SlideShare a Scribd company logo
1 of 80
Download to read offline
The role of molecular structure and
conformation in polymer opto-electronics
Charge separation: Molecular structure
Enrico Da Como
Conjugated polymers
polythiophene
Conjugated polymers
polythiophene
Bottom – up design for electronics
Optical, electrical & ordering properties arise at the molecular scale
Structure-function relationships
Polymer solar cells: transport, recombination & efficiency
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
-12
-8
-4
0
4
8
Currentdensity(mA/cm
2
)
Voltage (V)
Solar cells
1. Absorption of light and photogeneration of excitons
Mott-Wannier
~ 0.1 eV
Large radius
Charge transfer excitons
~ 0.1 – 1.0 eV
Localised between molecules
Frenkel excitons
~ 0.5 – 1.0 eV
Localised on molecule
Solar cells
E
e
-
e
-
e
-
h
+
h
+
h
+
h
+
h
+ DriftDiffusion
e
-
e
-
eV
Built-in Potential
pn junction, heterojunction
2. Exciton dissociation & 3. Transport of charge
Solar cells
2. Exciton dissociation & 3. Transport of charge
Donor-Acceptor system
S
-
+
G. Yu, … A. J. Heeger, Science 207, 1789 (1995)
Y. Yang & Solarmer Nature Photonics 3, 649 (2009)
Polymer/fullerene photovoltaics
> 8% efficiency on lab cells
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Polymer/fullerene photovoltaics
Polymer/fullerene photovoltaics
Polymer/fullerene photovoltaics
Polymer/fullerene photovoltaics
The race for 10 %
Konarka's Power Plastic
Achieves World Record 8.3%
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Physics on different length scales
Efficiency
Layers & interfaces
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Mesoscopic scale
bulk heterojunction
Physics on different length scales
Charge transport
Morphology & molecular ordering
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Molecular scale
Donor-Acceptor
Mesoscopic scale
bulk heterojunction
Physics on different length scales
Exciton generation & dissociation
molecular ordering & mobility
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Molecular scale
Donor-Acceptor
Charge transport
Charge separation
Physics on different length scales
Mesoscopic scale
bulk heterojunction
Exciton generation & dissociation
molecular ordering & mobility
Photovoltaic action: competing mechanisms?
Energy
Charge separation
absorption
Polymer Fullerene
HOMO
HOMO
LUMO
LUMO
Energy
Charge separation
absorption
Large donor-acceptor interface
Polymer Fullerene
morphology & mobility
HOMO
LUMO
HOMO
LUMO
Photovoltaic action: competing mechanisms?
Efficiency  = JscVocFF
Pin
Polmyer solar cell: device parameters
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75
-12
-8
-4
0
4
8
Currentdensity(mA/cm
2
)
Voltage (V)
= 2.9 %
P3HT:PCBM
Short circuit current Jsc
light absorption
transport
Fill factor FF
charge collection
Open circuit voltage Voc
HOMO-LUMO offset
Charge transfer @ polymer:fullerene interface
structure
conformation
ordering
Donor-acceptor distance
Excitons in polymers
Frenkel exciton (~ 0.5 eV – 1 eV)
Intra (inter) chain excitation
Lifetime ~ns, diffusion length ~ 10 – 20 nm
Polymer structure, conformation & excitons
Excitons in polymers
Frenkel exciton (~ 0.5 eV – 1 eV)
Inter or intrachain excitation
Lifetime ~ns, diffusion length ~ 10 – 20 nm
Chemical structure, excitons, long range ordering
Excitons in polymers
Energy
HOMO
LUMO
Energy
S0
S1
S2
T1
absorption
Excitons in Polymer:fullerene systems
Charge transfer exciton
Coulomb bound electron-hole pair @
the donor-acceptor interface
Excitons in Polymer:fullerene systems
Polymer Fullerene
HOMO
HOMO
LUMO
LUMO
Energy
S0
S1
S2
T1
CTE?
Excitons in Polymer:fullerene systems
Polymer Fullerene
HOMO
HOMO
LUMO
LUMO
Energy
S0
S1
S2
T1
CTE?
Where is the CTE energetically?
What role does it play in charge transfer/recombination?
CTE vs molecular structure, conformation and ordering?
Excitons in Polymer:fullerene systems
Why do CTEs dissociate?
Field dependence
Only 60 % of CTEs dissociate in polymer fullerene solar cells at room temperature
V. Mihailetchi, L. Koster, J. Hummelen, P. Blom, Phys. Rev. Lett. 93, 216601 (2004)
Excitons in Polymer:fullerene systems
Are CTEs a necessary step for charge separation?
Voc limited by CTE
Polymer Fullerene
HOMO
LUMO
LUMO
Excitons in Polymer:fullerene systems
Are CTEs a necessary step for charge separation?
Polymer Fullerene
HOMO
LUMO
LUMO
Veldman et al., JACS 2008
Change molecular ordering, interface states
Excitons in Polymer:fullerene systems
Mixed amorphous & crystalline polymer regions enhance charge separation
Higher charge separation efficiency with engineered heterojunctions
Bulk properties influence CTE dissociation
Charge transfer @ polymer:fullerene interface
Acceptor concentration
Energy(eV)
-6.1
-5.4
-3.2
-4.2
HOMO
LUMO
HOMO
LUMO
MDMO-PPV/PCBM
0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.0
0.4
0.8
1.2 PCBM
PL(a.u.)
0.0
0.4
0.8
1.2 MDMO-PPV pristine
PL(a.u.)
Probing recombination with PL spectroscopy
Energy (eV)
Adv. Funct. Mater. 19, 3662 (2009)
Energy(eV)
-6.1
-5.4
-3.2
-4.2
HOMO
LUMO
HOMO
LUMO
MDMO-PPV/PCBM 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.0
0.4
0.8
1.2 MDMO-PPV/PCBM blend
PL(a.u.)
0.0
0.4
0.8
1.2 PCBM pristine
PL(a.u.)
0.0
0.4
0.8
1.2 MDMO-PPV pristine
PL(a.u.)
CTE
Energy (eV)
Probing recombination with PL spectroscopy
Adv. Funct. Mater. 19, 3662 (2009)
0.8 1.2 1.6 2.0
0
1x10
5
2x10
5
3x10
5
4x10
5
PL(a.u.)
Energy (eV)
0.8 1.2 1.6 2.0
Energy (eV)
80 wt % PCBM60 wt % PCBM
0.8 1.2 1.6 2.0
Energy (eV)
20 wt % PCBM
Vary the donor-acceptor interface
Adv. Funct. Mater. 19, 3662 (2009)
0.8 1.2 1.6 2.0
0
1x10
5
2x10
5
3x10
5
4x10
5
PL(a.u.)
Energy (eV)
0.8 1.2 1.6 2.0
Energy (eV)
80 wt % PCBM60 wt % PCBM
0.8 1.2 1.6 2.0
Energy (eV)
20 wt % PCBM
Vary the donor-acceptor interface
Adv. Funct. Mater. 19, 3662 (2009)
CTE dissociation depends on acceptor concentration
Increased probability of exciton dissociation
Arkhipov et al., Appl. Phys. Lett. 2003 82, 4605.
Charge transfer @ polymer:fullerene interface
Donor/Acceptor structure
The role of the fullerene acceptor
Energy(eV)
HOMO
LUMO
HOMO
LUMO
Donor/acceptor
PCBM
bis-PCBM
DPM
MDMO-PPV
VOC
Appl. Phys. Lett . 97 023301 (2010)
CTE recombination
Appl. Phys. Lett . 97 023301 (2010)
Anti-Correlation of PLCTE intensity and JSC
0 20 40 60 80 100 120 140 160 180 200
0.0
0.2
0.4
0.6
0.8
1.0
1.2
PLCTE
(arb.u.)
JSC
µA/cm
2
Appl. Phys. Lett . 97 023301 (2010)
Anticorrelation Jsc and CTE
Morphology and transport
bis-PCBM PCBM
me=2 10-4 cm2/Vs me=8 10-3 cm2/Vsme= 1 10-3cm2/Vs
Appl. Phys. Lett . 97 023301 (2010)
Long range ordering? Transport?
Changing morphology with chain regioregularity
Regiorandom P3HT Regioregular P3HT
Amorphous vs. Polycrystalline
Adv. Funct. Mater. 19, 3662 (2009)
1.0 1.5 2.0
ra-P3HT
PCBM
Energy (eV)
X10
RE-P3HT
RE-P3HT/PCBM
Changing morphology with chain regioregularity
100 nm
= 2.1%
PLIntensity
PLIntensity
= 0.9%
1.0 1.5 2.0
ra-P3HT
ra-P3HT/PCBM
Energy (eV) EnergyEnergy
100 nm
Regiorandom P3HT Regioregular P3HT
What is the role of donor-acceptor distance?
Model system: „low band gap“ polymers
PCPDT-BT
M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003)
