Suzuki lecture-slides (1)
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Suzuki lecture-slides (1)

  • 816 views
Uploaded on

Palladium catalyzed reactions of akira suzuki which made him to win nobel prize.

Palladium catalyzed reactions of akira suzuki which made him to win nobel prize.

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
816
On Slideshare
816
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
21
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. N-1Cross-Coupling Reactions of Organoboranes: An Easy Way for Carbon-Carbon Bonding Akira Suzuki
  • 2. N-2 Conjugated Alkadienes R RR R R R R R trans-trans trans-cis cis-trans cis-cisR M + X R MY R R R R + X M MY R R M : transition metal catalyst
  • 3. N-3 Syntheses of (E)- and (Z)-1-Alkenylboranes R HRC CH + HBY 2 H BY2 O trans > 99 % Y2 = (Siamyl)2 , O HBY2 R X t-BuLi R BY2RC CX H BY2 H H cis > 98 % X = I or Br Y=Siamyl, Cyclohexyl
  • 4. N-4 XH H R R H H (trans, trans) R H Pd H X R H RH BY 2 base R H H H R (trans, cis) H H H H R H R X H R (cis, trans) H R BY H H Pd H H H H H H base 2 X R R R (cis, cis) H H
  • 5. N-5 Common Catalytic Cycle Involving Sequential OxidativeAddition (a), Transmetalation (b), and Reductive Elimination (c) M Atomic charge in 0.01 e.u. R-R R-X (Gropen & Haaland, 1973) + 12 (a) (c) CH3 CH3 B CH3 -4 R M R-M-X R - 12 (b) CH3 R CH3 B CH3 R B OR CH3 R-M (R3B) R - 22
  • 6. N-6 Bu + Br Bu BX2 Ph Ph 1 2 3 Catalystb) Base Yield (%) 1a) Solvent React. (mol %) (equiv / 2) time (h) of 3 1b PdL4 (3) None THF 6 0 1b PdL4 (3) None Benzene 6 0 1a PdL4 (3) 2M NaOEt (2)-EtOH THF 2 73 1b PdL4 (3) 2M NaOEt (2)-EtOH THF 4 78 1b PdL4 (1) 2M NaOEt (2)-EtOH Benzene 2 86 Oa) 1a, X2 = (Sia)2 1b, X2 = b) L = PPh3 O
  • 7. N-71-Alkenylborane Yield (%) 1-Alkenyl Bromide Product [Purity (%)] Ph Bu b) Br Ph 86 [98] B Bu Bu B a) Bu 49 [99] Br Ph Ph Bu B a) Br Ph Bu 42 [89] Ph Hex Bu b) Br Hex 88 [99] B Bu Bu B a) Br Hex Bu 49 [98] Hex Ph Ph b) 89 [98] B Br Ph Ph Reaction conditions: 1-3 mol % of Pd(PPh3)4 / NaOEt / Benzene / Reflux 2h a) Disiamyl b) 1,3,2-Benzodioxaboryl
  • 8. N-8 Pd(PPh3)4 Bu RBu BY2 + RX NaOEt / benzene reflux, 2 hBY2 RX Product Yield (%) Purity (%)B(Sia)2 Bu 49 >98B(OPri)2 Br Hex Hex 87 >99 B(Sia)2 58 >94 B( ) 2 PhI Bu Ph 49 >83 B(OPri)2 98 >97B(Sia)2 Bu 54 >92 IB(OPri) 2 87 >99
  • 9. N-9 OH H2N O O O OH HO OH HO OH OH O HO OH HO Me HO OH OH OHOH OH HO OH O O O Me OH MeHO OH OH OHHO N N O H H OH OH OH HO Me O HO OH OH O Me O Me OH HO OH Me OH O OH HO OH OH HO OH OH "Palytoxin" C129H223N3O54 (MW. 2678.6) Synthesis: Kishi et al., J. Am. Chem. Soc, 1989, 111, 7525, 7530
  • 10. N-10 Reaction Mechanism: Me PdL4 Bu + Br Bu Ph Ph B(Sia)2 9%Cl Cl Cl Cl Cl Cl PdL4 NaOMeCl Cl Cl PdCl·L2 Cl PdOMe·L2 Fitton (1968) Otsuka (1976)Cl Cl Hex O without base no reaction + BO r.t./17 hCl PdCl·L2 Cl Cl NaOMe r.t./2 h Cl 89 % Hex Cl Cl Hex O without base B 66 % + r.t./15 minCl PdOMe·L 2 O without base 97 % r.t./1 h
  • 11. Catalytic Formulation of the Vinyl-Vinyl Cross-Coupling N-11 R R Pd(0) R" X F. Maseras et al., JACS, 2005, 127, 9298 R R Pd R" B PdX R" RONa R" OR B R R" ORA. Monteiro et al., J. Braz. PdOR‘ BChem. Soc. 2007, 18 NaX
  • 12. N-12 Reaction of B-AlkylboranesR1 R3 Pd(0) R1 R3 + R4X R2 B Base R2 R4 R4 : 1-Alkenyl Aryl 1-Alkynyl Allyl BenzylR B + R4X R R4 R : Alkyl
  • 13. N-13 PdCl2(dppf) (3 mol%) I + B C8H17 C8H17 NaOMe / THF, reflux 98 % B PdCl2(dppf) (3 mol%)Br + NaOMe / THF, reflux 88 %Br B (CH2)3 OMe + (CH2)3 OMe OMe OMe 87 % PdCl2(dppf) (3 mol%)Br + B C8H17 C8H17 NaOMe / THF, reflux 94 %
