SlideShare a Scribd company logo
1 of 111
Download to read offline
Machine	
  Learning	
  for	
  BSN	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
1	
  
Presenters	
  
Dr.	
  Anna	
  Förster	
  
Researcher	
  at	
  SUPSI	
  
anna.foerster@ieee.org	
  
Alessandro	
  Puia<	
  
Senior	
  researcher	
  at	
  SUPSI	
  
alessandro.puia<@supsi.ch	
  
2	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Schedule	
  and	
  outlook	
  
•  Data	
  in	
  Body	
  Sensor	
  Networks	
  
•  What	
  is	
  Machine	
  Learning?	
  
•  Decision	
  Trees	
  and	
  their	
  applicaNons	
  
•  Discussion	
  
•  Break	
  
•  Neural	
  networks	
  and	
  their	
  applicaNons	
  
•  Reinforcement	
  Learning	
  and	
  its	
  applicaNons	
  
•  Other	
  Machine	
  Learning	
  techniques	
  
•  Comparison	
  of	
  ML	
  for	
  BSNs	
  
•  Open	
  discussion!	
   3	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN:	
  The	
  Challenges	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
4	
  
BSN	
  vs	
  WSN	
  
DC-DC
Sensors ADC MCU
Memory
Wireless
Battery
Node	
  
Architecture	
  
Network	
  
Architecture	
  
DC-DC
Sensors ADC MCU
Memory
Wireless
Battery
DC-DC
Sensors ADC MCU
Memory
Wireless
Battery
DC-DC
Sensors ADC MCU
Memory
Wireless
Battery
SINK	
  
5	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  vs	
  WSN:	
  Number	
  of	
  Nodes	
  	
  
WSN	
  
BSN	
  
6	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  vs	
  WSN:	
  Parameters	
  
WSN	
  
BSN	
  
Almost	
  homogeneous:	
  same	
  sensors	
  in	
  every	
  node	
  
Extremely	
  heterogeneous:	
  different	
  sensor	
  for	
  each	
  
node	
  
Temperature	
   Humidity	
   Light	
  
Body	
  
Temperature	
  
EEG	
   EMG	
   SPO2	
  
7	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  vs	
  WSN:	
  Other	
  requirements	
  
8	
  
Requirements	
   WSN	
   BSN	
  
Babery	
  life	
   Years	
   App.	
  dependent	
  
Network	
  topology	
   Mostly	
  Mesh	
   Star	
  
Mobility	
   StaNc	
   Mobile	
  
ComputaNon	
   Low	
   Low,	
  Medium,	
  High	
  
Frequency	
   Low	
   High	
  
Form	
  factor	
   Almost	
  indifferent	
   Hidden,	
  Invisible	
  
“Wearability”	
   -­‐-­‐	
   Mandatory	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Form	
  Factor	
  
9	
  
hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html	
  
hbp://blog.broadcom.com/wireless-­‐technology/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Form	
  Factor	
  
10	
  
hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html	
  
hbp://blog.broadcom.com/wireless-­‐technology/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Form	
  Factor	
  
11	
  
hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html	
  
hbp://blog.broadcom.com/wireless-­‐technology/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Devices	
  
12	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Applications	
  	
  
13	
  
INTERNETT1
T1T1
T1 T1
hbp://si.epfl.ch/page-­‐34870-­‐en.html	
  
Patel	
  at	
  al,	
  2012	
  
hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Applications	
  	
  
14	
  
INTERNETT1
T1T1
T1 T1
hbp://si.epfl.ch/page-­‐34870-­‐en.html	
  
Patel	
  at	
  al,	
  2012	
  
hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Applications	
  	
  
15	
  
INTERNETT1
T1T1
T1 T1
hbp://si.epfl.ch/page-­‐34870-­‐en.html	
  
Patel	
  at	
  al,	
  2012	
  
hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN	
  Applications	
  	
  
16	
  
INTERNETT1
T1T1
T1 T1
hbp://si.epfl.ch/page-­‐34870-­‐en.html	
  
Patel	
  at	
  al,	
  2012	
  
hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
BSN:	
  In	
  Summary	
  
•  High	
  heterogeneous	
  data	
  
•  High	
  sampling/sending	
  frequency	
  
•  Small	
  number	
  of	
  nodes	
  (even	
  only	
  one)	
  
•  Many	
  applicaNons:	
  not	
  only	
  e-­‐health	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
17	
  
Introduction	
  to	
  
Machine	
  Learning	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
18	
  
Major	
  goal	
  
Produce	
  models	
  (rules,	
  
paberns)	
  	
  
from	
  data	
  
	
  
ProperGes	
  
Robust	
  and	
  flexible	
  
Global	
  models	
  from	
  local	
  data	
  
No	
  environmental	
  model	
  
	
  
Machine	
  Learning	
  
…	
  
Neural	
  
Networks	
  
Reinforcement	
  
Learning	
  
GeneNc	
  
Algorithms	
  
Decision	
  
Trees	
  
Swarm	
  
Intelligence	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Clustering	
  
19	
  
Classes	
  of	
  Machine	
  Learning	
  Algorithms	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Pre-­‐labeled	
  
Training	
  Dataset	
  
TesNng	
  Dataset	
  
(Usage)	
  
Supervised	
  
learning	
  
Model	
  
Unsupervised	
  
learning	
  
Model	
  
Non-­‐labeled	
  
data	
  item	
  
Reinforcement	
  
learning	
  
Agent	
  /
Model	
  
Environment	
  
20	
  
Online	
  against	
  Batch	
  Learning	
  
Training	
  dataset	
   Use	
  the	
  model	
  
Batch	
  Learning	
  
Model	
  
Use	
  the	
  model	
  Online	
  learning	
  
Model	
  
	
  Next	
  data	
  
item	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
21	
  
Introduction	
  to	
  
Decision	
  Trees	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
22	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
apple	
  orange	
  
?	
   23	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
apple	
  orange	
  
form	
   	
  =	
   	
  ?	
  
color 	
  =	
   	
  ?	
  
taste 	
  = 	
  ?	
  
24	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
apple	
  orange	
  
form	
   	
  =	
   	
  round	
  
color 	
  =	
   	
  ?	
  
taste 	
  = 	
  ?	
  
???	
   25	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
apple	
  orange	
  
form	
   	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  ?	
  
???	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
26	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
apple	
  orange	
  
form	
   	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sweet	
  
apple!	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
27	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
apple	
  orange	
  
form	
   	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sweet	
  
apple!	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
3	
  quesNons!	
  28	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
apple	
  orange	
  
taste 	
  = 	
  sweet	
  
color 	
  =	
   	
  ?	
  
form	
   	
  =	
   	
  ?	
  
	
  
apple!	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
29	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
form	
  	
  =	
   	
  round	
  
color 	
  =	
   	
  orange	
  
taste 	
  = 	
  sour	
  
apple	
  orange	
  
taste 	
  = 	
  sweet	
  
color 	
  =	
   	
  ?	
  
form	
   	
  =	
   	
  ?	
  
