas penggunaan air
pada plot lahan berterpal adalah 1,88 kg/m3
dan produktifitas penggunaan air pada plot
lahan tanpa terpal adalah 2,48 kg/m3.
Produktifitas tanaman jagung pada plot
lahan berterpal menurun dikarenakan
tanaman jagung mengalami penyakit kahat
kalium (kekurangan kalium) dan
pendangkalan akar. Kekurangan kalium
dikarenakan terjadinya pendangkalan pada
akar sehingga tidak ada suplai unsur hara
dari lapisan bawah tanah. Penyakit ini
menyebabkan warna kuning atau
kecoklataan pada daun tua, warna tersebut
berkembang ke tulang daun utama. Kahat
kalium juga menyebabkan ujung tongkol
buah tidak berbiji penuh, bijinya jarang dan
tidak sempurna (Erawati, 2010).
Gambar 10. Berat rata-rata biji per buah tanaman
jagung.
IV. KESIMPULAN DAN SARAN
4.1. Kesimpulan
Dari hasil penelitian ini kesimpulan yang
diperoleh adalah sebagai berikut :
1. Total kebutuhan air konsumtif
tanaman jagung (ETc) selama 100
hari penelitian adalah 614,29 mm.
2. Total limpasan selama 100 hari
penelitian yang terjadi pada plot
lahan berterpal adalah 58,96 mm
(36,28 % dari total curah
pada plot lahan tanpa terpal adalah
37,24 (19,75 % dari total curah
hujan)
3. Total perkolasi yang terjadi selama
penelitian di plot lahan tanpa terpal
sebesar 40,58 mm.
4. Nilai koefisien tanaman jagung (Kc)
rata-rata pada tahap perkembangan
awal adalah 1,26; tahap vegetatif (1)
adalah 1,72; tahap pembungaan dan
formasi bji adalah 1,66; dan tahap
penuaan adalah 1,02.
5. Berat total biji jagung pada plot
berterpal adalah 2,37 kg dengan
pemakaian air irigasi sebesar 1,26
m3, berat total biji jagung pada p
Jurnal Teknik Pertanian Lampung– Vol.
berkembang ke tulang daun utama. Kahat
ga menyebabkan ujung tongkol
buah tidak berbiji penuh, bijinya jarang dan
tidak sempurna (Erawati, 2010).
rata biji per buah tanaman
DAN SARAN
Dari hasil penelitian ini kesimpulan yang
diperoleh adalah sebagai berikut :
Total kebutuhan air konsumtif
tanaman jagung (ETc) selama 100
hari penelitian adalah 614,29 mm.
Total limpasan selama 100 hari
penelitian yang terjadi pada plot
lahan berterpal adalah 58,96 mm
(36,28 % dari total curah hujan), dan
pada plot lahan tanpa terpal adalah
37,24 (19,75 % dari total curah
Total perkolasi yang terjadi selama
penelitian di plot lahan tanpa terpal
Nilai koefisien tanaman jagung (Kc)
rata pada tahap perkembangan
alah 1,26; tahap vegetatif (1)
adalah 1,72; tahap pembungaan dan
formasi bji adalah 1,66; dan tahap
penuaan adalah 1,02.
Berat total biji jagung pada plot
berterpal adalah 2,37 kg dengan
pemakaian air irigasi sebesar 1,26
m3, berat total biji jagung pada plot
tanpa terpal adalah 2,86 kg dengan
pemakaian air irigasi sebesar 1,15
m3. Produktifitas penggunaan air
pada plot lahan berterpal adalah 1,88
kg/m3 dan produktifitas penggunaan
air pada plot lahan tanpa terpal
adalah 2,48 kg/m3.
4.2. Saran
Perlu dilakukan penelitian lanjutan dengan
waktu penelitian pada waktu bulan basah
untuk mengetahui besarnya potensi air
hujan yang dapat dimanfaatkan dan
ditampung dalam semusim penanaman.
Kedalaman terpal sebaiknya lebih dari 30
cm, agar tanaman tidak mengalami
pendangkalan akar yang menyebabkan
produksifitas menurun. Perlunya dilakukan
pengamatan pengaruh embun pada malam
hari terhadap kadar air tanah.
DAFTAR PUSTAKA
Allen, R. G., L. S. Pereira., D. Raes., dan M.
Smith. 1998. Crop evapotranspiration
Guidelines for computing crop water
requirements -
drainage paper 56. Food And
Agriculture Organization Of The United
Station. Rome.
Direktorat Jenderal Tanaman Pangan. 2005.
Evaluasi Kecambah Pengujian Daya
Berkecambah. Direktorat Jen
Tanaman Pangan Direktorat
Perbenihan. Depok.
Erawati, T.R. 2010. Identifikasi Gejala
Kekurangan Unsur Hara Pada Tanaman
Jagung. Balai Pengkajian Teknologi
Pertanian. Nusa Tenggara Barat
James, L.G. 1993. Principles of Farm
Irrigation System Desi
Publishing Company. Florida.
Phocaides, A. 2007. Handbook On
Pressurized Irrigation Technique. Food
Vol. 1, No. 1, Oktober 2012: 1 - 10
9
tanpa terpal adalah 2,86 kg dengan
pemakaian air irigasi sebesar 1,15
m3. Produktifitas penggunaan air
pada plot lahan berterpal adalah 1,88
kg/m3 dan produktifitas penggunaan
air pada plot lahan tanpa terpal
adalah 2,48 kg/m3.
lakukan penelitian lanjutan dengan
waktu penelitian pada waktu bulan basah
untuk mengetahui besarnya potensi air
hujan yang dapat dimanfaatkan dan
ditampung dalam semusim penanaman.
Kedalaman terpal sebaiknya lebih dari 30
cm, agar tanaman tidak mengalami
pendangkalan akar yang menyebabkan
produksifitas menurun. Perlunya dilakukan
pengamatan pengaruh embun pada malam
hari terhadap kadar air tanah.
Allen, R. G., L. S. Pereira., D. Raes., dan M.
Smith. 1998. Crop evapotranspiration -
Guidelines for computing crop water
FAO Irrigation and
drainage paper 56. Food And
Agriculture Organization Of The United
Direktorat Jenderal Tanaman Pangan. 2005.
Evaluasi Kecambah Pengujian Daya
Berkecambah. Direktorat Jenderal
Tanaman Pangan Direktorat
Perbenihan. Depok.
Erawati, T.R. 2010. Identifikasi Gejala
Kekurangan Unsur Hara Pada Tanaman
Jagung. Balai Pengkajian Teknologi
Pertanian. Nusa Tenggara Barat
James, L.G. 1993. Principles of Farm
Irrigation System Design. Kreiger
Publishing Company. Florida.
Phocaides, A. 2007. Handbook On
Pressurized Irrigation Technique. Food
Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi)
10
And Agriculture Organization Of The
United Station. Rome.
Suhendra. 2010. Produksi cukup, impor
jagung Indonesia masih
tinggi.(http://finance.detik.com/.
diakses pada tanggal 20 juli 2011).

