The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)

72,861 views

Published on

1. Continuous and reliable local representation of Universal Coordinated Time - UTC(EIM).

2. Contribution to Temps Atomique International (TAI).

3. Reliable and continuous distribution of reference frequencies.

4. Traceability to the international standards.
5. Broadcast of standard time and frequency signals inside and outside EIM facilities.

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
72,861
On SlideShare
0
From Embeds
0
Number of Embeds
72,118
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Πριν από λίγους μήνες το ΕΙΜ προχώρησε σε μία γενικευμένη αναβάθμιση του Εθνικού Προτύπου Χρόνου και Συχνότητας. Στην παρούσα εργασία θα αναλύσουμε τον σχεδιασμό και τις λύσεις που υιοθετήθηκαν κάνοντας κάποιες αναφορές στην καταγραφή του χρόνου σε παγκόσμιο επίπεδο.
  • Although the word “metrology” derives from the Greek language, and metrology was already developed in ancient Greece, modern metrology established in Greece only in early 30’s with Legal Metrology . Scientific metrology, which is usually represented by a National Institute of Metrology, established only in 1994, through the foundation of the Hellenic Institute of Metrology. Τ he Hellenic Metrology Institute ( ΕΙΜ ) , is the only NMI in Greece, founded by the law 2231/1994, which was approved by the National Parliament. EIM is supervised by the Ministry of Development and is a legal body ascribing to private legislation. The first building site of EIM was completed in 1996 . Actually, it was a construction of an old industrial building and was too small and most of the labs were hosted in private calibration laboratories that fulfilled the appropriate environmental conditions. T he staff recruitment started in late 1997. The infrastructure of EIM (buildings, equipment) was funded by the 2nd European Framework Program of the E.U. during the period 1994-1999. The equipment set in operation gradually since 1998 and the QS implementation started in 1999. The following year, 2000, EIM begun to offer its services to customers. In early 2001 the second, and main, building site completed but it became operational only in the end of 2002, as there were many problems, concerning especially the stabilization of the environmental conditions. Upon the completion of the second building, the installation of most of the primary stds became feasible.
  • The management structure of EIM is represented by its organogram as follows. Details of the responsibilities and the authorities of the staff are determined according to the decisions of the Management Council of EIM and described in the job descriptions and the procedures of the quality system. The laboratories are grouped in three sections as follows: Section of Mechanical Measurements including the laboratories of Mass, Force-Torque, Pressure, Flow of Liquids & Gases – Viscosity, Volume, Density. Section of Physical Measurements including the laboratories of Temperature & Humidity, Dimensional Measurements, Acoustics & Vibrations and Optics & Photometry. Section of Electrical Measurements, including the laboratories of Electrical Measurements at High Frequencies, Electrical Measurements at Low Frequencies and Time – Frequency.
  • Τοποθεσία, γενικές πληροφορίες σχετικά με ΕΙΜ;
  • Δωμάτιο description
  • Διάφορες τεχνικές προβλέψεις
  • Σκοποί – Δραστηριότητες (γενικά, αναφορά ή/και μικρή ανάλυση;)
  • Σκοποί – Δραστηριότητες (γενικά, αναφορά ή/και μικρή ανάλυση;)
  • Σκοποί – Δραστηριότητες (γενικά, αναφορά ή/και μικρή ανάλυση;)
  • Σκοποί Εθνικού προτύπου Χρόνου και Συχνότητας
  • Λογικός σχεδιασμός του συστήματος
  • Περιγραφή κύριου εξοπλισμού.
  • Περιγραφή κύριου εξοπλισμού.
  • Περιγραφή κύριου εξοπλισμού.
  • Οι NTP servers .
  • Περιγραφή κύριου εξοπλισμού.
  • Σύντομη τεχνική περιγραφή
  • Σύντομη τεχνική περιγραφή
  • Ότι λέει ο τίτλος....
  • Ότι λέει ο τίτλος....
  • (<100 ns για δύο εβδομάδες)
  • Συνεχής λειτουργία από ηλεκτρικής άποψης
  • Τμήμα ανάκτησης UTC. Το GPS βασικά.
  • Πώς επιτυγχάνεται υψηλή ακρίβεια (επιπλέον των τυπικών προδιαγραφών της συσκευής από τον κατασκευαστή).
  • Κεραία
  • Παράδειγμα θέασης συγκεκριμένου δορυφόρου
  • Οι αριθμοί είναι ο κωδικός που έχει δώσει το BIPM .
  • Υπέρ και κατά της υλοποίησης.
  • Από τα circular T οι αποκλίσεις μας από τον UTC. Φαίνεται και το μικρό hiccup που πάθαμε (μπορεί να ειπωθεί ότι η τοπική χρονική κλίμακα δεν είχε κάποια ασυνέχεια αλλά δεν μπορέσαμε να στείλουμε το αρχείο αναφοράς).
  • Η διάταξη μπορεί να δουλέψει και με ένα ρολόι λιγότερο με πτώση της απόδοσης....
  • The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM)