	
  
apple!	
  
form	
  	
  =	
   	
  round	
  
color	
  =	
   	
  red,	
  orange,	
  green	
  
taste 	
  = 	
  sweet	
  
1	
  quesNon!	
   30	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Tree	
  Learning	
  
•  Supervised	
  learning	
  approach	
  (use	
  pre-­‐labeled	
  dataset)	
  
•  Maps	
  observaNons	
  (features,	
  abributes)	
  into	
  classes	
  (decisions)	
  
•  Very	
  powerful	
  and	
  efficient	
  technique	
  to	
  analyze	
  large	
  and	
  fuzzy	
  
datasets	
  
Is	
  male?	
  
Is	
  age	
  <	
  9.5?	
  
Family	
  on	
  board	
  >	
  2.5?	
  
survived	
  
survived	
  died	
  
died	
  
0.73	
  :	
  36%	
  
0.89	
  :	
  2%	
  0.05	
  :	
  2%	
  
0.17	
  :	
  61%	
  
Probability	
  of	
  survival	
  on	
  the	
  Titanic	
  :	
  %observa@ons	
  
31	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Decision	
  Based	
  Learning	
  
•  Classifying	
  objects	
  into	
  groups	
  based	
  on	
  abribute	
  pairs	
  
•  Which	
  quesNons	
  to	
  ask	
  first,	
  which	
  next?	
  
•  Compute	
  informaNon	
  gain	
  of	
  abributes	
  
•  How	
  well	
  does	
  an	
  abribute	
  separates	
  	
  
the	
  tesNng	
  set?	
  
	
  
32	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm	
  
Goal:	
  construct	
  a	
  decision	
  tree	
  with	
  aVribute	
  at	
  each	
  node	
  
1.  Start	
  at	
  root	
  
2.  Find	
  the	
  abribute	
  with	
  maximal	
  informaNon	
  gain,	
  which	
  is	
  
not	
  an	
  ancestor	
  of	
  the	
  node	
  
3.  Put	
  a	
  child	
  node	
  for	
  each	
  value	
  of	
  this	
  abribute	
  
4.  Add	
  all	
  examples	
  	
  from	
  the	
  training	
  set	
  to	
  the	
  
corresponding	
  child	
  
5.  If	
  all	
  examples	
  of	
  a	
  child	
  belong	
  to	
  the	
  same	
  class,	
  put	
  the	
  
class	
  there	
  and	
  go	
  back	
  up	
  in	
  the	
  tree	
  
6.  If	
  not,	
  conNnue	
  with	
  step	
  2	
  while	
  abributes	
  are	
  let	
  
7.  When	
  no	
  more	
  abributes	
  are	
  let,	
  put	
  the	
  classificaNon	
  of	
  
the	
  majority	
  of	
  the	
  examples	
  to	
  this	
  node	
  
33	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Example	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  InformaNon	
  gain	
  of	
  FORM:	
  zero	
  
¡  InformaNon	
  gain	
  of	
  COLOR:	
  more	
  
34	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Example	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  InformaNon	
  gain	
  of	
  FORM:	
  zero	
  
¡  InformaNon	
  gain	
  of	
  COLOR:	
  more	
  
color	
  
red	
   green	
   orange	
   yellow	
  
35	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Example	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  InformaNon	
  gain	
  of	
  FORM:	
  zero	
  
¡  InformaNon	
  gain	
  of	
  COLOR:	
  more	
  
color	
  
red	
   green	
   orange	
   yellow	
  
1	
   4	
   2,3,6	
   5	
  
36	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Example	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  InformaNon	
  gain	
  of	
  FORM:	
  zero	
  
¡  InformaNon	
  gain	
  of	
  COLOR:	
  more	
  
color	
  
red	
   green	
   orange	
   yellow	
  
1	
   4	
   2,3,6	
   5	
  
apple	
   apple	
   apple	
  ?	
  
37	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Example	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  InformaNon	
  gain	
  of	
  FORM:	
  zero	
  
¡  InformaNon	
  gain	
  of	
  COLOR:	
  more	
  
¡  Only	
  let	
  abribute:	
  FORM	
  
color	
  
red	
   green	
   orange	
   yellow	
  
1	
   4	
   2,3,6	
   5	
  
apple	
   apple	
   apple	
  
form	
  
round	
  
2,3,6	
  
orange	
  
38	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
C4.5	
  algorithm:	
  Problems	
  
example	
   form	
   color	
   class	
  
1	
   round	
   red	
   apple	
  
2	
   round	
   orange	
   apple	
  
3	
   round	
   orange	
   orange	
  
4	
   round	
   green	
   apple	
  
5	
   round	
   yellow	
   apple	
  
6	
   round	
   orange	
   orange	
  
¡  All	
  orange	
  apples	
  will	
  be	
  classified	
  as	
  oranges	
  
¡  Leaf	
  node	
  FORM	
  unnecessary	
  
¡  DECISION	
  TREE	
  DEPENDS	
  ON	
  TRAINING	
  SET	
  
color	
  
red	
   green	
   orange	
   yellow	
  
1	
   4	
   2,3,6	
   5	
  
apple	
   apple	
   apple	
  
form	
  
round	
  
2,3,6	
  
orange	
  
39	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Information	
  Gain	
  
•  Input	
  are	
  T	
  tuples	
  (classified	
  samples	
  with	
  K	
  features):	
  
	
  
	
  
•  The	
  informaNon	
  gain	
  of	
  feature	
  a	
  is	
  defined	
  in	
  terms	
  of	
  the	
  
entropy	
  as	
  follows:	
  
x,Y( )= x1, x2, x3,..., xk,Y( )
xa ∈ vals a( ),Y = class
IG T,a( )= H T( )−
x ∈ T xa = v{ }
T
⋅ H x ∈ T xa = v{ }( )∑
H(T) = − pi log2
i=1
Y
∑ (pi )
Entropy	
  of	
  the	
  
full	
  dataset	
  
Entropies	
  of	
  the	
  sub-­‐
datasets	
  “MALE”	
  and	
  
“FEMALE”	
  
40	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Properties	
  of	
  Decision	
  Based	
  Learning	
  
•  Good	
  for	
  fast	
  classificaNon	
  of	
  fuzzy,	
  overlapping	
  groups	
  
•  Tree	
  generated	
  only	
  once	
  
•  Well-­‐suited	
  for	
  staNc,	
  but	
  error-­‐prone	
  environments	
  
•  Needs	
  a	
  good	
  large	
  training	
  set	
  
•  Moderate	
  processing	
  and	
  large	
  memory	
  requirements	
  (to	
  
hold	
  the	
  training	
  set)	
  
41	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Incremental	
  Decision	
  Trees	
  
•  Hoeffding	
  tree	
  algorithm	
  
•  Hoeffding	
  bound	
  guarantees	
  
that	
  if	
  
	
  
	
  
	
  
Xa	
  is	
  indeed	
  the	
  best	
  feature	
  
with	
  some	
  small	
  probability	
  	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Pre	
  
DT	
  
+/-­‐	
  
WSN	
  
IDT	
  
Disc	
  
Classify	
  the	
  new	
  sample	
  
Save	
  the	
  sample	
  at	
  the	
  leaf	
  
Compute	
  IG	
  for	
  each	
  feature	
  X	
  
All	
  samples	
  
belong	
  to	
  same	
  
class?	
  