More Related Content

What's hot

Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
NurdinUng
 
Penggunaan lahan kering di das limboto sept 2011
Penggunaan lahan kering di das limboto sept 2011Penggunaan lahan kering di das limboto sept 2011
Penggunaan lahan kering di das limboto sept 2011
NurdinUng
 
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaruBab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
Purwandaru Widyasunu
 
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasiAnalisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
Muhadir Masrur
 
Konsep dasar daya dukung
Konsep dasar daya dukungKonsep dasar daya dukung
Konsep dasar daya dukung
Muhammad Subhan
 
Analisis daya-dukung-dan-analisis-pembagian-lokasi
Analisis daya-dukung-dan-analisis-pembagian-lokasiAnalisis daya-dukung-dan-analisis-pembagian-lokasi
Analisis daya-dukung-dan-analisis-pembagian-lokasi
Chintosa Into
 

What's hot (17)

Land suitability assessment_for_maize_de
Land suitability assessment_for_maize_deLand suitability assessment_for_maize_de
Land suitability assessment_for_maize_de
 
Kebutuhan air dan pemberian air
Kebutuhan air dan pemberian airKebutuhan air dan pemberian air
Kebutuhan air dan pemberian air
 
Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
Morfologi, sifat fisik dan kimia tanah inceptisols dari bahan lakustrin paguy...
 
Penggunaan lahan kering di das limboto sept 2011
Penggunaan lahan kering di das limboto sept 2011Penggunaan lahan kering di das limboto sept 2011
Penggunaan lahan kering di das limboto sept 2011
 
6 kuliah pa bab vi. efisiensi
6 kuliah pa bab vi. efisiensi6 kuliah pa bab vi. efisiensi
6 kuliah pa bab vi. efisiensi
 
Bab 1. pendahuluan evaluasi lahan agroteknologi 2014
Bab 1. pendahuluan evaluasi lahan agroteknologi 2014Bab 1. pendahuluan evaluasi lahan agroteknologi 2014
Bab 1. pendahuluan evaluasi lahan agroteknologi 2014
 
Hasil tanaman jagung yang dipupuk n, p, dan k di dutohe kabupaten bone bolang...
Hasil tanaman jagung yang dipupuk n, p, dan k di dutohe kabupaten bone bolang...Hasil tanaman jagung yang dipupuk n, p, dan k di dutohe kabupaten bone bolang...
Hasil tanaman jagung yang dipupuk n, p, dan k di dutohe kabupaten bone bolang...
 
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaruBab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
Bab 1. pendahuluan evaluasi lahan s1 agrotek by ndaru
 
Bab II
Bab IIBab II
Bab II
 
Evaluasi kesesuaian-lahan-untuk-pengembangan-pisang-di-kabupaten-boalemo-2 se...
Evaluasi kesesuaian-lahan-untuk-pengembangan-pisang-di-kabupaten-boalemo-2 se...Evaluasi kesesuaian-lahan-untuk-pengembangan-pisang-di-kabupaten-boalemo-2 se...
Evaluasi kesesuaian-lahan-untuk-pengembangan-pisang-di-kabupaten-boalemo-2 se...
 
Bahan 2
Bahan 2Bahan 2
Bahan 2
 
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasiAnalisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
Analisa efisiensi dan optimalisasi pola tanam pada daerah irigasi
 
Daya Dukung Lingkungan Hidup PLH
Daya Dukung Lingkungan Hidup PLHDaya Dukung Lingkungan Hidup PLH
Daya Dukung Lingkungan Hidup PLH
 
Konsep dasar daya dukung
Konsep dasar daya dukungKonsep dasar daya dukung
Konsep dasar daya dukung
 
Analisis daya-dukung-dan-analisis-pembagian-lokasi
Analisis daya-dukung-dan-analisis-pembagian-lokasiAnalisis daya-dukung-dan-analisis-pembagian-lokasi
Analisis daya-dukung-dan-analisis-pembagian-lokasi
 
EKOHIDROLOGI.docx
EKOHIDROLOGI.docxEKOHIDROLOGI.docx
EKOHIDROLOGI.docx
 
Kombinasi teknik konservasi tanah dan pengaruhnya terhadap hasil jagung dan e...
Kombinasi teknik konservasi tanah dan pengaruhnya terhadap hasil jagung dan e...Kombinasi teknik konservasi tanah dan pengaruhnya terhadap hasil jagung dan e...
Kombinasi teknik konservasi tanah dan pengaruhnya terhadap hasil jagung dan e...
 

Similar to 22 48-2-pb

Makalah konservasi
Makalah konservasiMakalah konservasi
Makalah konservasi
Operator Warnet Vast Raha
 
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
Kiki Reski
 
Laporan fieldtrip pertanian berlanjut
Laporan fieldtrip pertanian berlanjutLaporan fieldtrip pertanian berlanjut
Laporan fieldtrip pertanian berlanjut
fahmiganteng
 
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
MSUBHAN13
 
02_Kebutuhan Air Irigasi_Part1.ppt
02_Kebutuhan Air Irigasi_Part1.ppt02_Kebutuhan Air Irigasi_Part1.ppt
02_Kebutuhan Air Irigasi_Part1.ppt
AdeliaForYou
 
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMIEFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
Repository Ipb
 

Similar to 22 48-2-pb (20)

Irigasi dan Drainase. Bagian 2 Bahan kuliah irigasi bab 5-7 Prodi Agroteknologi
Irigasi dan Drainase. Bagian 2 Bahan kuliah irigasi bab 5-7 Prodi AgroteknologiIrigasi dan Drainase. Bagian 2 Bahan kuliah irigasi bab 5-7 Prodi Agroteknologi
Irigasi dan Drainase. Bagian 2 Bahan kuliah irigasi bab 5-7 Prodi Agroteknologi
 
Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit
Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa SawitModel Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit
Model Pengaruh Ketersediaan Air Terhadap Pertumbuhan dan Hasil Kelapa Sawit
 
Makalah konservasi
Makalah konservasiMakalah konservasi
Makalah konservasi
 
Makalah konservasi
Makalah konservasiMakalah konservasi
Makalah konservasi
 
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
Groundwater : Global Assesment and Scale (Integrated Water Resource Management)
 
Laporan fieldtrip pertanian berlanjut
Laporan fieldtrip pertanian berlanjutLaporan fieldtrip pertanian berlanjut
Laporan fieldtrip pertanian berlanjut
 
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
142729-ID-konsep-pengelolaan-sumber-daya-air-berke.pdf
 
pengairan dan irigasi
pengairan dan irigasipengairan dan irigasi
pengairan dan irigasi
 
Jurnal sukris28
Jurnal sukris28Jurnal sukris28
Jurnal sukris28
 
02_Kebutuhan Air Irigasi_Part1.ppt
02_Kebutuhan Air Irigasi_Part1.ppt02_Kebutuhan Air Irigasi_Part1.ppt
02_Kebutuhan Air Irigasi_Part1.ppt
 
skripsi
skripsiskripsi
skripsi
 
Paper kesesuaian lahan mijen
Paper kesesuaian lahan mijenPaper kesesuaian lahan mijen
Paper kesesuaian lahan mijen
 
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMIEFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
EFEKTIFITAS EMBUNG UNTUK IRIGASI TANAMAN HORTIKULTURA DI CIKAKAK SUKABUMI
 
Rdhp peningkatan ip 2018
Rdhp peningkatan ip 2018Rdhp peningkatan ip 2018
Rdhp peningkatan ip 2018
 
188 395-1-pb
188 395-1-pb188 395-1-pb
188 395-1-pb
 
Makalah interaksi iklim dan tanaman
Makalah interaksi iklim dan tanamanMakalah interaksi iklim dan tanaman
Makalah interaksi iklim dan tanaman
 
Bagian 1 Bahan Kuliah Irigasi dan Drainase Bab 1 4 Prodi Agroteknologi Fapert...
Bagian 1 Bahan Kuliah Irigasi dan Drainase Bab 1 4 Prodi Agroteknologi Fapert...Bagian 1 Bahan Kuliah Irigasi dan Drainase Bab 1 4 Prodi Agroteknologi Fapert...
Bagian 1 Bahan Kuliah Irigasi dan Drainase Bab 1 4 Prodi Agroteknologi Fapert...
 