N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007)
Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,
Macromolecules 40, 1981 (2007).
„Low bandgap“ co-polymers for better light absorption
dithiophene
benzodiathiazole
LUMO
HOMO
Increasing solar cell efficiency
PCPDT-BT
M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003)
N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007)
Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec,
Macromolecules 40, 1981 (2007).
„Low bandgap“ co-polymers for better light absorption
dithiophene
benzodiathiazole
Low-bandgap copolymers
500 1000 1500 2000
Absorption(arb.units)
Wavelength (nm)
800 nm
PCPDT-2TBT
PCPDT-BDT
PCPDT-2TTP
PCPDT-BT
800 nm
660 nm
800 nm
Low-bandgap copolymers
Tautz et al submitted
Stronger vs weaker acceptor
Shifting the donor-acceptor centre of mass
IR Absorption
HOMO -1
LUMO +1
Measuring IR absorption of chemically
induced polarons
HOMO
LUMO
e-
P1
Where are the polarons?
-0.1
0.0
0.1
500 1000 1500 2000 2500 3000 3500
-0.1
0.0
0.1
-0.1
0.0
0.1 P1
ChemicallyinducedOD(arb.u.)
GB
P1
GB
Probe
Wavelength [nm]
Probe
P2
P1
GB
Ex
Ex P2
GB
P1
P2
-5
0
5
0
5
-10
0
10
-0.1
0.0
0.1
-5
0
5
P2
Probe
P2
IR Absorption
HOMO -1
LUMO +1
Measuring IR absorption of chemically
induced polarons
HOMO
LUMO
e-
P1
Where are the polarons?
-0.1
0.0
0.1
500 1000 1500 2000 2500 3000 3500
-0.1
0.0
0.1
-0.1
0.0
0.1 P1
ChemicallyinducedOD(arb.u.)
GB
P1
GB
Wavelength [nm]
P2
P1
GB
P2
GB
P1
P2
-0.1
0.0
0.1
P2
IR Absorption
HOMO -1
LUMO +1
Measuring IR absorption of chemically
induced polarons
HOMO
LUMO
e-
P1
Where are the polarons?
-0.1
0.0
0.1
500 1000 1500 2000 2500 3000 3500
-0.1
0.0
0.1
-0.1
0.0
0.1 P1
ChemicallyinducedOD(arb.u.)
GB
P1
GB
Probe
Probe
Wavelength [nm]
Probe
Ex P2
P1
GB
Ex
Ex P2
GB
P1
P2
-5
0
5
0
5
-10
0
10
Opticallyinduced(10
-4
)
-0.1
0.0
0.1
-5
0
5
P2
Probe
Polaron formation in realtime
10
20
30
10
20
10
20
Time delay (fs)
PCPDT-BT
Polaronpairyield(%)
P3HT
PCPDT-BDT
PCPDT-2TBT
PCPDT-2TTP
IRF
-1000 -750 -500 -250 0 250 500 750
0
10
20
10
20
D A
D A
D A
D A
UU U U
-
 = 15.9%
 = 21.4%
 = 13.9%
 = 7.9%
 = 23.6%
Polaron formation in realtime
10
20
30
10
20
10
20
Time delay (fs)
PCPDT-BT
Polaronpairyield(%)
P3HT
PCPDT-BDT
PCPDT-2TBT
PCPDT-2TTP
IRF
-1000 -750 -500 -250 0 250 500 750
0
10
20
10
20
D A
D A
D A
D A
UU U U
-
 = 15.9%
 = 21.4%
 = 13.9%
 = 7.9%
 = 23.6%
Polaron formation in realtime
10
20
30
10
20
10
20
Time delay (fs)
PCPDT-BT
Polaronpairyield(%)
P3HT
PCPDT-BDT
PCPDT-2TBT
PCPDT-2TTP
IRF
-1000 -750 -500 -250 0 250 500 750
0
10
20
10
20
D A
D A
D A
D A
UU U U
-
 = 15.9%
 = 21.4%
 = 13.9%
 = 7.9%
 = 23.6%
Acceptor strength only slightly influencing efficiency
Important role of spatial separation
Charge transfer @ polymer:fullerene interface
structure
conformation
ordering
Donor-acceptor distance
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Mesoscopic scale
bulk heterojunction
Physics on different length scales
Charge transport
Morphology & molecular ordering
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Molecular scale
Donor-Acceptor
Mesoscopic scale
bulk heterojunction
Physics on different length scales
Exciton generation & dissociation
molecular ordering & mobility
How to improve efficiency at every length scale?
Conformation & structure
Long range ordering
Charge transfer
Adv. Funct. Mater. 19, 3662 (2009)
1.0 1.5 2.0
ra-P3HT
PCBM
Energy (eV)
X10
RE-P3HT
RE-P3HT/PCBM
Changing morphology with chain regioregularity
100 nm
= 2.1%
PLIntensity
PLIntensity
= 0.9%
1.0 1.5 2.0
ra-P3HT
ra-P3HT/PCBM
Energy (eV) EnergyEnergy
100 nm
Regiorandom P3HT Regioregular P3HT
100 nm
The effect of long range ordering
AnnealedNot Annealed
= 2.1% = 4.0%
100 nm
AnnealedNot Annealed
= 2.1% = 4.0%
1.0 1.5 2.0
PLintensity
X10
RE-P3HT/PCBM
RE-P3HT/PCBM
(annealed)
Energy (eV)Adv. Funct. Mater. 19, 3662 (2009)
The effect of long range ordering
100 nm
AnnealedNot Annealed
= 2.1% = 4.0%
Adv. Funct. Mater. 19, 3662 (2009) J. App. Phys.100, 043702 (2006)
Ambipolar transportUnipolar (hole) transport
The effect of long range ordering
How to induce long range ordering?
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Conformation & structure
Long range ordering
Doping
Charge transfer
Increase mobility without changing morphology?
Increasing mobility by molecular doping
P doping by electron transfer in the
ground state
F4TCNQ
Yim et al., Adv Mater, 2008, 20
Zhang et al., Phys Rev B, 2010, 81
Zhang et al., Adv Func Mater, 2009, 19
Increasing mobility by molecular doping
P doping by electron transfer in the
ground state
PCPDTBT:PCBM
F4TCNQ
SPP1355
Fill tail states with excess
charge carriers
Increase Mobility
+
Energy(eV)
Disordered film
Increasing mobility by molecular doping
g(E)
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Charge transport
Charge separation
Improvement in charge separation, mobility, efficiency
Photocurrent & Efficiency?
0.9 1.0 1.1 1.2 1.3 1.4
PCBM
PCPDTBT
1.0 1.2 1.4 1.6 1.8
PLintensity(arb.units)
Energy (eV)
PCPDTBT/PCBM
Energy (eV)
PLintensity(arb.units)
Doping & Charge separation
+
-
0.9 1.0 1.1 1.2 1.3 1.4
PCBM
PCPDTBT
1.0 1.2 1.4 1.6 1.8
PLintensity(arb.units)
Energy (eV)
PCPDTBT/PCBM
Energy (eV)
PLintensity(arb.units)
+
-
0%
1%
3%
4%
Doping & CTE recombination
0 200 400 600 800
Time (ps)
0%
2%
4%
5%
Norm.PLintensity Doping & CTE recombination
0 100 200 300
0%
2%
4%
5%
PLintensity(arb.units)
Time (ps)
Lower density of CTE or very fast dissociation with doping?
Doping & CTE recombination
Doping & Polaron formation
Janssen et al.
Adv. Mater
(2010)
-T/Tx104
0 50 100 150 200 250 300
0
2
Time delay (ps)
-T/T(x10
-3
)
0%
EProbe
Doping & Polaron formation
Janssen et al.
Adv. Mater
(2010)
-T/Tx104
0
2
0 50 100 150 200 250 300
0
2
2%
-T/T(x10
-3
)
0%
Time delay (ps)
EProbe
Doping & Polaron formation
Janssen et al.
Adv. Mater
(2010)
-T/Tx104
0
2
0
2
0 50 100 150 200 250 300
0
2
4%
2%
-T/T(x10
-3
)
0%
Time delay (ps)
EProbe
Doping & Polaron formation
Janssen et al.
Adv. Mater
(2010)
-T/Tx104
0
2
0
2
0
2
0 50 100 150 200 250 300
0
2
5%
4%
2%
-T/T(x10
-3
)
0%
Time delay (ps)
EProbe
PCPDTBT PCBM
Energy
tCT-r
tCT-ftFR-r
tP-f
tP-r
0 100 200 300
0%
2%
4%
5%
PLintensity(arb.units)
Time (ps)
Time Delay (ps)
0
2
0.0
1.6
0
2
0.0
1.6
0
2
0.0
1.6
0
2
0.0
1.6
0 50 100 150 200 250 300
Polarondensity(x10
17
/cm
3
)
0%
-T/T(x10
-4
)
2%
4%
5%
Rate equation model
PCPDTBT PCBM
Energy
tCT-r
tCT-ftFR-r
tP-f
tP-r
0 100 200 300
0%
2%
4%
5%
PLintensity(arb.units)
Time (ps)
Time Delay (ps)
0
2
0.0
1.6
0
2
0.0
1.6
0
2
0.0
1.6
0
2
0.0
1.6
0 50 100 150 200 250 300
Polarondensity(x10
17
/cm
3
)
0%
-T/T(x10
-4
)
2%
4%
5%
Doping
[%] tFR-r tCT-f tP-f tCT-r tP-r
[ps] [ps] [ps] [ps] [ps]
0 125 0.2 0.2 300 1400
2 125 0.5 0.2 300 1000
4 125 0.95 0.2 300 400
5 0.15 0.95 0.2 250 300
Rate equation model
Decrease in CTE emission and larger
density of polarons with doping
Conclusion: doping helps!
Phys. Rev. Lett. 107, 127402 (2011)
Substrate
Anode
Transport layer
Active layer: Polymer/fullerene
Metal contact
Charge transport
Charge separation
Improvement in charge separation, mobility, efficiency
Efficiency?
09.03.2015 Präsentationstitel 80
Thank you for your attention