IG(Xa )− IG(Xb ) < ε
Split	
  the	
  node	
  according	
  to	
  
feature	
  Xa	
  
true	
  
false	
  
IG(Xa )− IG(Xb ) < ε
[Domingos:2000]	
  P.	
  Domingos	
  and	
  G.	
  Hulten:	
  Mining	
  
High-­‐speed	
  Data	
  Streams,	
  in	
  Proceedings	
  of	
  the	
  6th	
  
ACM	
  Interna@onal	
  Conference	
  on	
  Knowledge	
  Discovery	
  
and	
  Data	
  Mining	
  (SIGKDD)	
  	
  
42	
  
Neural	
  Networks	
  –	
  	
  
Introduction	
  and	
  Applications	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
43	
  
Background	
  
•  Simplified	
  (extremely!)	
  model	
  of	
  the	
  human	
  brain	
  and	
  its	
  
neurons	
  
44	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Fundamentals	
  
45	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Perceptron	
  
•  Simplest	
  form	
  of	
  neural	
  network	
  
•  Computes	
  linear	
  funcNons	
  only	
  
•  AcNvaNon	
  funcNon	
  is	
  simple	
  threshold	
  
•  Where	
  do	
  the	
  weights	
  come	
  from?	
  
46	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Perceptron	
  Learning	
  
1.  Present	
  the	
  network	
  with	
  an	
  input	
  
2.  Calculate	
  its	
  current	
  output	
  
3.  Compare	
  with	
  real	
  output	
  (supervised	
  learning!)	
  
4.  Correct	
  the	
  weights	
  to	
  minimize	
  the	
  error	
  between	
  the	
  
computer	
  output	
  and	
  the	
  desired	
  one	
  
wnew	
  =	
  wold	
  –	
  α*(desired-­‐output)*input,	
  α	
  –	
  learning	
  constant	
  
47	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Multi-­‐Layer	
  Networks	
  
48	
  
•  Generalizes	
  all	
  
possible	
  funcNons	
  
•  Uses	
  the	
  logisNc	
  
funcNon	
  (sigmoid)	
  for	
  
acNvaNon	
  
•  Back	
  propagaNon	
  is	
  
the	
  most	
  oten	
  used	
  
weight	
  learning	
  
method	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Applications	
  
•  Very	
  well	
  suited	
  for	
  
•  Pabern	
  recogniNon,	
  image	
  recogniNon	
  
•  Noise	
  cancelling	
  
•  PredicNon	
  (based	
  on	
  extrapolated	
  data)	
  
•  ProperNes:	
  
•  Supervised	
  learning,	
  requires	
  a	
  large	
  training	
  set	
  
•  Memory	
  and	
  processing	
  intensive	
  training	
  
•  TesNng	
  is	
  also	
  processing	
  intensive	
  
•  Examples	
  from	
  BSN:	
  
•  Paberns	
  recogniNon	
  based	
  on	
  mulN-­‐modal	
  data	
  
•  Cardio-­‐vascular	
  problems,	
  heart	
  abacks	
  
	
  
•  Falls	
  
•  AcNviNes	
  
49	
  
Zhanpeng	
  Jin,	
  Yuwen	
  Sun,	
  and	
  Allen	
  C.	
  Cheng:	
  PredicNng	
  Cardiovascular	
  Disease	
  from	
  Real-­‐Time	
  Electrocardiographic	
  
Monitoring:	
  An	
  AdapNve	
  Machine	
  Learning	
  Approach	
  on	
  a	
  Cell	
  Phone,	
  IEEE	
  EMBS	
  2009.	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Introduction	
  to	
  
Reinforcement	
  Learning	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
50	
  
Reinforcement	
  Learning	
  
•  A	
  learning	
  agent	
  
•  A	
  pool	
  of	
  possible	
  acNons	
  
•  Goodness	
  of	
  acNons	
  
•  A	
  reward	
  funcNon	
  
•  Select	
  one	
  acNon	
  
•  Execute	
  the	
  acNon	
  
•  Observe	
  the	
  reward	
  
•  Correct	
  the	
  goodness	
  of	
  the	
  executed	
  acNon	
   51	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Introduction	
  to	
  Q-­‐Learning	
  
52	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
53	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
54	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
55	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Introduction	
  to	
  Q-­‐Learning	
  
D
B
A
E
F
C
START
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
56	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
	
  
1.	
  select	
  an	
  ac+on	
  
57	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
¤  Learning	
  procedure:	
  
¤  select	
  an	
  acNon	
  1.	
  select	
  an	
  ac+on	
  
58	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
¤  Learning	
  procedure:	
  
¤  select	
  an	
  acNon	
  
¤  execute	
  the	
  acNon	
  
1.	
  select	
  an	
  ac+on	
  
2.	
  execute	
  the	
  ac+on	
  
59	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
¤  Learning	
  procedure:	
  
¤  select	
  an	
  acNon	
  
¤  execute	
  the	
  acNon	
  
¤  observe	
  reward	
  
1.	
  select	
  an	
  ac+on	
  
2.	
  execute	
  the	
  ac+on	
  
3.	
  receive	
  reward	
  
60	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
¤  Learning	
  procedure:	
  
¤  select	
  an	
  acNon	
  
¤  execute	
  the	
  acNon	
  
¤  observe	
  reward	
  
¤  update	
  state	
  and	
  Q-­‐
values	
  
1.	
  select	
  an	
  ac+on	
  
2.	
  execute	
  the	
  ac+on	
  
3.	
  receive	
  reward	
  
4.	
  st	
  =	
  D,	
  Q(aD,	
  C)	
  
61	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
D
B
A
E
F
C
START
0
0
0
0
100
0
0
0
100
0
0
action with immediate
reward 0 and cost -1
action with immediate
reward 100 and cost -2
0
100
100
Introduction	
  to	
  Q-­‐Learning	
  
¤  Learning	
  agent	
  
¤  Internal	
  current	
  state	
  st	
  
¤  Pool	
  of	
  possible	
  acNons	
  
At(st)	
  
¤  Associated	
  Q-­‐value	
  to	
  each	
  
acNon	
  in	
  each	
  state	
  
¤  Immediate	
  reward	
  ater	
  
each	
  acNon	
  
¤  Learning	
  procedure:	
  
¤  select	
  an	
  acNon	
  
¤  execute	
  the	
  acNon	
  
¤  observe	
  reward	
  
¤  update	
  state	
  and	
  Q-­‐
values	
  
1.	
  select	
  an	
  ac+on	
  
2.	
  execute	
  the	
  ac+on	
  
3.	
  receive	
  reward	
  
4.	
  st	
  =	
  D,	
  Q(aD,	
  C)	
  
62	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
How	
  to	
  recompute	
  the	
  Q-­‐values?	
  