    1. 1. The Time and Frequency Laboratory of the Hellenic Institute of Metrology (EIM) Dr Irene Flouda Director of the Electrical Measurements Department Hellenic Institute of Metrology
    2. 2. HISTORY <ul><li>Legal Metrology in Greece was established in ear l y 30’s </li></ul><ul><li>EIM founded in 1994 (law 2231/94) as the only NMI </li></ul><ul><li>Fisrt building site completed in 1996 </li></ul><ul><li>Recruitement of staff started in late 1997 </li></ul><ul><li>Equipment set in operation gradually since 1998 </li></ul><ul><li>QS implementation started in 1999 </li></ul><ul><li>Offer of services since 2000 </li></ul><ul><li>Second building site completed in early 2001 </li></ul>
    3. 3. Management Council President and 6 Members General Director Director of Financial & Administrative Services Director of Quality Assurance & Scientific Support Director of Mechanical Measurements Dept . Director of Physical Measurements Dept. Director of Electrical Measurements Dept . Accounting Personnel Technical Support Quality Assurance Cooperation Training Mass Density Pressure Force-Torque Flow-Viscosity Volume Hardness Temperature- Humidity Dimensional Acoustics- Vibrations Optics- Photometry Low Frequency High Frequency Time & Frequency Secretariat ORGANOGRAM
    4. 4. Location <ul><li>The Time and frequency Laboratory is located at the new EIM building at Sindos, in Industrial area of Thessaloniki, GREECE. </li></ul>
    5. 5. Laboratory <ul><li>Laboratory Area: 50 m 2 </li></ul><ul><li>Environmental conditions: </li></ul><ul><ul><li>Temperature: 23 ± 0,5 o C, </li></ul></ul><ul><ul><li>Humidity: 50 ± 10% </li></ul></ul><ul><li>Shielding: 60dB@10kHz, 100dB@100kHz-35GHz </li></ul><ul><li>Power supply: Stability 1% (10% variation of main voltage), total harmonic distortion <2% </li></ul><ul><li>(TUV certified) </li></ul>
    6. 6. Laboratory <ul><li>The laboratory has an entrance with double doors (air – lock) in order to minimize the environmental variations inside the lab. </li></ul><ul><li>The floor is made of special material with antistatic properties. </li></ul><ul><li>Environmental conditions are monitored continuously. </li></ul>
    7. 7. Scope– Activities <ul><li>Realization and dissemination of units. </li></ul><ul><li>Maintain Local Time Scale UTC(EIM). </li></ul><ul><li>Maintain frequency reference signals for use in various activities of the institute. </li></ul><ul><li>Traceability to International Standards. </li></ul><ul><li>Calibrations of various instruments in the field. </li></ul><ul><ul><li>Chronometers </li></ul></ul><ul><ul><li>Frequency Counters </li></ul></ul><ul><ul><li>Cables, signal delays </li></ul></ul><ul><ul><li>Frequency standards </li></ul></ul><ul><ul><li>Vehicle speed measuring systems </li></ul></ul>
    8. 8. Scope– Activities <ul><li>Services of metrological support (training, consulting) </li></ul><ul><li>Measurements for type approval of measuring devices </li></ul><ul><li>Cooperation with other quality organizations </li></ul><ul><li>International cooperation (EURAMET) </li></ul><ul><li>Promotion of metrology (publications, presentations, cooperation with Universities) </li></ul>
    9. 9. Quality System <ul><li>The Lab procedures are covered by the QS </li></ul><ul><li>Intercomparisons: </li></ul><ul><ul><li>EUROMET TF.TI-K1 “Comparison of time interval measurement” </li></ul></ul><ul><li>CMC’s: They will be submitted in 2008 </li></ul>
    10. 10. National Standard for Time and Frequency <ul><li>Continuous and reliable local representation of Universal Coordinated Time - UTC (EIM). </li></ul><ul><li>Contribution to Temps Atomique International (TAI) . </li></ul><ul><li>Reliable and continuous distribution of reference frequencies. </li></ul><ul><li>Traceability to the international standards. </li></ul><ul><li>Broadcast of standard time and frequency signals inside and outside EIM facilities. </li></ul>