More Related Content

What's hot

Solar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleSolar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleJeffrey Funk
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2Santanu Paria
 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevicesAtif Syed
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cellssaromemarzadeh
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiationkrishslide
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cellsAshish Singh
 
Organic Light Emitting Diods
Organic Light Emitting DiodsOrganic Light Emitting Diods
Organic Light Emitting Diodsbapu thorat
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyvvgk-thalluri
 
Ultra high efficiency solar cell
Ultra high efficiency solar cellUltra high efficiency solar cell
Ultra high efficiency solar cellRemy Lumin
 
Perovskite solar cells the birth of new era in photovoltaics.
Perovskite solar cells  the birth of new era in photovoltaics.Perovskite solar cells  the birth of new era in photovoltaics.
Perovskite solar cells the birth of new era in photovoltaics.Krishna Patel
 
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...Daniel Bulhosa Solórzano
 
Characteristics of Perovskite Solar Cells
Characteristics of Perovskite Solar CellsCharacteristics of Perovskite Solar Cells
Characteristics of Perovskite Solar CellsMariana Amorim Fraga
 
Perovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar TechnologyPerovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar TechnologyReid Barton
 

What's hot (20)

Poster
PosterPoster
Poster
 
Lecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaouiLecture Conference Ourzazate ennaoui
Lecture Conference Ourzazate ennaoui
 