€
Q st +1,at( ) = Q st,at( )+ γ R st,at( )− Q st,at( )( )
new	
  Q-­‐Value	
   old	
  Q-­‐Value	
   immediate	
  reward	
  received	
  
a`er	
  execuGng	
  acGon	
  
a	
  in	
  state	
  s	
  at	
  Gme	
  t	
  
old	
  Q-­‐Value	
  learning	
  constant	
  
¡  Learning	
  constant:	
  avoid	
  oscillaNons	
  of	
  Q	
  values	
  at	
  the	
  
beginning	
  of	
  the	
  learning	
  process	
  (smooth	
  the	
  Q-­‐Values)	
  
¡  γ	
  ≈	
  	
  1	
   	
  :	
  new	
  Q-­‐Value	
  is	
  exchanged	
  with	
  the	
  reward	
  
¡  γ	
  ≈	
  0 	
  :	
  new	
  Q-­‐Value	
  is	
  the	
  same	
  as	
  the	
  old	
  one	
   63	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
How	
  to	
  deTine	
  the	
  reward	
  
function?	
  
•  Two	
  main	
  types:	
  
•  Pre-­‐defined	
  
•  Computed	
  ater	
  each	
  acNon	
  
•  Oten	
  used	
  :	
  
•  zero	
  awards	
  for	
  acNons	
  leading	
  directly	
  to	
  the	
  goal	
  
•  negaNve	
  for	
  all	
  others	
  (e.g.	
  -­‐1)	
  
•  Also	
  used:	
  
•  Manhaban	
  distance	
  to	
  the	
  goal	
  
•  Geographic	
  distance	
  to	
  the	
  goal	
  
•  Currently	
  best	
  available	
  Q	
  value	
  at	
  the	
  state	
  (!!)	
  
64	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
How	
  to	
  decide	
  which	
  action	
  to	
  
take?	
  
•  ExploraGon	
  strategy	
  (acGon	
  selecGon	
  policy)	
  
•  Cannot	
  be	
  random,	
  need	
  to	
  use	
  accumulated	
  knowledge	
  
•  Cannot	
  be	
  greedy,	
  need	
  to	
  explore	
  all	
  possibiliNes	
  	
  
•  Oten	
  used:	
  ε-­‐greedy	
  
•  select	
  a	
  random	
  acNon	
  with	
  probability	
  ε	
  
•  select	
  the	
  best	
  available	
  one	
  (best	
  Q-­‐value)	
  with	
  probability	
  (1-­‐ε)	
  
65	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Properties	
  of	
  Reinforcement	
  Learning	
  
•  Simple,	
  flexible	
  model	
  
•  Adapts	
  to	
  changing	
  environments,	
  re-­‐learns	
  quickly	
  
•  Copes	
  successfully	
  with	
  mobile	
  or	
  unreliable	
  environments	
  
•  Simple	
  to	
  design	
  and	
  implement	
  
•  Small	
  to	
  moderate	
  processing	
  and	
  memory	
  needs	
  
•  Can	
  be	
  implemented	
  fully	
  distributed	
  
66	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Reinforcement	
  Learning	
  for	
  BSNs?	
  
•  All	
  distributed	
  problems:	
  
•  RouNng	
  protocols	
  
•  Clustering	
  protocols	
  
•  Neighborhood	
  management	
  protocols	
  
•  Medium	
  Access	
  protocols	
  
•  Further	
  
•  Parameter	
  opNmizaNon	
  and	
  learning	
  
•  ApplicaNon-­‐level	
  cooperaNon	
  among	
  nodes	
  
67	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Applications	
  of	
  
Reinforcement	
  Learning	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
68	
  
Q-­‐Learning	
  in	
  WSN	
  Routing	
  
•  Agents:	
  the	
  packets	
  
•  States:	
  the	
  nodes	
  
•  AcGons:	
  next	
  hops	
  
•  q-­‐values:	
  esNmaNons	
  of	
  rouNng	
  costs	
  
•  IniGal	
  q-­‐values:	
  some	
  first	
  guess	
  about	
  rouNng	
  costs	
  
•  Reward	
  funcNon:	
  the	
  best	
  cost	
  esNmaNon	
  	
  
of	
  the	
  next	
  hop	
  
•  ExploraGon	
  strategy:	
  simple,	
  e.g.	
  ε-­‐greedy	
  
69	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Unicast	
  routing	
  with	
  RL	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
Init	
  all	
  q	
  values	
  to	
  10	
  (guess)	
  
A	
  
B	
  
C	
  
D	
  
Rewards:"
"r = qbest, if not sink"
"r = 0, if sink"
Send rewards to all neighbors
(broadcast)"
70	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
Init	
  all	
  q	
  values	
  to	
  10	
  (guess)	
  
A	
  
B	
  
C	
  
D	
  
QB = 10 (initial)"
QC = 10 (initial)"
Action selection policy"
(Exploration strategy)"
"ε-greedy"
Balance exploration/exploitation"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
B	
   10	
  
C	
   10	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
state	
   Q	
  
B	
   10	
  
A	
   10	
  
D	
   10	
  
71	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
QB = 10 (initial)"
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
Select	
  next	
  hop	
  (state)	
  B	
  
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
B	
   10	
  
C	
   10	
  
72	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
QA = 10 (initial)"
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
B	
  has	
  3	
  possible	
  next	
  hops,	
  with	
  qbest	
  =	
  10	
  
QC = 10 (initial)"
QD = 10 (initial)"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
73	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
B	
  selects	
  D	
  as	
  next	
  hop,	
  	
  
	
  
packet"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
74	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
B	
  selects	
  D	
  as	
  next	
  hop,	
  	
  
reward	
  =	
  qbest	
  =	
  10	
  
packet"
reward"
reward"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
75	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
B	
  selects	
  D	
  as	
  next	
  hop,	
  	
  
reward	
  =	
  qbest	
  =	
  10	
  
packet"
reward"
QB = cB + rB = 11"
QC = 10"
reward"
QA = 10"
QB = cB + rB = 11"
QD = 10"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
76	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
B	
  selects	
  D	
  as	
  next	
  hop,	
  	
  
reward	
  =	
  qbest	
  =	
  10	
  
packet"
reward"
QB = cB + rB = 11"
reward"
QB = cB + rB = 11"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   10	
  
state	
   Q	
  
B	
   11	
  
C	
   10	
  
state	
   Q	
  
B	
   11	
  
A	
   10	
  
D	
   10	
  
77	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
D	
  is	
  the	
  sink,	
  goal	
  reached	
  