Tugas Paper Statistika
Tugas Paper StatistikaTugas Paper Statistika
Tugas Paper Statistika
 
MK Irigasi dan Drainase Bab 5 pemberian air dan efisiensi plus tugas
MK Irigasi dan Drainase Bab 5 pemberian air dan efisiensi plus tugasMK Irigasi dan Drainase Bab 5 pemberian air dan efisiensi plus tugas
MK Irigasi dan Drainase Bab 5 pemberian air dan efisiensi plus tugas
 
Kalkulus kelompok 1 KELAS B
Kalkulus kelompok 1 KELAS BKalkulus kelompok 1 KELAS B
Kalkulus kelompok 1 KELAS B
 

Recently uploaded

5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
BagaimanaCaraMenggug
 
Abortion pills in Dammam (+966572737505) get cytotec
Abortion pills in Dammam (+966572737505) get cytotecAbortion pills in Dammam (+966572737505) get cytotec
Abortion pills in Dammam (+966572737505) get cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get CytotecAbortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh CityAbortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
jaanualu31
 
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
Jual Obat Aborsi Serang 082223109953 Cytotec Asli Serang
 

Recently uploaded (17)

Saham dan hal-hal yang berhubungan langsung
Saham dan hal-hal yang berhubungan langsungSaham dan hal-hal yang berhubungan langsung
Saham dan hal-hal yang berhubungan langsung
 
Karakteristik dan Produk-produk bank syariah.ppt
Karakteristik dan Produk-produk bank syariah.pptKarakteristik dan Produk-produk bank syariah.ppt
Karakteristik dan Produk-produk bank syariah.ppt
 
METODE TRANSPORTASI NORTH WEST CORNERWC.pptx
METODE TRANSPORTASI NORTH WEST CORNERWC.pptxMETODE TRANSPORTASI NORTH WEST CORNERWC.pptx
METODE TRANSPORTASI NORTH WEST CORNERWC.pptx
 
MODEL TRANSPORTASI METODE LEAST COST.pptx
MODEL TRANSPORTASI METODE LEAST COST.pptxMODEL TRANSPORTASI METODE LEAST COST.pptx
MODEL TRANSPORTASI METODE LEAST COST.pptx
 
Kemenkop LAPORAN KEUANGAN KOPERASI- SAK EP (25042024).pdf
Kemenkop LAPORAN KEUANGAN KOPERASI- SAK EP (25042024).pdfKemenkop LAPORAN KEUANGAN KOPERASI- SAK EP (25042024).pdf
Kemenkop LAPORAN KEUANGAN KOPERASI- SAK EP (25042024).pdf
 
5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
5 CARA MENGGUGURKAN KANDUNGAN DAN Jual Obat ABORSI + obat PENGGUGUR KANDUNGAN...
 
PEREKONIMIAN EMPAT SEKTOR (PEREKONOMIAN TERBUKA).pptx
PEREKONIMIAN EMPAT SEKTOR (PEREKONOMIAN TERBUKA).pptxPEREKONIMIAN EMPAT SEKTOR (PEREKONOMIAN TERBUKA).pptx
PEREKONIMIAN EMPAT SEKTOR (PEREKONOMIAN TERBUKA).pptx
 
Abortion pills in Dammam (+966572737505) get cytotec
Abortion pills in Dammam (+966572737505) get cytotecAbortion pills in Dammam (+966572737505) get cytotec
Abortion pills in Dammam (+966572737505) get cytotec
 
kasus audit PT KAI 121212121212121212121
kasus audit PT KAI 121212121212121212121kasus audit PT KAI 121212121212121212121
kasus audit PT KAI 121212121212121212121
 
Presentasi Pengertian instrumen pasar modal.ppt
Presentasi Pengertian instrumen pasar modal.pptPresentasi Pengertian instrumen pasar modal.ppt
Presentasi Pengertian instrumen pasar modal.ppt
 
K5-Kebijakan Tarif & Non Tarif kelompok 5
K5-Kebijakan Tarif & Non Tarif kelompok 5K5-Kebijakan Tarif & Non Tarif kelompok 5
K5-Kebijakan Tarif & Non Tarif kelompok 5
 
1. PERMENDES 15 TH 2021 SOSIALISASI.pptx
1. PERMENDES 15 TH 2021 SOSIALISASI.pptx1. PERMENDES 15 TH 2021 SOSIALISASI.pptx
1. PERMENDES 15 TH 2021 SOSIALISASI.pptx
 
MODEL TRANSPORTASI METODE VOGEL APPROXIMATIONAM.pptx
MODEL TRANSPORTASI METODE VOGEL APPROXIMATIONAM.pptxMODEL TRANSPORTASI METODE VOGEL APPROXIMATIONAM.pptx
MODEL TRANSPORTASI METODE VOGEL APPROXIMATIONAM.pptx
 
Abortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get CytotecAbortion pills in Jeddah |+966572737505 | Get Cytotec
Abortion pills in Jeddah |+966572737505 | Get Cytotec
 
TEORI DUALITAS TENTANG (PRIM AL-DUAL).pptx
TEORI DUALITAS TENTANG (PRIM AL-DUAL).pptxTEORI DUALITAS TENTANG (PRIM AL-DUAL).pptx
TEORI DUALITAS TENTANG (PRIM AL-DUAL).pptx
 
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh CityAbortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
Abortion Pills For Sale in Jeddah (+966543202731))Get Cytotec in Riyadh City
 
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
Jual Obat Aborsi Serang wa 082223109953 Klinik Jual Obat Penggugur Kandungan ...
 