Solar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleSolar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasible
 
Semiconductor part-2
Semiconductor part-2Semiconductor part-2
Semiconductor part-2
 
Ntc 2-new-cnt-43
Ntc 2-new-cnt-43Ntc 2-new-cnt-43
Ntc 2-new-cnt-43
 
Semiconductor nanodevices
Semiconductor nanodevicesSemiconductor nanodevices
Semiconductor nanodevices
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Swift Heavy Ion Irradiation
Swift Heavy Ion IrradiationSwift Heavy Ion Irradiation
Swift Heavy Ion Irradiation
 
Dye sensitized solar cells
Dye sensitized solar cellsDye sensitized solar cells
Dye sensitized solar cells
 
Organic Light Emitting Diods
Organic Light Emitting DiodsOrganic Light Emitting Diods
Organic Light Emitting Diods
 
Organic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphologyOrganic solar cells the exciting interplay of excitons and nano-morphology
Organic solar cells the exciting interplay of excitons and nano-morphology
 
Ultra high efficiency solar cell
Ultra high efficiency solar cellUltra high efficiency solar cell
Ultra high efficiency solar cell
 
Radioactivity
RadioactivityRadioactivity
Radioactivity
 
Workshop problems solving
Workshop problems solvingWorkshop problems solving
Workshop problems solving
 
Perovskite solar cells the birth of new era in photovoltaics.
Perovskite solar cells  the birth of new era in photovoltaics.Perovskite solar cells  the birth of new era in photovoltaics.
Perovskite solar cells the birth of new era in photovoltaics.
 
Seminar
SeminarSeminar
Seminar
 
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
Scattering of Electrons in a Gas (The Franck-Hertz Experiment and the Ionizat...
 
Characteristics of Perovskite Solar Cells
Characteristics of Perovskite Solar CellsCharacteristics of Perovskite Solar Cells
Characteristics of Perovskite Solar Cells
 
Perovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar TechnologyPerovskite Crystals: A Bright Future in Solar Technology
Perovskite Crystals: A Bright Future in Solar Technology
 
Lecture 21
Lecture 21Lecture 21
Lecture 21
 

Viewers also liked

Fundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar CellsFundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar Cellsdisorderedmatter
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cellsdisorderedmatter
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsTuong Do
 
Study of charge transport mechanism in organic and organicinorganic hybrid sy...
Study of charge transport mechanism in organic and organicinorganic hybrid sy...Study of charge transport mechanism in organic and organicinorganic hybrid sy...
Study of charge transport mechanism in organic and organicinorganic hybrid sy...Tauqueer Khan
 
MAster's Thesis presentation
MAster's Thesis presentationMAster's Thesis presentation
MAster's Thesis presentationNazanin Karimi
 
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSIMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSArjun K Gopi
 
Organic Semiconductor Technology
Organic Semiconductor TechnologyOrganic Semiconductor Technology
Organic Semiconductor Technologysamiseecs
 
Polymeric materials for organic solar cells
Polymeric materials for organic solar cellsPolymeric materials for organic solar cells
Polymeric materials for organic solar cellsNeslihan Yagmur
 
Properties of polymer concrete samy
Properties of polymer concrete    samyProperties of polymer concrete    samy
Properties of polymer concrete samymuppudathimuthu
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar CellAbhas Dash
 
organic solar cell
organic solar cellorganic solar cell
organic solar cellRahul Bibave
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cellAnish Das
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryDawn John Mullassery
 
Fabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar CellFabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar CellFarzane Senobari
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cellsAkinola Oyedele
 

Viewers also liked (20)

Fundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar CellsFundamental Processes in 
 Organic and Hybrid Solar Cells
Fundamental Processes in 
 Organic and Hybrid Solar Cells
 
Loss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar CellsLoss mechanisms in Polymer-Fullerene Solar Cells
Loss mechanisms in Polymer-Fullerene Solar Cells
 
Solar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic PhotovoltaicsSolar Cells Lecture 5: Organic Photovoltaics
Solar Cells Lecture 5: Organic Photovoltaics
 
Study of charge transport mechanism in organic and organicinorganic hybrid sy...
Study of charge transport mechanism in organic and organicinorganic hybrid sy...Study of charge transport mechanism in organic and organicinorganic hybrid sy...
Study of charge transport mechanism in organic and organicinorganic hybrid sy...
 
Rubber mind map
Rubber mind mapRubber mind map
Rubber mind map
 
MAster's Thesis presentation
MAster's Thesis presentationMAster's Thesis presentation
MAster's Thesis presentation
 
Biopolymers
BiopolymersBiopolymers
Biopolymers
 
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERSIMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
IMPORTANCE AND APPLICATIONS OF BIOPOLYMERS
 
Organic Semiconductor Technology
Organic Semiconductor TechnologyOrganic Semiconductor Technology
Organic Semiconductor Technology
 
Polymeric materials for organic solar cells
Polymeric materials for organic solar cellsPolymeric materials for organic solar cells
Polymeric materials for organic solar cells
 
Properties of polymer concrete samy
Properties of polymer concrete    samyProperties of polymer concrete    samy
Properties of polymer concrete samy
 
Organic Solar Cell
Organic Solar CellOrganic Solar Cell
Organic Solar Cell
 
organic solar cell
organic solar cellorganic solar cell
organic solar cell
 
Organic solar cell
Organic solar cellOrganic solar cell
Organic solar cell
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John Mullassery
 
Fabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar CellFabrication of Organic bulk Heterojunction Solar Cell
Fabrication of Organic bulk Heterojunction Solar Cell
 
Organic Solar Cells
Organic Solar CellsOrganic Solar Cells
Organic Solar Cells
 
Developments in organic solar cells
Developments in organic solar cellsDevelopments in organic solar cells
Developments in organic solar cells
 
Polymer
PolymerPolymer
Polymer
 
Polymer
PolymerPolymer
Polymer
 

Similar to Molecular structure impacts polymer opto-electronics

Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsbisquertGroup
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusMonika Singh
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofulescdtpv
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyRawat DA Greatt
 
EP MEMS 2009 Presentation
EP MEMS 2009 PresentationEP MEMS 2009 Presentation
EP MEMS 2009 Presentationfabianbeltran
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging@Saudi_nmc
 
Nuclear micro battery
Nuclear micro batteryNuclear micro battery
Nuclear micro batteryVishnu M T
 
Compton effect and pair production
Compton effect and pair productionCompton effect and pair production
Compton effect and pair productionPramod Tike
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devicesZaahir Salam
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)BISWAJIT KUMAR BARMAN
 