	
  
Unicast	
  routing	
  with	
  RL	
  
78	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
D	
  is	
  the	
  sink,	
  goal	
  reached	
  
reward	
  =	
  0	
  (real	
  costs)	
  
reward"
reward"
Unicast	
  routing	
  with	
  RL	
  
79	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
D	
  is	
  the	
  sink,	
  goal	
  reached	
  
reward	
  =	
  0	
  (real	
  costs)	
  
reward"
QD = cB + rB = 1"
QD = cB + rB = 1"
reward"
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   1	
  
state	
   Q	
  
B	
   11	
  
A	
   10	
  
D	
   1	
  
80	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
State	
  of	
  the	
  network	
  ater	
  first	
  packet	
  
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
B	
   11	
  
C	
   10	
  
state	
   Q	
  
A	
   10	
  
C	
   10	
  
D	
   1	
  
state	
   Q	
  
B	
   11	
  
A	
   10	
  
D	
   1	
  
81	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
A	
  
B	
  
C	
  
D	
  
Sending	
  a	
  packet	
  from	
  A	
  to	
  D	
  
State	
  of	
  the	
  network	
  ater	
  many	
  packets	
  
Unicast	
  routing	
  with	
  RL	
  
state	
   Q	
  
B	
   2	
  
C	
   2	
  
state	
   Q	
  
A	
   3	
  
C	
   2	
  
D	
   1	
  
state	
   Q	
  
B	
   2	
  
A	
   3	
  
D	
   1	
  
How to go faster?!
Make better guesses!!
82	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Unicast	
  routing	
  with	
  RL	
  
Bene3its	
  
•  Simple	
  and	
  powerful	
  
•  Reacts	
  immediately	
  to	
  changes:	
  
•  New	
  rewards	
  propagate	
  quickly	
  
•  New	
  routes	
  are	
  learnt	
  
•  Only	
  necessary	
  changes	
  in	
  the	
  immediate	
  neighborhood	
  of	
  failure	
  
•  Route	
  iniNalizaNon	
  is	
  sink/source	
  driven	
  
•  Low	
  memory	
  and	
  processing	
  overhead	
  
83	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Unicast	
  Routing	
  with	
  RL	
  
•  Hops:	
  too	
  trivial	
  to	
  deserve	
  a	
  publicaNon…	
  
•  Maximum	
  aggregaNon	
  rate:	
  
P.	
  Beyens,	
  M.	
  Peeters,	
  K.	
  Steenhaut,	
  and	
  A.	
  Nowe.	
  RouGng	
  with	
  compression	
  in	
  
wireless	
  sensor	
  networks:	
  A	
  Q-­‐learning	
  approach.	
  In	
  Proceedings	
  of	
  the	
  5th	
  
European	
  Workshop	
  on	
  AdapNve	
  Agents	
  and	
  MulN-­‐Agent	
  Systems	
  (AAMAS),	
  page	
  
12pp.,	
  Paris,	
  France,	
  2005.	
  
•  Combined	
  with	
  geographic	
  rouNng:	
  
R.	
  Arroyo-­‐Valles,	
  R.	
  Alaiz-­‐Rodrigues,	
  A.	
  Guerrero-­‐Curieses,	
  and	
  J.	
  Cid-­‐	
  Suiero.	
  
	
  Q-­‐probabilisGc	
  rouGng	
  in	
  wireless	
  sensor	
  networks.	
  In	
  Proceedings	
  of	
  the	
  3rd	
  
InternaNonal	
  Conference	
  on	
  Intelligent	
  Sensors,	
  Sensor	
  Networks	
  and	
  InformaNon	
  
Processing	
  (ISSNIP),	
  pages	
  1–6,	
  Melbourne,	
  Australia,	
  2007.	
  
•  Minimum	
  delay:	
  
J.	
  A.	
  Boyan	
  and	
  M.	
  L.	
  Libman.	
  Packet	
  rouGng	
  in	
  dynamically	
  changing	
  networks:	
  
	
  A	
  reinforcement	
  learning	
  approach.	
  Advances	
  in	
  Neural	
  InformaNon	
  Processing	
  
Systems,	
  6:671–678,	
  1994.	
  
	
  
84	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
•  Challenges:	
  
•  AcNons	
  need	
  to	
  reflect	
  not	
  the	
  next	
  hop,	
  
but	
  HOPS	
  
•  Reward	
  funcNon	
  is	
  distributed	
  among	
  
several	
  neighbors	
  
•  Set	
  of	
  acNons	
  very	
  large	
  –	
  needs	
  a	
  lot	
  of	
  
exploraNon!	
  
•  SoluNon	
  steps:	
  
•  Separate	
  acNons	
  into	
  sub-­‐acNons	
  
•  Smart	
  iniNal	
  Q	
  values	
  
Multicast	
  Routing	
  with	
  RL	
  
A	
  
B	
  
C	
  
D	
  
A.	
  Förster	
  and	
  A.	
  L.	
  Murphy.	
  	
  
FROMS:	
  A	
  Failure	
  Tolerant	
  and	
  Mobility	
  Enabled	
  MulGcast	
  RouGng	
  Paradigm	
  
with	
  Reinforcement	
  Learning.	
  	
  
Elsevier	
  Ad	
  Hoc	
  Networks,	
  2011	
  
85	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
§  Localized	
  view	
  ater	
  sink	
  announcement	
  
§  The	
  minimum	
  esNmated	
  is	
  not	
  the	
  opNmal:	
  
§  best	
  esNmate	
  for	
  	
  (A,B):	
  3	
  +	
  3	
  -­‐	
  1	
  =	
  5	
  hops	
  
§  opNmal	
  for	
  	
   	
  (A,B):	
  4	
  hops	
  
A	
  -­‐	
  5	
  hops	
  
B	
  -­‐	
  3	
  hops	
  
A	
  -­‐	
  3	
  hops	
  
B	
  -­‐	
  5	
  hops	
  
2	
  
1	
   3	
  
A	
   B	
  
A	
  -­‐	
  4	
  hops	
  
B	
  -­‐	
  4	
  hops	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
   At,	
   Qt	
  
86	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
agent	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
   At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
87	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
agent	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
88	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
agent	
  
for	
  sink	
  A	
  
	
  
for	
  sink	
  B	
  
	
  
ai = {n1 for A}, {n3 for B} !
Actions:!
aj = {n2 for A,B} !
for	
  sinks	
  A,	
  B	
  
	
  
sub-actions	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
   At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  neighbors	
  to	
  reach	
  
all	
  sinks	
  
89	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
for	
  sink	
  A	
  
	
  
for	
  sink	
  B	
  
	
  
for	
  sinks	
  A,	
  B	
  
	
  