22 48-2-pb

  • 1. Jurnal Teknik Pertanian Lampung– Vol. 1, No. 1, Oktober 2012: 1 - 10 1 ANALISIS NERACA AIR TANAMAN JAGUNG (Zea Mays) DI BANDAR LAMPUNG [Analysis Of Water Balance Of Corn (Zea Mays) In Bandar Lampung] Oleh : Muamar1, Sugeng Triyono2, Ahmad Tusi3, Bustomi Rosadi4 1) Mahasiswa S1 Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung 2,3,4) Staf Pengajar Jurusan Teknik Pertanian, Fakultas Pertanian, Universitas Lampung komunikasi penulis, email : muamaralkadzim@gmail.com Naskah ini diterima pada 27 September 2012; revisi pada 11 Oktober 2012; disetujui untuk dipublikasikan pada 15 Oktober 2012 ABSTRACT Indonesia needs of the community against corn continues to increase with increasing population growth as well. One effort to support the increased productivity of corn agribusiness development program is the provision of adequate water for plant growth. This aims of the research were (1) calculate the amount of corn crop water requirements, (2) quantify the potential of rainwater that can be utilized and stored, (3) analyze the potential evapotranspiration, percolation and runoff rate, (4) to calculate Kc plants. Field experiment was conducted at the Integrated Field Laboratory College of Agriculture, University of Lampung from 26 August to 4 December 2011. Field observations carried out on two experimental treatment with four repettition, the treatment were plots with plastic liner (plot A) and without plastic liner (plot B) where are each equipped with a water storage pond at the downstream. The results showed that (1) The consumptive use (ETc) during the study water requirements of corn is 614,3 mm. (2) Total runoff that occurs on a plot with plastic liner adn without plastic liner of land is 58,96 mm and 37,24 mm. (3) Percolation that occurred during the study in the plot of land without plastic liner is 40,58 mm. (4) The corn crop coefficient (Kc) on average in the early developmental stages, vegetative stage, stage of flowering and seed formation, and aging stage were 1,26; 1,72; 1,66 and 1,02. (5) the water productivity on plot A was 1,88 kg/m3 while on the plot B was 2,48 kg/m3. Keywords: water balance, corn, evapotranspiration, percolation, surface runoff. ABSTRAK Kebutuhan masyarakat Indonesia terhadap tanaman jagung terus meningkat seiring dengan pertumbuhan penduduk yang semakin meningkat juga. Salah satu upaya peningkatan produktifitas guna mendukung program pengembangan agribisnis tanaman jagung adalah penyediaan air yang cukup untuk pertumbuhan tanaman. Penelitian bertujuan untuk (1) menghitung besarnya kebutuhan air tanaman jagung, (2) menghitung besarnya potensi air hujan yang dapat di manfaatkan (3) menganalisis evapotranspirasi, laju perkolasi dan limpasan, (4) menghitung Kc tanaman. Penelitian ini dilaksanakan di Laboraturium Lapang Terpadu Fakultas Pertanian Universitas Lampung pada tanggal 26 Agustus – 4 Desember 2011. Pengamatan lapangan dilakukan terhadap delapan plot percobaan dengan dua perlakuan dan empat kali ulangan, perlakuan tersebut adalah menggunakan terpal (plot A) dan tanpa terpal (plot B) yang masing-masing dilengkapi dengan kolam penampungan air pada bagian hilirnya. Hasil penelitian menunjukan bahwa (1) Total evapotranspirasi tanaman (ETc) selama penelitian sebesar 614,3 mm. (2) Total limpasan pada plot lahan berterpal dan tanpa terpal adalah 58,96 mm dan 37,24 mm. (3) Perkolasi selama penelitian di plot lahan tanpa terpal sebesar 40,58 mm.(4) Nilai koefisien tanaman jagung (Kc) rata-rata pada tahap perkembangan awal, tahap vegetatif, tahap pembungaan dan formasi biji, dan tahap penuaan masing-masing adalah 1,26; 1,72; 1,66 dan 1,02. (5) Produktivitas penggunaan air pada plot A sebesar 1,88 kg/m3 dan plot B sebesar 2,48 kg/m3. Kata Kunci: neraca air, jagung, evapotranspirasi, perkolasi, limpasan permukaan.
  • 2. Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) 2 I. PENDAHULUAN Kebutuhan masyarakat Indonesia terhadap tanaman pangan ini terus meningkat seiring dengan pertumbuhan penduduk yang terus meningkat. Menurut Wakil Mentri Pertanian RI, Bayu Krisnamurthi, dari sisi produksi jagung nasional cukup, namun belum dapat memenuhi kebutuhan pakan ternak. Hal tersebut dikarenakan produksi jagung nasional memiliki spesifikasi berbeda-beda untuk pakan ternak, sehingga untuk memenuhi pakan ternak tersebut pemerintah masih melakukan impor jagung yang mencapai 1 juta ton tiap tahunya (Suhendra, 2010). Untuk memenuhi kebutuhan nasional jagung maka perlu adanya peningkatan produktivitas dengan perluasan penanaman ataupun dengan teknologi pembudidayaannya. Masalah lain dalam pembudidayaan tanaman jagung yaitu kebutuhan air tanaman tersebut. Salah satu upaya peningkatan produktifitas guna mendukung program pengembangan agribisnis tanaman jagung adalah penyediaan air yang cukup untuk pertumbuhan tanaman (Ditjen Tanaman Pangan, 2005). Kegiatan budidaya tanaman jagung di Indonesia hingga saat ini masih bergantung pada air hujan. Menyiasati hal tersebut, pengelolaan air harus diusahakan secara optimal, yaitu tepat waktu, tepat jumlah, dan tepat sasaran, sehingga efisien dalam upaya peningkatan produksifitas maupun perluasan areal tanam dan peningkatan intensitas pertanaman. Selain itu, antisipasi kekeringan tanaman akibat ketidakcukupan pasokan air hujan perlu disiasati dengan berbagai upaya, antara lain pemanfaatan dan pemanenan air hujan yang berlebih. Analisis neraca air pada penelitian sebelumnya menggunakan komoditi tanaman cabai yang dilaksanakan oleh sdr. Andika Gustama di Lapang Terpadu Fakultas Pertanian Universitas Lampung. Pada penelitian ini penulis menggunakan komoditi lain yaitu tanaman jagung. Penelitian ini bertujuan untuk menghitung kebutuhan air tanaman jagung, menghitung besarnya potensi air hujan yang dapat di manfaatkan, menganalisis laju perkolasi dan limpasan, dan menghitung koefisien tanaman. II. BAHAN DAN METODE Penelitian dilaksanakan di Laboratorium Lapang Terpadu Fakultas Pertanian Universitas Lampung pada lokasi 050 22’ LS dan 1050 14’ BT, dengan ketinggian 148 m dpl. Penelitian dilaksanakan dengan menggunakan dua perlakuan dan empat ulangan, perlakuan tersebut adalah menggunakan terpal (model lisimeter dengan alas) dan tanpa terpal (model lisimeter tanpa alas). Penelitian lapang dilakukan selama 100 hari terhitung mulai tanggal 26 Agustus 2011 sampai 4 Desember 2011. Peralatan yang digunakan adalah sekop, cangkul, mistar ukur, timbangan, jangka sorong, dan peralatan laboratorium lainnya. Bahan yang digunakan yaitu: model lahan pertanian, benih jagung hibrida varietas SHS 4. 2.1. Pengumpulan Data Variabel yang diamati di laboratorium adalah sifat fisik tanah yang meliputi tekstur tanah, kadar air kapasitas lapang (field capacity, θfc), kadar air titik layu (permanent wilting point, θpwp), dan berat isi tanah (bulk density, γb). Pada kegiatan pengamatan di lapangan, variabel yang diamati meliputi kadar air tanah harian, curah hujan (CH), suhu (T), kelembaban udara (RH), kecepatan angin pada ketinggian di atas 2 meter (U2), radiasi matahari (Rn), perkolasi (P), tinggi tanaman, dan produksi tanaman. Penentuan tekstur tanah menggunakan contoh tanah tidak utuh pada kedalaman 0 – 20 cm diambil dari tiga titik berbeda dengan cara mencangkul sampai kedalaman tersebut. Pengambilan contoh tanah utuh menggunakan ring sampel diambil setelah pengolahan lahan. Contoh tanah dianalisis di Laboratorium Ilmu Tanah Politeknik Negeri Lampung untuk mengetahui komposisi fraksi