Electronicdevicescircuits 140517065905-phpapp01
Electronicdevicescircuits 140517065905-phpapp01Electronicdevicescircuits 140517065905-phpapp01
Electronicdevicescircuits 140517065905-phpapp01lecturer in M.I.T
 
seema interaction of rad & matter1.ppt
seema interaction of rad & matter1.pptseema interaction of rad & matter1.ppt
seema interaction of rad & matter1.pptVivek Ghosh
 

Similar to Molecular structure impacts polymer opto-electronics (20)

Models for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy resultsModels for organic solar cell and impedance spectroscopy results
Models for organic solar cell and impedance spectroscopy results
 
2014 gelinas
2014 gelinas2014 gelinas
2014 gelinas
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, BiofulesLectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
Lectures 7-8: Charge and Energy Transfer, Photosynthesis, Biofules
 
Visible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopyVisible and ultraviolet spectroscopy
Visible and ultraviolet spectroscopy
 
EP MEMS 2009 Presentation
EP MEMS 2009 PresentationEP MEMS 2009 Presentation
EP MEMS 2009 Presentation
 
Abs. Spectro.ppt
Abs. Spectro.pptAbs. Spectro.ppt
Abs. Spectro.ppt
 
Basics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imagingBasics of SPECT, PET and PET/CT imaging
Basics of SPECT, PET and PET/CT imaging
 
Serena barbanotti INFN milano
Serena barbanotti INFN milanoSerena barbanotti INFN milano
Serena barbanotti INFN milano
 
Nuclear micro battery
Nuclear micro batteryNuclear micro battery
Nuclear micro battery
 
Compton effect and pair production
Compton effect and pair productionCompton effect and pair production
Compton effect and pair production
 
Self assembly in photovoltaic devices
Self assembly in photovoltaic devicesSelf assembly in photovoltaic devices
Self assembly in photovoltaic devices
 
Ch13.ppt
Ch13.pptCh13.ppt
Ch13.ppt
 
Mass spectroscopy
Mass spectroscopyMass spectroscopy
Mass spectroscopy
 
PET Cyclotron
PET Cyclotron PET Cyclotron
PET Cyclotron
 
Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)Thermally Activated Delayed Fluorescence (TADF)
Thermally Activated Delayed Fluorescence (TADF)
 
Electronicdevicescircuits 140517065905-phpapp01
Electronicdevicescircuits 140517065905-phpapp01Electronicdevicescircuits 140517065905-phpapp01
Electronicdevicescircuits 140517065905-phpapp01
 
NMR 7..pptx
NMR 7..pptxNMR 7..pptx
NMR 7..pptx
 
seema interaction of rad & matter1.ppt
seema interaction of rad & matter1.pptseema interaction of rad & matter1.ppt
seema interaction of rad & matter1.ppt
 
Modeling organic electronics with ADF
Modeling organic electronics with ADFModeling organic electronics with ADF
Modeling organic electronics with ADF
 

More from cdtpv

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangorcdtpv
 
CdTe Solar Cells
CdTe Solar CellsCdTe Solar Cells
CdTe Solar Cellscdtpv
 
CDTPy | Python for Scientists
CDTPy | Python for ScientistsCDTPy | Python for Scientists
CDTPy | Python for Scientistscdtpv
 
Vacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device ProcessingVacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device Processingcdtpv
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopycdtpv
 
Optical Spectroscopy
Optical SpectroscopyOptical Spectroscopy
Optical Spectroscopycdtpv
 
PVSAT 12
PVSAT 12PVSAT 12
PVSAT 12cdtpv
 
Silicon CPV Plc
Silicon CPV PlcSilicon CPV Plc
Silicon CPV Plccdtpv
 
Industrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOsIndustrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOscdtpv
 
British Photovoltaic Association
British Photovoltaic AssociationBritish Photovoltaic Association
British Photovoltaic Associationcdtpv
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerationscdtpv
 
Welcome and Introduction
Welcome and IntroductionWelcome and Introduction
Welcome and Introductioncdtpv
 
From Atoms to Solar Cells
From Atoms to Solar CellsFrom Atoms to Solar Cells
From Atoms to Solar Cellscdtpv
 
Surfaces and Interfaces
Surfaces and InterfacesSurfaces and Interfaces
Surfaces and Interfacescdtpv
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)cdtpv
 
Course overview
Course overviewCourse overview
Course overviewcdtpv
 
Lecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & BatteriesLecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & Batteriescdtpv
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermalcdtpv
 
Lectures 1-2: Estimates, Energy Use, Wind, Cars
Lectures 1-2: Estimates, Energy Use, Wind, CarsLectures 1-2: Estimates, Energy Use, Wind, Cars
Lectures 1-2: Estimates, Energy Use, Wind, Carscdtpv
 
How will thin film PV meet the Terawatt scale generation?
How will thin film PV meet the Terawatt scale generation?How will thin film PV meet the Terawatt scale generation?
How will thin film PV meet the Terawatt scale generation?cdtpv
 

More from cdtpv (20)

Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of BangorDye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
Dye-sensitized and Perovskite Solar Cells | Peter Holliman, University of Bangor
 
CdTe Solar Cells
CdTe Solar CellsCdTe Solar Cells
CdTe Solar Cells
 
CDTPy | Python for Scientists
CDTPy | Python for ScientistsCDTPy | Python for Scientists
CDTPy | Python for Scientists
 
Vacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device ProcessingVacuum Science and Technology for Thin Film Device Processing
Vacuum Science and Technology for Thin Film Device Processing
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopy
 
Optical Spectroscopy
Optical SpectroscopyOptical Spectroscopy
Optical Spectroscopy
 
PVSAT 12
PVSAT 12PVSAT 12
PVSAT 12
 
Silicon CPV Plc
Silicon CPV PlcSilicon CPV Plc
Silicon CPV Plc
 
Industrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOsIndustrial Perspectives on Large-Area TCOs
Industrial Perspectives on Large-Area TCOs
 
British Photovoltaic Association
British Photovoltaic AssociationBritish Photovoltaic Association
British Photovoltaic Association
 
Organic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing ConsiderationsOrganic Photovoltaics Thin-Film Processing Considerations
Organic Photovoltaics Thin-Film Processing Considerations
 
Welcome and Introduction
Welcome and IntroductionWelcome and Introduction
Welcome and Introduction
 
From Atoms to Solar Cells
From Atoms to Solar CellsFrom Atoms to Solar Cells
From Atoms to Solar Cells
 
Surfaces and Interfaces
Surfaces and InterfacesSurfaces and Interfaces
Surfaces and Interfaces
 
Materials Modelling: From theory to solar cells (Lecture 1)
Materials Modelling: From theory to solar cells  (Lecture 1)Materials Modelling: From theory to solar cells  (Lecture 1)
Materials Modelling: From theory to solar cells (Lecture 1)
 
Course overview
Course overviewCourse overview
Course overview
 
Lecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & BatteriesLecture 5-6: Hydrogen, Storage & Batteries
Lecture 5-6: Hydrogen, Storage & Batteries
 
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar ThermalLecture 3-4: Exergy, Heating and Cooling, Solar Thermal
Lecture 3-4: Exergy, Heating and Cooling, Solar Thermal
 
Lectures 1-2: Estimates, Energy Use, Wind, Cars
Lectures 1-2: Estimates, Energy Use, Wind, CarsLectures 1-2: Estimates, Energy Use, Wind, Cars
Lectures 1-2: Estimates, Energy Use, Wind, Cars
 
How will thin film PV meet the Terawatt scale generation?
How will thin film PV meet the Terawatt scale generation?How will thin film PV meet the Terawatt scale generation?
How will thin film PV meet the Terawatt scale generation?
 