    11. 11. System Configuration and Operation <ul><li>System architecture: </li></ul><ul><ul><li>Atomic Standards </li></ul></ul><ul><ul><li>Time Recovery </li></ul></ul><ul><ul><li>Clock Measurement </li></ul></ul><ul><ul><li>Signal Distribution </li></ul></ul><ul><ul><li>Time dissemination </li></ul></ul>
    12. 12. Basic Equipment <ul><li>1. Atomic Standards : </li></ul><ul><ul><li>4 HP 5071A Opt.001 Atomic Frequency Standards. </li></ul></ul><ul><ul><ul><li>Widely spread commercially available atomic frequency standard. </li></ul></ul></ul><ul><ul><ul><li>Very Good stability in laboratory environment, can withstand small variations in temperature </li></ul></ul></ul><ul><ul><ul><li>Controlled by a computer (serial port ) </li></ul></ul></ul><ul><ul><li>Three 5071A are incorporated in the UTC reference system. </li></ul></ul><ul><ul><li>One for backup reasons. </li></ul></ul>
    13. 13. Basic Equipment <ul><li>2. UTC Recovery System </li></ul><ul><ul><li>TSC 2214 multichannel CV all in view receiver + Antenna </li></ul></ul><ul><ul><li>electronics etc </li></ul></ul><ul><li>3. Clock Measurement </li></ul><ul><ul><li>Continuous Measurement of the Atomic Standards Phase </li></ul></ul><ul><ul><li>Measurement of CS1-UTC difference which is fed to the steering algorithm. </li></ul></ul><ul><ul><li>Measurement of the CS1-CS2 and CS1-CS3 difference for Clock Report </li></ul></ul>
    14. 14. Basic Equipment <ul><li>4. Signal Distribution </li></ul><ul><ul><li>1 PPS, 5 MHz </li></ul></ul><ul><ul><li>Distribution Amplifier: 100 kHz, 1 MHz, 10 MHz </li></ul></ul><ul><li>5. Time dissemination </li></ul><ul><ul><li>Symmetricom S250 NTP server (ready to be activated as time.eim.gr ). </li></ul></ul><ul><ul><li>NTP server “homemade” ( ntp.eim.gr ). </li></ul></ul>
    15. 15. Time Dissemination <ul><li>NTP server “homemade” (ntp.eim.gr). </li></ul><ul><ul><li>PC running UNIX serves as ntp.eim.gr NTP server. </li></ul></ul><ul><ul><li>Synchronization with the UTC Reference System </li></ul></ul><ul><ul><li>Between synchronizations the server uses the 5071A which is steered to the UTC. </li></ul></ul><ul><li>Symmetricom S250 NTP server </li></ul><ul><ul><li>High reliability, can handle more traffic. </li></ul></ul><ul><ul><li>Same principle of operation. </li></ul></ul><ul><ul><li>Includes GPS receiver as a backup in case of system failure. </li></ul></ul><ul><li>Both systems are classified as Stratum Level 1 Servers. </li></ul>
    16. 16. Auxiliary Equipment <ul><li>3S Navigation GNSS-300T GPS/GLONASS receiver. </li></ul><ul><li>Absolute Time 100A GPS Clock receiver . </li></ul><ul><li>HP 58503B Multichannel GPS receiver </li></ul><ul><ul><li>Auxiliary reference equipment </li></ul></ul><ul><ul><li>Used for reference or other various tasks. </li></ul></ul><ul><li>FLUKE PM6681R Frequency & Time Interval Counter </li></ul><ul><li>Agilent 33250A Function Generator </li></ul><ul><li>LIDAR calibration equipment </li></ul>
    17. 19. Simplified Ensemble Description
    18. 20. Simplified Ensemble Description
    19. 21. Operation <ul><li>One Atomic Standard is periodically steered to UTC while the other two are free running . </li></ul><ul><li>Between successful steerings for the local time scale all standards are used for better statistics. </li></ul><ul><li>In case of GPS failure local time scaled will be sufficient for several days, provided all three Atomic Standards are operating. </li></ul><ul><li>In case of full system failure the local time scale will be based on one atomic standard. </li></ul>