  • 3. Jurnal Teknik Pertanian Lampung– Vol. 1, No. 1, Oktober 2012: 1 - 10 3 pasir, debu, dan liat. Selanjutnya, kelas tekstur ditentukan dengan segitiga USDA. Kadar air titik layu ditentukan dengan perhitungan setelah diketahui tekstur tanah dan kadar air kapasitas lapang dengan persamaan: θpwp = θfc/1,75 (Phocaides, 2007) (1) Pengamatan iklim harian (suhu dan kelembaban udara) dilakukan dengan menggunakan Professional Instruments Wireless Weather Stations. Instrumen- instrumen tersebut diletakkan pada ketinggian ± 5 m di luar gedung Teknik Pertanian Universitas Lampung (TEP-Unila). data kecepatan angin diperoleh dari BMKG Radin Intan II Branti Lampung Selatan. Kadar air tanah harian diukur dengan alat Soil Moisture Meter TDR 100 dengan cara membenamkan sensor yang panjangnya 11,94 cm. Pengukuran dilakukan di sepuluh titik berbeda, selanjutnya rata-rata dari nilai pengukuran merupakan kadar air tanah harian. Evaporasi kolam diukur dengan cara menghitung selisih tinggi muka air kolam pada hari tertentu (TMAi) dengan hari sebelumnya (TMAi-1). Irigasi dilakukan setiap pagi hari atau saat tanah belum melewati titik kritis (θc) dengan fraksi penipisan (p) sebesar 0,5. Air irigasi berasal dari sumber lain dan hasil pemanfaatan air hujan yang mengalami limpasan permukaan menuju kolam penampungan. Untuk menentukan titik kritis dapat menggunakan rumus: θc = θfc - θRAW (2) θRAW = p × θAW (3) dimana, θc : titik kritis (%); θfc : kapasitas lapang (%); θRAW : air siap tersedia (%); θAW : air tersedia (%); dan p : fraksi penipisan. Kebutuhan air irigasi dihitung berdasarkan penurunan kadar air tanah harian. Untuk menentukan irigasi dapat menggunakan rumus: I = Drz (θfc Ӎ θi)Llahan (4) Dimana, I : irigasi (cm3 atau ml); Llahan : luas lahan (cm2); Drz : kedalaman zona perakaran (cm). 2.2. Kondisi Hidrologis Evapotranspirasi tanaman harian dihitung berdasarkan perubahan kadar air tanah. Evapotranspirasi dapat disimpulkan dari perubahan kandungan air tanah (∆SW) selama periode waktu tertentu (James, 1993): ET = Drz (θi – θi-1) + I + P – RO – DP (5) Pada kondisi tidak ada hujan (P, RO, dan DP sama dengan nol), maka: ET = Drz (θi – θi-1) + I (6) Dimana, I : irigasi (mm); P : curah hujan (mm); ET : evapotranspirasi (mm); RO: aliran permukaan keluar volume kontrol (mm); DP : perkolasi (mm). Neraca air memiliki hubungan keseimbangan sebagai berikut (James, 1993): ∆SW = Drz (θi – θi-1) = Inflow – Outflow (7) Dimana, Inflow dan Outflow: total aliran masuk dan keluar volume kontrol selama interval waktu tertentu (mm); ∆SW: perubahan kadar air tanah (mm); Drz: kedalaman zona perakaran (mm); (θi – θi-1): kadar air tanah volumetrik pada hari tertentu dan hari sebelumnya. Pengukuran laju perkolasi dihitung menggunakan persamaan : DP = (ROA Ӎ ROB) + (θi Ӎ θfc) (8) Dimana, DP: perkolasi (mm); ROA: limpasan pada plot lahan berterpal (mm); ROB: limpasan pada plot lahan tanpa terpal (mm); θi: kadar air tanah (mm); θfc: kapasitas lapang (mm). Volume limpasan lahan diukur pada kolam penampungan air hujan dengan mencatat kedalaman air pada masing-masing kolam. RO = VRO / Llahan (9) VRO = Vpond - Vp (10) Vpond = ∆TMA × Lpond (11)
  • 4. Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) 4 Vp = P × Lpond (12) Dimana, RO :limpasan (cm); V limpasan (cm3); Llahan : luas lahan (cm : volume kolam (cm3); VP: volume curah hujan yang masuk langsung kedalam kolam (cm3); Lpond: luas permukaan kolam (cm curah hujan (cm); ∆TMA: tinggi penambahan air kolam (cm). 2.3. Pertumbuhan dan Produksi Tanaman Tinggi tanaman diukur dari pangkal batang sampai dengan pucuk daun tertinggi pada empat tanaman di masing-masing plot lahan. Hasil pengukuran di masing-masing plot dirata-ratakan yang selanjutnya disebut sebagai rata-rata tinggi tanaman jagung. Pengukuran dilakukan setiap satu ming sekali sampai menjelang panen. Perhitungan berat biji dilakukan pada empat tanaman jagung tiap plot lahan. Hasil pengukuran di masing-masing plot dirata ratakan yang selanjutnya disebut sebagai rata-rata berat biji tanaman. Satu petakan terdapat 14 tanaman jagung. Total berat biji jagung dihitung dengan mengalikan berat rata-rata biji per tanaman dan banyaknya tanaman dalam satu plot lahan. III. HASIL DAN PEMBAHASAN 3.1. Sifat Fisik Tanah Hasil analisis laboratorium dengan menggunakan contoh tanah tidak utuh yang diambil dari empat titik berbeda di lokasi penelitian pada kedalaman 0-20 cm, nilai fraksi pasir sebesar 34,60%, debu 16,10%, dan liat 49,3%. Berdasarkan penggolongan pada segitiga tekstur tanah yang dibuat oleh Departemen Pertanian Amerika Serikat (USDA), komposisi tanah ini termasuk ke dalam kelas tekstur berliat. Dari hasil analisis laboratorium menggunakan empat sampel tan dengan kedalaman 0 – 20cm didapatkan kapasitas lapang (θfc) tanah rata-rata sebesar 39,1%. Perbandingan antara kapasitas lapang dengan titik layu permanen untuk Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) (12) VRO: volume : luas lahan (cm2); Vpond : volume curah hujan yang masuk langsung kedalam kolam : luas permukaan kolam (cm2); P: : tinggi penambahan rtumbuhan dan Produksi Tanaman pangkal batang sampai dengan pucuk daun tertinggi pada masing plot lahan. masing plot ratakan yang selanjutnya disebut rata tinggi tanaman jagung. Pengukuran dilakukan setiap satu minggu Perhitungan berat biji dilakukan pada empat tanaman jagung tiap plot lahan. Hasil masing plot dirata- ratakan yang selanjutnya disebut sebagai rata berat biji tanaman. Satu petakan anaman jagung. Total berat biji jagung dihitung dengan mengalikan berat rata biji per tanaman dan banyaknya Hasil analisis laboratorium dengan tidak utuh yang diambil dari empat titik berbeda di lokasi 20 cm, nilai besar 34,60%, debu 16,10%, %. Berdasarkan penggolongan pada segitiga tekstur tanah yang dibuat oleh rika Serikat (USDA), komposisi tanah ini termasuk ke Dari hasil analisis laboratorium menggunakan empat sampel tanah utuh cm didapatkan rata sebesar antara