Recently uploaded

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsSumit Kumar yadav
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)Areesha Ahmad
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptxRajatChauhan518211
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPirithiRaju
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRDelhi Call girls
 

Recently uploaded (20)

Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Botany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questionsBotany krishna series 2nd semester Only Mcq type questions
Botany krishna series 2nd semester Only Mcq type questions
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)GBSN - Microbiology (Unit 2)
GBSN - Microbiology (Unit 2)
 
Green chemistry and Sustainable development.pptx
Green chemistry  and Sustainable development.pptxGreen chemistry  and Sustainable development.pptx
Green chemistry and Sustainable development.pptx
 
Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdfPests of cotton_Sucking_Pests_Dr.UPR.pdf
Pests of cotton_Sucking_Pests_Dr.UPR.pdf
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCRStunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
Stunning ➥8448380779▻ Call Girls In Panchshil Enclave Delhi NCR
 

Molecular structure impacts polymer opto-electronics

  • 1. The role of molecular structure and conformation in polymer opto-electronics Charge separation: Molecular structure Enrico Da Como
  • 3. Conjugated polymers polythiophene Bottom – up design for electronics Optical, electrical & ordering properties arise at the molecular scale
  • 4. Structure-function relationships Polymer solar cells: transport, recombination & efficiency -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -12 -8 -4 0 4 8 Currentdensity(mA/cm 2 ) Voltage (V)
  • 5. Solar cells 1. Absorption of light and photogeneration of excitons Mott-Wannier ~ 0.1 eV Large radius Charge transfer excitons ~ 0.1 – 1.0 eV Localised between molecules Frenkel excitons ~ 0.5 – 1.0 eV Localised on molecule
  • 6. Solar cells E e - e - e - h + h + h + h + h + DriftDiffusion e - e - eV Built-in Potential pn junction, heterojunction 2. Exciton dissociation & 3. Transport of charge
  • 7. Solar cells 2. Exciton dissociation & 3. Transport of charge Donor-Acceptor system S - +
  • 8. G. Yu, … A. J. Heeger, Science 207, 1789 (1995) Y. Yang & Solarmer Nature Photonics 3, 649 (2009) Polymer/fullerene photovoltaics > 8% efficiency on lab cells Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact
  • 13. The race for 10 % Konarka's Power Plastic Achieves World Record 8.3%
  • 14. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Physics on different length scales Efficiency Layers & interfaces
  • 15. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Mesoscopic scale bulk heterojunction Physics on different length scales Charge transport Morphology & molecular ordering
  • 16. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Molecular scale Donor-Acceptor Mesoscopic scale bulk heterojunction Physics on different length scales Exciton generation & dissociation molecular ordering & mobility
  • 17. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Molecular scale Donor-Acceptor Charge transport Charge separation Physics on different length scales Mesoscopic scale bulk heterojunction Exciton generation & dissociation molecular ordering & mobility
  • 18. Photovoltaic action: competing mechanisms? Energy Charge separation absorption Polymer Fullerene HOMO HOMO LUMO LUMO
  • 19. Energy Charge separation absorption Large donor-acceptor interface Polymer Fullerene morphology & mobility HOMO LUMO HOMO LUMO Photovoltaic action: competing mechanisms?
  • 20. Efficiency  = JscVocFF Pin Polmyer solar cell: device parameters -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -12 -8 -4 0 4 8 Currentdensity(mA/cm 2 ) Voltage (V) = 2.9 % P3HT:PCBM Short circuit current Jsc light absorption transport Fill factor FF charge collection Open circuit voltage Voc HOMO-LUMO offset
  • 21. Charge transfer @ polymer:fullerene interface structure conformation ordering Donor-acceptor distance
  • 22. Excitons in polymers Frenkel exciton (~ 0.5 eV – 1 eV) Intra (inter) chain excitation Lifetime ~ns, diffusion length ~ 10 – 20 nm Polymer structure, conformation & excitons
  • 23. Excitons in polymers Frenkel exciton (~ 0.5 eV – 1 eV) Inter or intrachain excitation Lifetime ~ns, diffusion length ~ 10 – 20 nm Chemical structure, excitons, long range ordering
  • 25. Excitons in Polymer:fullerene systems Charge transfer exciton Coulomb bound electron-hole pair @ the donor-acceptor interface
  • 26. Excitons in Polymer:fullerene systems Polymer Fullerene HOMO HOMO LUMO LUMO Energy S0 S1 S2 T1 CTE?
  • 27. Excitons in Polymer:fullerene systems Polymer Fullerene HOMO HOMO LUMO LUMO Energy S0 S1 S2 T1 CTE? Where is the CTE energetically? What role does it play in charge transfer/recombination? CTE vs molecular structure, conformation and ordering?
  • 28. Excitons in Polymer:fullerene systems Why do CTEs dissociate? Field dependence Only 60 % of CTEs dissociate in polymer fullerene solar cells at room temperature V. Mihailetchi, L. Koster, J. Hummelen, P. Blom, Phys. Rev. Lett. 93, 216601 (2004)