Q(n2,	
  {A,B})	
  
Q(n3,	
  {B})	
  Q(n1,	
  {A})	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
   At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  neighbors	
  
§  Q	
  Values:	
  associate	
  with	
  
§  each	
  sub-­‐acNon	
  
§  computable	
  for	
  each	
  (full)	
  acNon	
  
90	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
for	
  sinks	
  A	
  (4	
  hops)	
  
B	
  (4	
  hops)	
  
	
  
Q(n2,	
  {A,B})	
  =	
  4+4-­‐1	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
   At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  neighbors	
  
§  Q	
  Values:	
  associate	
  with	
  sub-­‐acNons,	
  	
  
compute	
  for	
  acNons	
  
§  IniNalize	
  Q	
  Values	
  with	
  number	
  of	
  esNmated	
  hops	
  
91	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  neighbors	
  
§  Q	
  Values:	
  associate	
  with	
  sub-­‐acNons,	
  	
  
compute	
  for	
  acNons	
  
§  IniNalize	
  Q	
  Values	
  with	
  number	
  of	
  esNmated	
  hops	
  
§  Environment:	
  all	
  other	
  nodes	
  
92	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
for	
  sinks	
  A,B	
  
	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  
§  Q	
  Values:	
  associate	
  with	
  sub-­‐acNons,	
  	
  
compute	
  for	
  acNons	
  
§  IniNalize	
  Q	
  Values	
  with	
  number	
  of	
  esNmated	
  hops	
  
§  Environment:	
  all	
  other	
  nodes	
  
93	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  
§  Q	
  Values:	
  associate	
  with	
  sub-­‐acNons,	
  	
  
compute	
  for	
  acNons	
  
§  IniNalize	
  Q	
  Values	
  with	
  number	
  of	
  esNmated	
  hops	
  
§  Environment:	
  all	
  other	
  nodes	
  
§  Reward:	
  the	
  best	
  available	
  Q	
  value	
  +	
  1	
  hop	
  
for	
  sinks	
  A,B	
  
	
  
	
  i	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
94	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
environmentagent
FROMS:	
  Multicast	
  routing	
  with	
  Q-­‐Learning	
  
2	
  
1	
   3	
  
§  Agent:	
  each	
  node	
  in	
  the	
  network	
  
§  State:	
  agent’s	
  neighbors	
  
§  Possible	
  acNons:	
  combinaNon	
  of	
  
§  Q	
  Values:	
  associate	
  with	
  sub-­‐acNons,	
  	
  
compute	
  for	
  acNons	
  
§  IniNalize	
  Q	
  Values	
  with	
  number	
  of	
  esNmated	
  hops	
  
§  Environment:	
  all	
  other	
  nodes	
  
§  Reward:	
  the	
  best	
  available	
  Q	
  value	
  +	
  1	
  hop	
  
§  Update	
  at	
  neighboring	
  nodes	
  (learn)	
  
for	
  sinks	
  A,B	
  
	
  
	
  i	
  
st+1,	
  Qt+1	
  
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
exploraNon	
  strategy	
  
update	
  rules	
  
reward	
  computaNon	
  
95	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Parameters	
  of	
  FROMS	
  
•  Possible	
  cost	
  funcNons:	
  
•  Any	
  cost	
  funcNon	
  defined	
  over	
  the	
  edges	
  or	
  
nodes	
  of	
  the	
  communicaNon	
  graph	
  
•  Here:	
  minimum	
  hops	
  to	
  desGnaGons	
  
•  Further:	
  minimum	
  delay	
  to	
  the	
  sinks;	
  minimum	
  
geographic	
  progress;	
  minimum	
  transmission	
  
power;	
  maximum	
  remaining	
  energy	
  on	
  the	
  
nodes;	
  combinaNons;	
  …	
  
•  ExploraNon	
  strategy	
  
•  Balance	
  exploraNon	
  against	
  exploitaNon	
  
•  Depend	
  on	
  the	
  used	
  cost	
  funcNon	
  
•  Memory	
  management	
  
•  HeurisNcs	
  for	
  pruning	
  the	
  available	
  acNons	
  and	
  
sub-­‐acNons	
  
st+1,	
  Qt+1	
   environmentagent
rt(st,at)	
  
at	
  
st,	
  
	
  
At,	
   Qt	
  
96	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Further	
  Applications	
  of	
  RL	
  to	
  
WSNs	
  
•  Clustering	
  for	
  WSNs:	
  
Anna	
  Förster	
  and	
  Amy	
  L.	
  Murphy,	
  Clique:	
  Role-­‐free	
  Clustering	
  with	
  Q-­‐
Learning	
  for	
  Wireless	
  Sensor	
  Networks,	
  in	
  Proceedings	
  of	
  the	
  29th	
  
InternaNonal	
  Conference	
  on	
  Distributed	
  CompuNng	
  Systems	
  (ICDCS)	
  2009,	
  
9pp.,	
  Canada,	
  June	
  2009	
  
•  MAC	
  protocols:	
  
Z.	
  Liu	
  and	
  I.	
  Elahanany.	
  RL-­‐MAC:	
  A	
  reinforcement	
  learning	
  based	
  MAC	
  
protocol	
  for	
  wireless	
  sensor	
  networks.	
  InternaNonal	
  Journal	
  on	
  Sensor	
  
Networks,	
  1(3/4):117–124,	
  2006.	
  
•  Best	
  coverage:	
  
M.W.M.	
  Seah,	
  C.K.	
  Tham,	
  K.	
  Srinivasan,	
  and	
  A.	
  Xin.	
  Achieving	
  coverage	
  
through	
  distributed	
  reinforcement	
  learning	
  in	
  wireless	
  sensor	
  networks.	
  In	
  
Proceedings	
  of	
  the	
  3rd	
  InternaNonal	
  Conference	
  on	
  Intelligent	
  Sensors,	
  
Sensor	
  Networks	
  and	
  InformaNon	
  Processing	
  (ISSNIP),	
  2007.	
   97	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Discussion	
  
Dr.	
  Anna	
  Förster,	
  Alessandro	
  Puia4	
  
BSN	
  Tutorial,	
  June	
  17th	
  2014	
  
Zürich,	
  Switzerland	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
98	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
required	
  memory	
  
for	
  on-­‐node	
  storage	
  	
  
required	
  processing	
  
on	
  the	
  node	
  or	
  base	
  
staNon	
  	
  
flexibility	
  of	
  the	
  
found	
  soluNon	
  to	
  
environmental	
  
changes	
  
opNmality	
  of	
  derived	
  
soluNon	
  compared	
  
to	
  a	
  centrally	
  
computed	
  opNmal	
  
soluNon	
  
required	
  
communicaNon	
  or	
  
processing	
  costs	
  
before	
  starNng	
  
normal	
  work	
  
addiNonal	
  
communicaNon	
  or	
  
processing	
  costs	
  
during	
  runNme	
  
99	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
100	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
101	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
102	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
103	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
104	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Comparison	
  of	
  properties	
  