kapasitas lapang dengan titik layu permanen untuk jenis tanah berliat yaitu 1,75:1 (Phocaides, 2007) sehingga titik layu (θ sebesar 22,35%. Air tersedia bagi tanaman (θAW), yang merupakan selisih antara kandungan air kapasitas lapang layu permanen terhitung sebesar 16,75%. Data tersebut selanjutnya digunakan untuk perhitungan irigasi. Tabel 1. Sifat fisik tanah Uraian Tekstur tanah Kerapatan isi (g/cm3 ) Kapasitas lapang (%) Titik kritis (%) Titik layu permanen 3.2. Kadar Air Tanah Berdasarkan hasil pengukuran kadar air tanah di lapangan yang telah dikalibrasi, kadar air tanah tertinggi di pl bertepal sebesar 40,81% yang terjadi pada tanggal 2 Desember 2011 dan tanah terendah terjadi pada tanggal 15 Oktober 2011 yaitu sebesar 30,52 Sedangkan pada plot lahan tanpa terpal, nilai kadar air tanah tertinggi terjadi pada tanggal 1 Desember 2011 yaitu sebesar 42,19 kadar air tanah terendah terjad 31 Agustus 2011 yaitu sebesar 31,84 Gambar 1. Kadar air tanah harian plot lahan berterpal jenis tanah berliat yaitu 1,75:1 (Phocaides, 2007) sehingga titik layu (θpwp) terhitung sebesar 22,35%. Air tersedia bagi tanaman (θAW), yang merupakan selisih antara kandungan air kapasitas lapang dengan titik layu permanen terhitung sebesar 16,75%. Data tersebut selanjutnya digunakan untuk Keterangan Liat 1,41 39,1 30,7 22,3 Berdasarkan hasil pengukuran kadar air tanah di lapangan yang telah dikalibrasi, kadar air tanah tertinggi di plot lahan % yang terjadi pada tanggal 2 Desember 2011 dan nilai kadar air tanah terendah terjadi pada tanggal 15 011 yaitu sebesar 30,52%. Sedangkan pada plot lahan tanpa terpal, nilai kadar air tanah tertinggi terjadi pada tanggal sember 2011 yaitu sebesar 42,19% dan kadar air tanah terendah terjadi pada tanggal gustus 2011 yaitu sebesar 31,84%. Gambar 1. Kadar air tanah harian plot lahan
  • 5. 3.3. Irigasi Irigasi diberikan apabila kadar air tanah saat pengukuran dilapangan melewati titik (θc) yaitu sebesar 30,7%. Irigasi d hanya sampai 33%, ini dikarenakan minimumnya sumber air untuk irigasi dan juga dengan pertimbangan apabila terjadi hujan, tanah masih dapat menampung air. Selama 100 hari penelitian pada tanggal 26 Agsutus – 4 Desember 2011 dengan total curah hujan 188,50 mm, plot lahan bertepal memerlukan irigasi sebesar 630,3 mm (rata rata 6,30 mm/hari) dan plot lahan tanpa terpal memerlukan irigasi 574,46 mm (rata rata 5,74 mm/hari). Gambar 3. Pemberian air irigasi setiap plot lahan Setiap dasarian, plot lahan berterpal membutuhkan irigasi lebih banyak daripada plot lahan tanpa terpal (Gambar 3). 3.4. Evapotranspirasi Tanaman Evapotranspirasi merupakan gabungan dua proses yang terpisah dimana satu sisi Gambar 2. Kadar air tanah harian plot lahan tanpa terpal Jurnal Teknik Pertanian Lampung– Vol. Irigasi diberikan apabila kadar air tanah saat dilapangan melewati titik kritis %. Irigasi diberikan %, ini dikarenakan minimumnya sumber air untuk irigasi dan juga dengan pertimbangan apabila terjadi hujan, tanah masih dapat menampung air. penelitian pada tanggal 26 4 Desember 2011 dengan total curah hujan 188,50 mm, plot lahan bertepal memerlukan irigasi sebesar 630,3 mm (rata- rata 6,30 mm/hari) dan plot lahan tanpa terpal memerlukan irigasi 574,46 mm (rata- mbar 3. Pemberian air irigasi setiap plot lahan Setiap dasarian, plot lahan berterpal membutuhkan irigasi lebih banyak daripada plot lahan tanpa terpal (Gambar 3). 3.4. Evapotranspirasi Tanaman Evapotranspirasi merupakan gabungan dua h dimana satu sisi penguapan terjadi pada permukaan tanah dan air (evaporasi) dan satu sisi lain penguapan terjadi pada tanaman (transpirasi), Evapotranspirasi dalam kondisi standar adalah evapotranspirasi dari tanaman yang bebas penyakit, ditanam di lahan luas, dalam kondisi air tanah optimal dan mencapai produksi penuh (Allen dkk, 1998). ETc rata-rata di plot lahan berterpal pada tahap perkembangan awal (0 mm/hari, tahap vegetati mm/hari, tahap pembungaan dan formasi biji (41 – 80 hari) 7,46 mm/hari, dan tahap penuaan (81 - 100 hari) 4,87 mm/hari. ETc rata-rata di plot lahan tanpa terpal pada tahap perkembangan awal 6, tahap vegetatif 5,77 mm/hari, pembungaan dan formasi biji 6,18 mm/hari, dan tahap penuaan 6,08 mm/hari. Gambar 4. Evapotranspirasi tanaman Gambar 2. Kadar air tanah harian plot lahan tanpa terpal Vol. 1, No. 1, Oktober 2012: 1 - 10 5 penguapan terjadi pada permukaan tanah dan air (evaporasi) dan satu sisi lain penguapan terjadi pada tanaman (transpirasi), Evapotranspirasi dalam kondisi standar adalah evapotranspirasi dari tanaman yang bebas penyakit, ditanam di luas, dalam kondisi air tanah optimal dan mencapai produksi penuh (Allen dkk, rata di plot lahan berterpal pada tahap perkembangan awal (0 – 15 hari) 5,19 mm/hari, tahap vegetatif (16 – 40 hari) 7,25 mm/hari, tahap pembungaan dan formasi 80 hari) 7,46 mm/hari, dan tahap 100 hari) 4,87 mm/hari. ETc rata di plot lahan tanpa terpal pada tahap perkembangan awal 6,79 mm/hari, 5,77 mm/hari, tahap pembungaan dan formasi biji 6,18 mm/hari, dan tahap penuaan 6,08 mm/hari. Gambar 4. Evapotranspirasi tanaman
  • 6. Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) 6 Total evapotranspirasi acuan (ETo) selama penelitian adalah 143,29 mm dan total evapotranspirasi tanaman jagung selama 100 hari penelitian pada plot lahan berterpal adalah 659,5 dan pada plot lahan tanpa terpal adalah 614,29 mm. Gambar 6. Nilai koefisien tanaman (Kc) berdasarkan tahap pertumbuhan Nilai koefisien tanaman jagung rata pada plot lahan berterpal untuk tahap perkembangan awal, tahap vegetatif pembungaan dan formasi biji, dan tahap penuaan adalah 1,26; 1,72; 1,66 dan 1,02. Pada plot lahan tanpa terpal nilai koefisien Gambar 5. Evapotranspirasi kumulatif Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) Total evapotranspirasi acuan (ETo) selama penelitian adalah 143,29 mm dan total evapotranspirasi tanaman jagung selama 100 hari penelitian pada plot lahan berterpal adalah 659,5 dan pada plot lahan tanpa sien tanaman (Kc) berdasarkan tahap pertumbuhan Nilai koefisien tanaman jagung rata-rata pada plot lahan berterpal untuk tahap bangan awal, tahap vegetatif, tahap pembungaan dan formasi biji, dan tahap penuaan adalah 1,26; 1,72; 1,66 dan 1,02. plot lahan tanpa terpal nilai koefisien tanaman jagung rata-rata pada tahap awal perkembangan, tahap vegetatif (1), tahap pembungaan dan formasi biji, dan tahap penuaan berturut-turut memiliki nilai sebesar 1,17; 1,37; 1,38; 1,19 (Gambar 6). 