  • 29. Excitons in Polymer:fullerene systems Are CTEs a necessary step for charge separation? Voc limited by CTE Polymer Fullerene HOMO LUMO LUMO
  • 30. Excitons in Polymer:fullerene systems Are CTEs a necessary step for charge separation? Polymer Fullerene HOMO LUMO LUMO Veldman et al., JACS 2008 Change molecular ordering, interface states
  • 31. Excitons in Polymer:fullerene systems Mixed amorphous & crystalline polymer regions enhance charge separation Higher charge separation efficiency with engineered heterojunctions Bulk properties influence CTE dissociation
  • 32. Charge transfer @ polymer:fullerene interface Acceptor concentration
  • 33. Energy(eV) -6.1 -5.4 -3.2 -4.2 HOMO LUMO HOMO LUMO MDMO-PPV/PCBM 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.0 0.4 0.8 1.2 PCBM PL(a.u.) 0.0 0.4 0.8 1.2 MDMO-PPV pristine PL(a.u.) Probing recombination with PL spectroscopy Energy (eV) Adv. Funct. Mater. 19, 3662 (2009)
  • 34. Energy(eV) -6.1 -5.4 -3.2 -4.2 HOMO LUMO HOMO LUMO MDMO-PPV/PCBM 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.0 0.4 0.8 1.2 MDMO-PPV/PCBM blend PL(a.u.) 0.0 0.4 0.8 1.2 PCBM pristine PL(a.u.) 0.0 0.4 0.8 1.2 MDMO-PPV pristine PL(a.u.) CTE Energy (eV) Probing recombination with PL spectroscopy Adv. Funct. Mater. 19, 3662 (2009)
  • 35. 0.8 1.2 1.6 2.0 0 1x10 5 2x10 5 3x10 5 4x10 5 PL(a.u.) Energy (eV) 0.8 1.2 1.6 2.0 Energy (eV) 80 wt % PCBM60 wt % PCBM 0.8 1.2 1.6 2.0 Energy (eV) 20 wt % PCBM Vary the donor-acceptor interface Adv. Funct. Mater. 19, 3662 (2009)
  • 36. 0.8 1.2 1.6 2.0 0 1x10 5 2x10 5 3x10 5 4x10 5 PL(a.u.) Energy (eV) 0.8 1.2 1.6 2.0 Energy (eV) 80 wt % PCBM60 wt % PCBM 0.8 1.2 1.6 2.0 Energy (eV) 20 wt % PCBM Vary the donor-acceptor interface Adv. Funct. Mater. 19, 3662 (2009) CTE dissociation depends on acceptor concentration Increased probability of exciton dissociation Arkhipov et al., Appl. Phys. Lett. 2003 82, 4605.
  • 37. Charge transfer @ polymer:fullerene interface Donor/Acceptor structure
  • 38. The role of the fullerene acceptor Energy(eV) HOMO LUMO HOMO LUMO Donor/acceptor PCBM bis-PCBM DPM MDMO-PPV VOC Appl. Phys. Lett . 97 023301 (2010)
  • 39. CTE recombination Appl. Phys. Lett . 97 023301 (2010)
  • 40. Anti-Correlation of PLCTE intensity and JSC 0 20 40 60 80 100 120 140 160 180 200 0.0 0.2 0.4 0.6 0.8 1.0 1.2 PLCTE (arb.u.) JSC µA/cm 2 Appl. Phys. Lett . 97 023301 (2010) Anticorrelation Jsc and CTE
  • 41. Morphology and transport bis-PCBM PCBM me=2 10-4 cm2/Vs me=8 10-3 cm2/Vsme= 1 10-3cm2/Vs Appl. Phys. Lett . 97 023301 (2010) Long range ordering? Transport?
  • 42. Changing morphology with chain regioregularity Regiorandom P3HT Regioregular P3HT Amorphous vs. Polycrystalline
  • 43. Adv. Funct. Mater. 19, 3662 (2009) 1.0 1.5 2.0 ra-P3HT PCBM Energy (eV) X10 RE-P3HT RE-P3HT/PCBM Changing morphology with chain regioregularity 100 nm = 2.1% PLIntensity PLIntensity = 0.9% 1.0 1.5 2.0 ra-P3HT ra-P3HT/PCBM Energy (eV) EnergyEnergy 100 nm Regiorandom P3HT Regioregular P3HT What is the role of donor-acceptor distance?
  • 44. Model system: „low band gap“ polymers PCPDT-BT M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003) N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007) Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec, Macromolecules 40, 1981 (2007). „Low bandgap“ co-polymers for better light absorption dithiophene benzodiathiazole LUMO HOMO
  • 45. Increasing solar cell efficiency PCPDT-BT M. Svensson, F. Zhang, O. Inganas, & M. R. Andersson, Synth. Met. 135, 137 (2003) N. Blouin, A. Michaud, M. & Leclerc Adv. Mater. 19, (2007) Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Muhlbacher, M. Scharber, C. Brabec, Macromolecules 40, 1981 (2007). „Low bandgap“ co-polymers for better light absorption dithiophene benzodiathiazole
  • 47. 500 1000 1500 2000 Absorption(arb.units) Wavelength (nm) 800 nm PCPDT-2TBT PCPDT-BDT PCPDT-2TTP PCPDT-BT 800 nm 660 nm 800 nm Low-bandgap copolymers Tautz et al submitted Stronger vs weaker acceptor Shifting the donor-acceptor centre of mass
  • 48. IR Absorption HOMO -1 LUMO +1 Measuring IR absorption of chemically induced polarons HOMO LUMO e- P1 Where are the polarons? -0.1 0.0 0.1 500 1000 1500 2000 2500 3000 3500 -0.1 0.0 0.1 -0.1 0.0 0.1 P1 ChemicallyinducedOD(arb.u.) GB P1 GB Probe Wavelength [nm] Probe P2 P1 GB Ex Ex P2 GB P1 P2 -5 0 5 0 5 -10 0 10 -0.1 0.0 0.1 -5 0 5 P2 Probe P2
  • 49. IR Absorption HOMO -1 LUMO +1 Measuring IR absorption of chemically induced polarons HOMO LUMO e- P1 Where are the polarons? -0.1 0.0 0.1 500 1000 1500 2000 2500 3000 3500 -0.1 0.0 0.1 -0.1 0.0 0.1 P1 ChemicallyinducedOD(arb.u.) GB P1 GB Wavelength [nm] P2 P1 GB P2 GB P1 P2 -0.1 0.0 0.1 P2
  • 50. IR Absorption HOMO -1 LUMO +1 Measuring IR absorption of chemically induced polarons HOMO LUMO e- P1 Where are the polarons? -0.1 0.0 0.1 500 1000 1500 2000 2500 3000 3500 -0.1 0.0 0.1 -0.1 0.0 0.1 P1 ChemicallyinducedOD(arb.u.) GB P1 GB Probe Probe Wavelength [nm] Probe Ex P2 P1 GB Ex Ex P2 GB P1 P2 -5 0 5 0 5 -10 0 10 Opticallyinduced(10 -4 ) -0.1 0.0 0.1 -5 0 5 P2 Probe
  • 51. Polaron formation in realtime 10 20 30 10 20 10 20 Time delay (fs) PCPDT-BT Polaronpairyield(%) P3HT PCPDT-BDT PCPDT-2TBT PCPDT-2TTP IRF -1000 -750 -500 -250 0 250 500 750 0 10 20 10 20 D A D A D A D A UU U U -  = 15.9%  = 21.4%  = 13.9%  = 7.9%  = 23.6%