105	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Comparison	
  of	
  properties	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
106	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Comparison	
  of	
  properties	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" Low	
  
"
Decision	
  Trees	
   medium	
   medium	
   low	
   high	
   high	
   low	
  
107	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Comparison	
  of	
  properties	
  
ML	
  Techniques! Memory! ComputaGon! Tolerance	
  to	
  
topology	
  
changes!
OpGmality! Init.costs! Add.	
  
costs!
Reinforcement	
  
Learning!
low" low" high" high" medium" low"
Swarm	
  
Intelligence!
medium" low" high" high" high" medium"
HeurisGcs! low" low" low/medium" medium" high" low"
Mobile	
  Agents! low" low" medium" low" low" medium
/high"
Neural	
  
networks!
medium" medium" low" high" high" low"
GeneGc	
  
algorithms!
high" medium" low" high" high" low"
Decision
Trees!
high" medium" low" high" high" low"
Distributed problems
Centralized and localized problems
Optimization
108	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Further	
  readings	
  
M.	
  Dorigo	
  and	
  T.	
  Stuetzle.	
  	
  
Ant	
  Colony	
  OpGmizaGon.	
  	
  
MIT	
  Press,	
  2004.	
  
J.	
  Kennedy	
  and	
  R.C.	
  Eberhart.	
  	
  
Swarm	
  Intelligence.	
  	
  
Morgan	
  Kaufmann,	
  2001.	
  
T.M.	
  Mitchell.	
  	
  
Machine	
  Learning.	
  	
  
McGraw-­‐Hill,	
  1997.	
  
A.	
  Förster.	
  	
  
Teaching	
  Networks	
  How	
  to	
  
Learn	
  
SVH	
  Verlag,	
  2009	
  
S.J.	
  Russell	
  and	
  P.	
  Norvig.	
  ArGficial	
  
Intelligence:	
  	
  
A	
  Modern	
  Approach.	
  	
  
PrenNce	
  Hall	
  InternaNonal,	
  2003.	
  
R.	
  S.	
  Subon	
  and	
  A.	
  G.	
  Barto.	
  	
  
Reinforcement	
  Learning:	
  	
  
An	
  IntroducGon.	
  	
  
The	
  MIT	
  Press,	
  March	
  1998.	
  	
  
109	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  
110	
  
OPEN	
  DISCUSSION	
  
111	
  
Copyright	
  A.Förster,	
  A.Puia4	
  2014	
  

More Related Content

Viewers also liked

"Introduction to Machine Learning and its Applications" at sapthgiri engineer...
"Introduction to Machine Learning and its Applications" at sapthgiri engineer..."Introduction to Machine Learning and its Applications" at sapthgiri engineer...
"Introduction to Machine Learning and its Applications" at sapthgiri engineer...Sachin Nagargoje
 
Machine Learning - Challenges, Learnings & Opportunities
Machine Learning - Challenges, Learnings & OpportunitiesMachine Learning - Challenges, Learnings & Opportunities
Machine Learning - Challenges, Learnings & OpportunitiesCodePolitan
 
MICS Band Wireless Body Sensor Network
MICS Band Wireless Body Sensor NetworkMICS Band Wireless Body Sensor Network
MICS Band Wireless Body Sensor NetworkMyo Naung Lwin
 
Decision Tree - C4.5&CART
Decision Tree - C4.5&CARTDecision Tree - C4.5&CART
Decision Tree - C4.5&CARTXueping Peng
 
3.5 model based clustering
3.5 model based clustering3.5 model based clustering
3.5 model based clusteringKrish_ver2
 
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEM
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEMINTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEM
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEMJOLLUSUDARSHANREDDY
 
K-means, EM and Mixture models
K-means, EM and Mixture modelsK-means, EM and Mixture models
K-means, EM and Mixture modelsVu Pham
 
Continuous heart rate and body temperature monitoring system using arduino un...
Continuous heart rate and body temperature monitoring system using arduino un...Continuous heart rate and body temperature monitoring system using arduino un...
Continuous heart rate and body temperature monitoring system using arduino un...Engr. Md. Siddiqur Rahman Tanveer
 
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textiel
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textielB&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textiel
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textielBouwmaterialen_Innovatie
 
B&i2013 donderdag 14.15_zaal_c_the freedom of form and material
B&i2013 donderdag 14.15_zaal_c_the freedom of form and materialB&i2013 donderdag 14.15_zaal_c_the freedom of form and material
B&i2013 donderdag 14.15_zaal_c_the freedom of form and materialBouwmaterialen_Innovatie
 

Viewers also liked (15)

"Introduction to Machine Learning and its Applications" at sapthgiri engineer...
"Introduction to Machine Learning and its Applications" at sapthgiri engineer..."Introduction to Machine Learning and its Applications" at sapthgiri engineer...
"Introduction to Machine Learning and its Applications" at sapthgiri engineer...
 
Machine Learning - Challenges, Learnings & Opportunities
Machine Learning - Challenges, Learnings & OpportunitiesMachine Learning - Challenges, Learnings & Opportunities
Machine Learning - Challenges, Learnings & Opportunities
 
MICS Band Wireless Body Sensor Network
MICS Band Wireless Body Sensor NetworkMICS Band Wireless Body Sensor Network
MICS Band Wireless Body Sensor Network
 
Decision Tree - C4.5&CART
Decision Tree - C4.5&CARTDecision Tree - C4.5&CART
Decision Tree - C4.5&CART
 
Wireless Body Area Network
Wireless Body Area NetworkWireless Body Area Network
Wireless Body Area Network
 
3.5 model based clustering
3.5 model based clustering3.5 model based clustering
3.5 model based clustering
 
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEM
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEMINTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEM
INTELLIGENT MOBILE BASED PATIENT MONITORING SYSTEM
 
K-means, EM and Mixture models
K-means, EM and Mixture modelsK-means, EM and Mixture models
K-means, EM and Mixture models
 
Continuous heart rate and body temperature monitoring system using arduino un...
Continuous heart rate and body temperature monitoring system using arduino un...Continuous heart rate and body temperature monitoring system using arduino un...
Continuous heart rate and body temperature monitoring system using arduino un...
 