3.5. Hubungan Curah Hujan Dengan Limpasan Permukaan Dari 20 hari kejadian hujan selama penelitian, 13 kejadian hujan menghasilkan limpasan pada plot lahan bertepal sebesar 58,96 mm dan 14 kejadian hujan menghasilkan limpasan pada plot lahan tanpa terpal sebesar 37,24 mm yang berarti bahwa limpasan pada plot lahan tanpa terpal 36,8% lebih kecil dari pada plot lahan berterpal. Dari analisis regresi diatas dapat diketahui bahwa diperlukan lebih dari 0,02 mm curah hujan untuk dapat menghasilan limpasan pada plot lahan tanpa terpal. Nilai koefisien determinasi pada plot lahan tanpa terpal adalah 0.9127 yang berarti hubungan antara curah dengan limpasan yang sangat kuat yaitu sebesar 91,27%. Gambar 5. Evapotranspirasi kumulatif rata pada tahap awal perkembangan, tahap vegetatif (1), tahap pembungaan dan formasi biji, dan tahap turut memiliki nilai sebesar 1,17; 1,37; 1,38; 1,19 (Gambar 6). Hubungan Curah Hujan Dengan Dari 20 hari kejadian hujan selama penelitian, 13 kejadian hujan menghasilkan limpasan pada plot lahan bertepal sebesar 58,96 mm dan 14 kejadian hujan menghasilkan limpasan pada plot lahan r 37,24 mm yang berarti bahwa limpasan pada plot lahan tanpa terpal 36,8% lebih kecil dari pada plot lahan Dari analisis regresi diatas dapat diketahui bahwa diperlukan lebih dari 0,02 mm curah hujan untuk dapat menghasilan limpasan ahan tanpa terpal. Nilai koefisien determinasi pada plot lahan tanpa terpal adalah 0.9127 yang berarti hubungan antara curah dengan limpasan yang sangat kuat
  • 7. Gambar 7. Analisis regresi linear curah hujan terhadap limpasan plot 3.6. Perkolasi Perkolasi merupakan bagian output dari analisis neraca air. Perkolasi terjadi karena kadar air tanah telah melebihi kapasitas lapang. Beberapa faktor yang mempengaruhi perkolasi adalah sifat fisik tanah, tinggi muka air, dan kemiringan lahan. Dari 20 hari kejadian hujan selama penelitian, 8 kejadian hujan menghasilkan perkolasi pada plot lahan tanpa terpal yaitu sebesar 40,58 mm. 3.7. Evaporasi Kolam Penampungan Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal Jurnal Teknik Pertanian Lampung– Vol. Gambar 7. Analisis regresi linear curah hujan terhadap limpasan plot tanpa terpal Perkolasi merupakan bagian output dari analisis neraca air. Perkolasi terjadi karena lah melebihi kapasitas Beberapa faktor yang mempengaruhi perkolasi adalah sifat fisik tanah, tinggi muka dan kemiringan lahan. Dari 20 hari kejadian hujan selama penelitian, 8 kejadian hujan menghasilkan perkolasi pada plot lahan tanpa terpal yaitu sebesar 40,58 mm. Evaporasi Kolam Penampungan Rata-rata evaporasi harian pada kolam penampungan air hujan selama 100 hari penelitian di plot lahan bertepal sebesar 2,37 mm dan pada plot lahan tanpa terpal sebesar 2,21 mm. Data yang dihasilkan dapat digunakan sebagai acuan kolam dan juga digunakan untuk menentukan koefisien evaporasi (k) yaitu dengan cara menghitung nisbah antara evaporasi pengukuran dengan evapotranspirasi acuan (E/ETo). Rata nilai koefisien kolam di plot lahan bertepal sebesar 0,66 dan nilai koefisien kolam di plot lahan tanpa terpal sebesar 0,58. 3.8. Analisis Neraca Air Memperhatikan data perhitungan neraca air secara keseluruhan, input yang terjadi selama penelitian pada plot lahan berterpal sebesar 818,53 mm, dan pada plot lah tanpa terpal sebesar 762,96 mm. Output yang terjadi selama penelitian pada plot lahan berterpal sebesar 721,85 mm, dan pada plot lahan tanpa terpal sebesar 700,2 mm. Selisih antara input dan output pada plot lahan berterpal dan plot lahan tanpa terpal masing-masing adalah 92,35 mm dan 61,54 mm. Sehingga didapat eror pada plot Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal Vol. 1, No. 1, Oktober 2012: 1 - 10 7 rata evaporasi harian pada kolam penampungan air hujan selama 100 hari penelitian di plot lahan bertepal sebesar 2,37 mm dan pada plot lahan tanpa terpal sebesar 2,21 mm. Data yang dihasilkan dapat digunakan sebagai acuan tinggi muka air kolam dan juga digunakan untuk menentukan koefisien evaporasi (k) yaitu dengan cara menghitung nisbah antara evaporasi pengukuran dengan evapotranspirasi acuan (E/ETo). Rata-rata nilai koefisien kolam di plot lahan bertepal an nilai koefisien kolam di plot lahan tanpa terpal sebesar 0,58. 3.8. Analisis Neraca Air Memperhatikan data perhitungan neraca air secara keseluruhan, input yang terjadi selama penelitian pada plot lahan berterpal sebesar 818,53 mm, dan pada plot lahan tanpa terpal sebesar 762,96 mm. Output yang terjadi selama penelitian pada plot lahan berterpal sebesar 721,85 mm, dan pada plot lahan tanpa terpal sebesar 700,2 mm. Selisih antara input dan output pada plot lahan berterpal dan plot lahan tanpa masing adalah 92,35 mm dan 61,54 mm. Sehingga didapat eror pada plot Gambar 8. Proporsi perkolasi dari curah hujan pada plot lahan tanpa terpal
  • 8. Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) 8 lahan berterpal sebesar 11,28 % dan pada plot lahan tanpa terpal sebesar 8 %. Tabel 2. Neraca air di plot lahan penelitian (mm) 3.9. Pertumbuhan dan Produksi Tanaman Rata-rata tinggi tanaman jagung pada plot lahan bertepal maupun plot lahan tanpa terpal relatif tidak berbeda secaca signifikan. Pada pengukuran pertama hingga 50 HST tanaman pada plot lahan tanpa terpal lebih rendah dibandingkan dengan plot lahan berterpal. Pada pengukuran 50 sampai 73 HST tanaman plot lahan tanpa terpal lebih tinggi dibandingkan dengan plot lahan berterpal. Abstraksi Hidrologi Plot Lahan 26 Agustus - 4 Desember 2011 Berterpal Curah Hujan 188,50 Irigasi 630,03 Limpasan 58,96 Perkolasi 0 ETc 659,85 ∆SW -0,28 Total Input 818,53 Total Output 721,85 Gambar 9. Rata Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) lahan berterpal sebesar 11,28 % dan pada plot lahan tanpa terpal sebesar 8 %. Tabel 2. Neraca air di plot lahan penelitian (mm) Pertumbuhan dan Produksi Tanaman rata tinggi tanaman jagung pada plot lahan bertepal maupun plot lahan tanpa terpal relatif tidak berbeda secaca signifikan. Pada pengukuran pertama hingga 50 HST tanaman pada plot lahan tanpa terpal lebih rendah dibandingkan dengan plot lahan al. Pada pengukuran 50 sampai 73 HST tanaman plot lahan tanpa terpal lebih tinggi dibandingkan dengan plot lahan Rata-rata berat biji per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 148,55 dan 179,27 gram. Rata bonggol per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 27,37 dan 33,03 gram, dan rata-rata berat klobot per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 46,91 dan 56,61 gram. Berat total biji jagung pada plot berterpal adalah 2,37 kg dengan pemakaian air irigasi sebesar 1,26 m3, berat total biji jagung pada plot tanpa terpal adalah 2,86 kg deng pemakaian air irigasi sebesar 1,15 m Potensi hasil biji jagung pada plot lahan berterpal sebesar 7,43 ton/ha dan potensi hasil pada plot lahan tanpa terpal sebesar 8,96 ton/ha. Produktifitas penggunaan air pada plot lahan berterpal adalah 1,88 kg/m dan produktifitas penggunaan air pada plot lahan tanpa terpal