  • 52. Polaron formation in realtime 10 20 30 10 20 10 20 Time delay (fs) PCPDT-BT Polaronpairyield(%) P3HT PCPDT-BDT PCPDT-2TBT PCPDT-2TTP IRF -1000 -750 -500 -250 0 250 500 750 0 10 20 10 20 D A D A D A D A UU U U -  = 15.9%  = 21.4%  = 13.9%  = 7.9%  = 23.6%
  • 53. Polaron formation in realtime 10 20 30 10 20 10 20 Time delay (fs) PCPDT-BT Polaronpairyield(%) P3HT PCPDT-BDT PCPDT-2TBT PCPDT-2TTP IRF -1000 -750 -500 -250 0 250 500 750 0 10 20 10 20 D A D A D A D A UU U U -  = 15.9%  = 21.4%  = 13.9%  = 7.9%  = 23.6% Acceptor strength only slightly influencing efficiency Important role of spatial separation
  • 54. Charge transfer @ polymer:fullerene interface structure conformation ordering Donor-acceptor distance
  • 55. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Mesoscopic scale bulk heterojunction Physics on different length scales Charge transport Morphology & molecular ordering
  • 56. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Molecular scale Donor-Acceptor Mesoscopic scale bulk heterojunction Physics on different length scales Exciton generation & dissociation molecular ordering & mobility How to improve efficiency at every length scale?
  • 57. Conformation & structure Long range ordering Charge transfer
  • 58. Adv. Funct. Mater. 19, 3662 (2009) 1.0 1.5 2.0 ra-P3HT PCBM Energy (eV) X10 RE-P3HT RE-P3HT/PCBM Changing morphology with chain regioregularity 100 nm = 2.1% PLIntensity PLIntensity = 0.9% 1.0 1.5 2.0 ra-P3HT ra-P3HT/PCBM Energy (eV) EnergyEnergy 100 nm Regiorandom P3HT Regioregular P3HT
  • 59. 100 nm The effect of long range ordering AnnealedNot Annealed = 2.1% = 4.0%
  • 60. 100 nm AnnealedNot Annealed = 2.1% = 4.0% 1.0 1.5 2.0 PLintensity X10 RE-P3HT/PCBM RE-P3HT/PCBM (annealed) Energy (eV)Adv. Funct. Mater. 19, 3662 (2009) The effect of long range ordering
  • 61. 100 nm AnnealedNot Annealed = 2.1% = 4.0% Adv. Funct. Mater. 19, 3662 (2009) J. App. Phys.100, 043702 (2006) Ambipolar transportUnipolar (hole) transport The effect of long range ordering How to induce long range ordering?
  • 62. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact
  • 63. Conformation & structure Long range ordering Doping Charge transfer Increase mobility without changing morphology?
  • 64. Increasing mobility by molecular doping P doping by electron transfer in the ground state F4TCNQ Yim et al., Adv Mater, 2008, 20 Zhang et al., Phys Rev B, 2010, 81 Zhang et al., Adv Func Mater, 2009, 19
  • 65. Increasing mobility by molecular doping P doping by electron transfer in the ground state PCPDTBT:PCBM F4TCNQ SPP1355
  • 66. Fill tail states with excess charge carriers Increase Mobility + Energy(eV) Disordered film Increasing mobility by molecular doping g(E)
  • 67. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Charge transport Charge separation Improvement in charge separation, mobility, efficiency Photocurrent & Efficiency?
  • 68. 0.9 1.0 1.1 1.2 1.3 1.4 PCBM PCPDTBT 1.0 1.2 1.4 1.6 1.8 PLintensity(arb.units) Energy (eV) PCPDTBT/PCBM Energy (eV) PLintensity(arb.units) Doping & Charge separation + -
  • 69. 0.9 1.0 1.1 1.2 1.3 1.4 PCBM PCPDTBT 1.0 1.2 1.4 1.6 1.8 PLintensity(arb.units) Energy (eV) PCPDTBT/PCBM Energy (eV) PLintensity(arb.units) + - 0% 1% 3% 4% Doping & CTE recombination
  • 70. 0 200 400 600 800 Time (ps) 0% 2% 4% 5% Norm.PLintensity Doping & CTE recombination
  • 71. 0 100 200 300 0% 2% 4% 5% PLintensity(arb.units) Time (ps) Lower density of CTE or very fast dissociation with doping? Doping & CTE recombination
  • 72. Doping & Polaron formation Janssen et al. Adv. Mater (2010) -T/Tx104 0 50 100 150 200 250 300 0 2 Time delay (ps) -T/T(x10 -3 ) 0% EProbe
  • 73. Doping & Polaron formation Janssen et al. Adv. Mater (2010) -T/Tx104 0 2 0 50 100 150 200 250 300 0 2 2% -T/T(x10 -3 ) 0% Time delay (ps) EProbe
  • 74. Doping & Polaron formation Janssen et al. Adv. Mater (2010) -T/Tx104 0 2 0 2 0 50 100 150 200 250 300 0 2 4% 2% -T/T(x10 -3 ) 0% Time delay (ps) EProbe
  • 75. Doping & Polaron formation Janssen et al. Adv. Mater (2010) -T/Tx104 0 2 0 2 0 2 0 50 100 150 200 250 300 0 2 5% 4% 2% -T/T(x10 -3 ) 0% Time delay (ps) EProbe
  • 76. PCPDTBT PCBM Energy tCT-r tCT-ftFR-r tP-f tP-r 0 100 200 300 0% 2% 4% 5% PLintensity(arb.units) Time (ps) Time Delay (ps) 0 2 0.0 1.6 0 2 0.0 1.6 0 2 0.0 1.6 0 2 0.0 1.6 0 50 100 150 200 250 300 Polarondensity(x10 17 /cm 3 ) 0% -T/T(x10 -4 ) 2% 4% 5% Rate equation model
  • 77. PCPDTBT PCBM Energy tCT-r tCT-ftFR-r tP-f tP-r 0 100 200 300 0% 2% 4% 5% PLintensity(arb.units) Time (ps) Time Delay (ps) 0 2 0.0 1.6 0 2 0.0 1.6 0 2 0.0 1.6 0 2 0.0 1.6 0 50 100 150 200 250 300 Polarondensity(x10 17 /cm 3 ) 0% -T/T(x10 -4 ) 2% 4% 5% Doping [%] tFR-r tCT-f tP-f tCT-r tP-r [ps] [ps] [ps] [ps] [ps] 0 125 0.2 0.2 300 1400 2 125 0.5 0.2 300 1000 4 125 0.95 0.2 300 400 5 0.15 0.95 0.2 250 300 Rate equation model
  • 78. Decrease in CTE emission and larger density of polarons with doping Conclusion: doping helps! Phys. Rev. Lett. 107, 127402 (2011)
  • 79. Substrate Anode Transport layer Active layer: Polymer/fullerene Metal contact Charge transport Charge separation Improvement in charge separation, mobility, efficiency Efficiency?
  • 80. 09.03.2015 Präsentationstitel 80 Thank you for your attention