    20. 22. Non interrupting operation <ul><li>First Level: Mains Electrical Protection. The EIM’s facilities’ electrical supply includes protection from over-voltage events and generators automatically engaged in case of power failure in the area (UPS) . </li></ul><ul><li>Second Level: The system includes UPS capable of keeping the system “alive” for a few hours. </li></ul><ul><li>Third Level: The 5071A Atomic Standards include batteries that can keep them continuously operating for a few more hours. </li></ul><ul><li>The non – stopping operation of the apparatus is very important for the continuity of the time scale. </li></ul>
    21. 23. Time Recovery Segment <ul><li>Responsible for </li></ul><ul><ul><li>a) retrieving UTC time from GPS </li></ul></ul><ul><ul><li>b) generating a core set of signals steered to UTC (1 PPS, 1 MHz, 5 MHz, 10 MHz, NTP time). </li></ul></ul><ul><li>The CV GPS receiver has been calibrated at NIST. </li></ul><ul><li>Under normal operating conditions and provided that no chances are made at the configuration (cable, antenna etc.) the recovery of UTC is within 10 ns RMS. </li></ul>
    22. 24. Antenna Position <ul><li>The GPS antenna is at a fixed position, not far away from the lab (cable as short as possible) with a clear sky view. </li></ul><ul><li>It includes a protective lightning arrestor. </li></ul><ul><li>The whole signal cathode (antenna, cable, arrestor, connectors) was carefully calibrated at NIST. The signal delay was measured at 678.9 ns with 0.1 ns uncertainty. The system is adjusted for this value. </li></ul><ul><li>On Site: A four hour survey with a C/A – P code GPS was performed. The results were analyzed in accordance to the SOPAC database ( http://sopac.ucsd.edu/ ) </li></ul>
    23. 25. Antenna Position <ul><li>The antenna coordinates as determined: </li></ul><ul><li>SOPAC Automatic Analysis Solution Report Job number: 68923 </li></ul><ul><li>M ulti-station analysis using MATE NOT1 LAMP, resulted in the following mean coordinates, valid on reference epoch 2006.9493 (2006 347): </li></ul><ul><li>Site Latitude (d) Longitude (d) Height (m) </li></ul><ul><li>Stdev. (m) Stdev. (m) Stdev. (m) </li></ul><ul><li>NIM3 40.68878635 22.79971642 53.2909 WGS84 </li></ul><ul><li>0.0119 0.0131 0.0391 </li></ul><ul><li>X (m) Y (m) Z (m) </li></ul><ul><li>Stdev. (m) Stdev. (m) Stdev. (m) </li></ul><ul><li>NIM3 4464808.4700 1876806.6594 4136313.3107 ITRF2000 </li></ul><ul><li>0.0157 0.0292 0.0272 </li></ul>
    24. 26. GPS observations <ul><li>GPS satellite #1 as tracked from the GPS receiver in August 2007 , initial data REFSV ( left ) and REFGPS (right). Units are 0,1 ns. </li></ul>
    25. 27. TAI contribution <ul><li>The controller records the difference of the free running standards with respect to the first one and produces the clock file for the BIPM. </li></ul>1431 0716
    26. 28. Advantages – Disadvantages <ul><li>High degree of electronic integration </li></ul><ul><ul><li>Makes life easier and prevents from human mistakes. </li></ul></ul><ul><ul><li>Provides monitoring tools for checking the data flow. </li></ul></ul><ul><li>High efficiency </li></ul><ul><ul><li>The overall performance of the system as well as the performance in specific sectors. </li></ul></ul><ul><li>High reliability </li></ul><ul><ul><li>The local time scale is maintained continuously and the deliverance of stable reference signals is reliable. </li></ul></ul><ul><li>Computers sometimes fail… </li></ul><ul><ul><li>System may need restarting and this can move abruptly the local time scale. </li></ul></ul>
    27. 29. UTC-UTC(EIM)
    28. 30. Local Time Scale UTC(EIM)

    ×