adalah 2,48 kg/m Produktifitas tanaman jagung pada plot lahan berterpal menurun dikarenakan tanaman jagung mengalami penyakit kahat kalium (kekurangan kalium) dan pendangkalan akar. Kekura dikarenakan terjadinya pendangkalan pada akar sehingga tidak ada suplai unsur hara dari lapisan bawah tanah. Penyakit ini menyebabkan warna kuning atau kecoklataan pada daun tua, warna tersebut lot Lahan Tanpa Terpal 188,50 574,46 37,24 40,58 614,29 1,41 762,96 700,2 Gambar 9. Rata-rata tinggi tanaman jagung selama penelitian rata berat biji per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 148,55 dan 179,27 gram. Rata-rata berat bonggol per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 27,37 dan rata berat klobot per buah jagung pada plot lahan berterpal dan tanpa terpal adalah 46,91 dan 56,61 gram. Berat total biji jagung pada plot berterpal adalah 2,37 kg dengan pemakaian air irigasi sebesar 1,26 m3, berat total biji jagung pada plot tanpa terpal adalah 2,86 kg dengan pemakaian air irigasi sebesar 1,15 m3. Potensi hasil biji jagung pada plot lahan berterpal sebesar 7,43 ton/ha dan potensi hasil pada plot lahan tanpa terpal sebesar 8,96 ton/ha. Produktifitas penggunaan air pada plot lahan berterpal adalah 1,88 kg/m3 dan produktifitas penggunaan air pada plot lahan tanpa terpal adalah 2,48 kg/m3. Produktifitas tanaman jagung pada plot lahan berterpal menurun dikarenakan tanaman jagung mengalami penyakit kahat kalium (kekurangan kalium) dan pendangkalan akar. Kekurangan kalium dikarenakan terjadinya pendangkalan pada akar sehingga tidak ada suplai unsur hara dari lapisan bawah tanah. Penyakit ini menyebabkan warna kuning atau kecoklataan pada daun tua, warna tersebut
  • 9. berkembang ke tulang daun utama. Kahat kalium juga menyebabkan ujung tongkol buah tidak berbiji penuh, bijinya jarang dan tidak sempurna (Erawati, 2010). Gambar 10. Berat rata-rata biji per buah tanaman jagung. IV. KESIMPULAN DAN SARAN 4.1. Kesimpulan Dari hasil penelitian ini kesimpulan yang diperoleh adalah sebagai berikut : 1. Total kebutuhan air konsumtif tanaman jagung (ETc) selama 100 hari penelitian adalah 614,29 mm. 2. Total limpasan selama 100 hari penelitian yang terjadi pada plot lahan berterpal adalah 58,96 mm (36,28 % dari total curah pada plot lahan tanpa terpal adalah 37,24 (19,75 % dari total curah hujan) 3. Total perkolasi yang terjadi selama penelitian di plot lahan tanpa terpal sebesar 40,58 mm. 4. Nilai koefisien tanaman jagung (Kc) rata-rata pada tahap perkembangan awal adalah 1,26; tahap vegetatif (1) adalah 1,72; tahap pembungaan dan formasi bji adalah 1,66; dan tahap penuaan adalah 1,02. 5. Berat total biji jagung pada plot berterpal adalah 2,37 kg dengan pemakaian air irigasi sebesar 1,26 m3, berat total biji jagung pada p Jurnal Teknik Pertanian Lampung– Vol. berkembang ke tulang daun utama. Kahat ga menyebabkan ujung tongkol buah tidak berbiji penuh, bijinya jarang dan tidak sempurna (Erawati, 2010). rata biji per buah tanaman DAN SARAN Dari hasil penelitian ini kesimpulan yang diperoleh adalah sebagai berikut : Total kebutuhan air konsumtif tanaman jagung (ETc) selama 100 hari penelitian adalah 614,29 mm. Total limpasan selama 100 hari penelitian yang terjadi pada plot lahan berterpal adalah 58,96 mm (36,28 % dari total curah hujan), dan pada plot lahan tanpa terpal adalah 37,24 (19,75 % dari total curah Total perkolasi yang terjadi selama penelitian di plot lahan tanpa terpal Nilai koefisien tanaman jagung (Kc) rata pada tahap perkembangan alah 1,26; tahap vegetatif (1) adalah 1,72; tahap pembungaan dan formasi bji adalah 1,66; dan tahap penuaan adalah 1,02. Berat total biji jagung pada plot berterpal adalah 2,37 kg dengan pemakaian air irigasi sebesar 1,26 m3, berat total biji jagung pada plot tanpa terpal adalah 2,86 kg dengan pemakaian air irigasi sebesar 1,15 m3. Produktifitas penggunaan air pada plot lahan berterpal adalah 1,88 kg/m3 dan produktifitas penggunaan air pada plot lahan tanpa terpal adalah 2,48 kg/m3. 4.2. Saran Perlu dilakukan penelitian lanjutan dengan waktu penelitian pada waktu bulan basah untuk mengetahui besarnya potensi air hujan yang dapat dimanfaatkan dan ditampung dalam semusim penanaman. Kedalaman terpal sebaiknya lebih dari 30 cm, agar tanaman tidak mengalami pendangkalan akar yang menyebabkan produksifitas menurun. Perlunya dilakukan pengamatan pengaruh embun pada malam hari terhadap kadar air tanah. DAFTAR PUSTAKA Allen, R. G., L. S. Pereira., D. Raes., dan M. Smith. 1998. Crop evapotranspiration Guidelines for computing crop water requirements - drainage paper 56. Food And Agriculture Organization Of The United Station. Rome. Direktorat Jenderal Tanaman Pangan. 2005. Evaluasi Kecambah Pengujian Daya Berkecambah. Direktorat Jen Tanaman Pangan Direktorat Perbenihan. Depok. Erawati, T.R. 2010. Identifikasi Gejala Kekurangan Unsur Hara Pada Tanaman Jagung. Balai Pengkajian Teknologi Pertanian. Nusa Tenggara Barat James, L.G. 1993. Principles of Farm Irrigation System Desi Publishing Company. Florida. Phocaides, A. 2007. Handbook On Pressurized Irrigation Technique. Food Vol. 1, No. 1, Oktober 2012: 1 - 10 9 tanpa terpal adalah 2,86 kg dengan pemakaian air irigasi sebesar 1,15 m3. Produktifitas penggunaan air pada plot lahan berterpal adalah 1,88 kg/m3 dan produktifitas penggunaan air pada plot lahan tanpa terpal adalah 2,48 kg/m3. lakukan penelitian lanjutan dengan waktu penelitian pada waktu bulan basah untuk mengetahui besarnya potensi air hujan yang dapat dimanfaatkan dan ditampung dalam semusim penanaman. Kedalaman terpal sebaiknya lebih dari 30 cm, agar tanaman tidak mengalami pendangkalan akar yang menyebabkan produksifitas menurun. Perlunya dilakukan pengamatan pengaruh embun pada malam hari terhadap kadar air tanah. Allen, R. G., L. S. Pereira., D. Raes., dan M. Smith. 1998. Crop evapotranspiration - Guidelines for computing crop water FAO Irrigation and drainage paper 56. Food And Agriculture Organization Of The United Direktorat Jenderal Tanaman Pangan. 2005. Evaluasi Kecambah Pengujian Daya Berkecambah. Direktorat Jenderal Tanaman Pangan Direktorat Perbenihan. Depok. Erawati, T.R. 2010. Identifikasi Gejala Kekurangan Unsur Hara Pada Tanaman Jagung. Balai Pengkajian Teknologi Pertanian. Nusa Tenggara Barat James, L.G. 1993. Principles of Farm Irrigation System Design. Kreiger Publishing Company. Florida. Phocaides, A. 2007. Handbook On Pressurized Irrigation Technique. Food
  • 10. Analisis Neraca Air Tanaman.... (Muamar, Sugeng T, A. Tusi, dan B. Rosadi) 10 And Agriculture Organization Of The United Station. Rome. Suhendra. 2010. Produksi cukup, impor jagung Indonesia masih tinggi.(http://finance.detik.com/. diakses pada tanggal 20 juli 2011).