  • 14. N-14 Alkyl-Vinyl Coupling: Total Synthesis of Polycyclic Ether Natural Product M. Sasaki, Bull. Chem. Soc. Jpn. 2007, 80, 856 TfO O OR2 O OH 9-BBN 9-BBN R1O R1 O Pd(0) OP OP aq. base H H H O O 1. hydroboration O OR1O OR 2 R1 O OR2 2. oxidation OP OP O H H acetal formation O O R1O OR2 O H OH
  • 15. N-15 Polycyclic Ether Marine Natural Products: HO Me Me H H H O O O H HO O O H H H H H H O OH Me Me O Gambierol H OH Me HO H H OH H O H O O H H MeOHC O O H H H H H O O O H H H H H Me H O O H H O O O H H H H Me H OH Gymnocin-A HO Me
  • 16. N-16Aromatic-Aromatic Cross-Coupling Reactions Z B(OH)2 + Br Pd(PPh3)4 Z aq Na2CO3 benzene, reflux
  • 17. Suzuki Coupling: N-17 B(OH)2 + X R Pd(0), base R RR B(OH)2 + X R Pd(0), base R RRUllmann Reaction: R R X + XR R Cu, high temp R R R R
  • 18. N-18Valsartan (Novartis): Antihypertensive CH3 CH3 O CH3 N COOH N N HN N Suzuki Coupling 3.5 million users in Japan 22 million users in the whole world
  • 19. N-19 Angiotensin II Receptor Antagonist (Losartan) HO Cl HO Cl N CPh3 CPh3 N CPh3 NN N N N C4H9 N N NN N N N N N C 4H9 1. BuLi Br 2. B(OPri)3 B(OH)2 Pd(OAc)2 / 3 PPh3 3. IPA-NH4Cl aq. K2CO3 -H 2 O THF / DME 90% reflux 93% Losartan (Antihypertensive) Merck , J. Org. Chem. 59, 6391 (1994)
  • 20. N-20 Suzuki coupling is a shortcut to biaryls (BASFs Boscalid Process) O OCH3 PRE-SUZUKI ROUTE NCOOH N Cl H 5 Synthetic steps Cl Boscalid Multi-purpase Fungicide for Specialty Crops CN 1 Step SUZUKI ROUTE Catalyst Base CN Cl + (HO)2B
  • 21. N-21Boscalid; Agrochemicals (BASF, Germany) N Cl O HN Cl Boscalid
  • 22. N-22 Liquid crystal: Chisso (Japan) F LC + I F Glass substrateC5H11 B(OH)2 F F Pd catalyst / base C5H11 F F Merck (Germany) F F FR OCF3 C3H7 OCF3 F
  • 23. N-23 EL Polymer materials (HO)2B B(OH)2Br Br Pd(PPh3)4 Na2CO3 (solid) C8H17 C8H17 C8H17 C8H17 DMAc, 120 °C n
  • 24. N-24 X Pd catB (1979) + base Pd catB + X (1980) base Pd catB + X (1981) base X Pd catB (1985) + base X Pd catB (1992) + base Fu 2001-2002B X Pd cat Soderquist and + (base) Fürstner 1995
  • 25. N-25 Advantages of the Cross-Coupling Reaction between Organoboron Compounds and Organic Electrophiles:1. Ready availability of reagents: hydroboration and transmetalation 2. Mild reaction conditions: base problem 3. Water stability 4. Easy use of the reaction both in aqueous and heterogeneous conditions 5. Toleration of a broad range of functional groups 6. High regio- and stereoselectivity of the reaction 7. Insignificant effect of the steric hindrance 8. Use of a small amount of catalysts 9. Application in one-pot synthesis 10. Nontoxic reaction 11. Easy separation of inorganic boron compounds
  • 26. ReferencesScientific articles1) Heck, R. F. and Nolley, J. P. J. Org. Chem. 1972 , 37, p. 2320.2) Negishi, E.-I., King, A. O. and Okukado, N. J. Org. Chem. 1977, 42, p. 18213) Miyaura, N. and Suzuki, A. J. Chem. Soc. Chem. Commun., 1979, p 866.Review articles1) Negishi, E. A profile of Professor Richard F. Heck Discovery of the Heck reaction. Journal of Organometallic Chemistry , 1999, 576, p. XV-XVI.2) Rouhi, M. Chem. & Eng. News, 2004, 82 (36), Sept. 6, p. 49–58. [Article about Suzuki.]3) de Meijere, A. and Diederich, F. (Eds.), Metal-Catalyzed Cross-Coupling Reactions, 2004,vol. 1 and 2,Wiley-VCH, Weinheim. pp. 916.4) Buchwald, S. L. (Ed.) Accounts of Chemical Research, 2008 Vol. 41, Nov. 11, p. 1439–1564. [Special issue on Cross Coupling.]Online Resources•Royal Swedish Academy of Sciences, http://kva.se, and at http://nobelprize.org.•Prezi.com•www.openaccesschemistry.com
  • 27. AcknowledgementNobelprize.orgPrincipal, Jawaharlal nehru Technological UniversityHyderabadDr. Pramod Kumar DubeyMy Research Friends