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textiel
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textielB&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textiel
B&i2013 donderdag 15.15_zaal_b_duurzaam bouwen met (herwonnen) textiel
 
Udaya sekhar nagothu_responding_to_climate_and_economic_challenges
Udaya sekhar nagothu_responding_to_climate_and_economic_challengesUdaya sekhar nagothu_responding_to_climate_and_economic_challenges
Udaya sekhar nagothu_responding_to_climate_and_economic_challenges
 
Brigitte bagnol gender_food_and_nutrition_security
Brigitte bagnol gender_food_and_nutrition_securityBrigitte bagnol gender_food_and_nutrition_security
Brigitte bagnol gender_food_and_nutrition_security
 
Seo presentations
Seo presentationsSeo presentations
Seo presentations
 
Complex Intervention to Promote Uptake of School-based HPV Vaccination. Cris...
	Complex Intervention to Promote Uptake of School-based HPV Vaccination. Cris...	Complex Intervention to Promote Uptake of School-based HPV Vaccination. Cris...
Complex Intervention to Promote Uptake of School-based HPV Vaccination. Cris...
 
B&i2013 donderdag 14.15_zaal_c_the freedom of form and material
B&i2013 donderdag 14.15_zaal_c_the freedom of form and materialB&i2013 donderdag 14.15_zaal_c_the freedom of form and material
B&i2013 donderdag 14.15_zaal_c_the freedom of form and material
 

Similar to Machine Learning for Body Sensor Networks

ASPET 2014: eLearning, mLearning: Where Technology Meets Pedagogy
ASPET 2014: eLearning, mLearning: Where Technology Meets PedagogyASPET 2014: eLearning, mLearning: Where Technology Meets Pedagogy
ASPET 2014: eLearning, mLearning: Where Technology Meets PedagogyRodney B. Murray
 
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfEAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfLeah Condina
 
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfEAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfLeah Condina
 
Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10mattholley
 
Unit 1 research methods worksheet
Unit 1 research methods worksheet Unit 1 research methods worksheet
Unit 1 research methods worksheet lilycurtis
 
Data needs to be designed for decision makers.
Data needs to be designed for decision makers.Data needs to be designed for decision makers.
Data needs to be designed for decision makers.Tracy Allison Altman
 
Media research methods homework
Media research methods homeworkMedia research methods homework
Media research methods homeworkfrcew
 
Media research methods homework
Media research methods homeworkMedia research methods homework
Media research methods homeworkfrcew
 
Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10jacobw121
 
Science, mechanics and engineering, and agriculture & natural resources d sei...
Science, mechanics and engineering, and agriculture & natural resources d sei...Science, mechanics and engineering, and agriculture & natural resources d sei...
Science, mechanics and engineering, and agriculture & natural resources d sei...Iowa State University Extension 4-H
 
Unit 1 research methods worksheet
Unit 1 research methods worksheetUnit 1 research methods worksheet
Unit 1 research methods worksheetBethW99
 
Pedimap worlshop 20140612
Pedimap worlshop 20140612Pedimap worlshop 20140612
Pedimap worlshop 20140612fruitbreedomics
 
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne Matzick
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne MatzickSparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne Matzick
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne MatzickBrussels, Belgium
 
Syllabus in Methods of Research in Agroforestry.docx
Syllabus in Methods of Research in Agroforestry.docxSyllabus in Methods of Research in Agroforestry.docx
Syllabus in Methods of Research in Agroforestry.docxsheril8
 
Unit%201%20research%20methods%20worksheet%20for%20year%2010
Unit%201%20research%20methods%20worksheet%20for%20year%2010Unit%201%20research%20methods%20worksheet%20for%20year%2010
Unit%201%20research%20methods%20worksheet%20for%20year%2010oehmesteerd
 
Research Types
Research TypesResearch Types
Research Typesmarquerb
 

Similar to Machine Learning for Body Sensor Networks (20)

ASPET 2014: eLearning, mLearning: Where Technology Meets Pedagogy
ASPET 2014: eLearning, mLearning: Where Technology Meets PedagogyASPET 2014: eLearning, mLearning: Where Technology Meets Pedagogy
ASPET 2014: eLearning, mLearning: Where Technology Meets Pedagogy
 
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfEAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
 
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdfEAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
EAPP Quarter2 - Module4_ Data Collection Methods & Tools for Research.pdf
 
Mills Chapter 04
Mills Chapter 04Mills Chapter 04
Mills Chapter 04
 
Mills Chapter 06
Mills Chapter 06Mills Chapter 06
Mills Chapter 06
 
Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10
 
Unit 1 research methods worksheet
Unit 1 research methods worksheet Unit 1 research methods worksheet
Unit 1 research methods worksheet
 
Data needs to be designed for decision makers.
Data needs to be designed for decision makers.Data needs to be designed for decision makers.
Data needs to be designed for decision makers.
 
Media research methods homework
Media research methods homeworkMedia research methods homework
Media research methods homework
 
Media research methods homework
Media research methods homeworkMedia research methods homework
Media research methods homework
 
Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10Unit 1 research methods worksheet for year 10
Unit 1 research methods worksheet for year 10
 
Science, mechanics and engineering, and agriculture & natural resources d sei...
Science, mechanics and engineering, and agriculture & natural resources d sei...Science, mechanics and engineering, and agriculture & natural resources d sei...
Science, mechanics and engineering, and agriculture & natural resources d sei...
 
Unit 1 research methods worksheet
Unit 1 research methods worksheetUnit 1 research methods worksheet
Unit 1 research methods worksheet
 
Pedimap worlshop 20140612
Pedimap worlshop 20140612Pedimap worlshop 20140612
Pedimap worlshop 20140612
 
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne Matzick
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne MatzickSparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne Matzick
Sparkling IBSE: Hummingbird seeks Bromeliad, Sonja Eilers and Yvonne Matzick
 
Syllabus in Methods of Research in Agroforestry.docx
Syllabus in Methods of Research in Agroforestry.docxSyllabus in Methods of Research in Agroforestry.docx
Syllabus in Methods of Research in Agroforestry.docx
 
Unit%201%20research%20methods%20worksheet%20for%20year%2010
Unit%201%20research%20methods%20worksheet%20for%20year%2010Unit%201%20research%20methods%20worksheet%20for%20year%2010
Unit%201%20research%20methods%20worksheet%20for%20year%2010
 
Research Types
Research TypesResearch Types
Research Types
 
Audience research
Audience researchAudience research
Audience research
 
Audience research
Audience researchAudience research
Audience research
 

Recently uploaded

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesPrabhanshu Chaturvedi
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 

Recently uploaded (20)

UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Glass Ceramics: Processing and Properties
Glass Ceramics: Processing and PropertiesGlass Ceramics: Processing and Properties
Glass Ceramics: Processing and Properties
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 

Machine Learning for Body Sensor Networks

  • 1. Machine  Learning  for  BSN   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   1  
  • 2. Presenters   Dr.  Anna  Förster   Researcher  at  SUPSI   anna.foerster@ieee.org   Alessandro  Puia<   Senior  researcher  at  SUPSI   alessandro.puia<@supsi.ch   2   Copyright  A.Förster,  A.Puia4  2014  
  • 3. Schedule  and  outlook   •  Data  in  Body  Sensor  Networks   •  What  is  Machine  Learning?   •  Decision  Trees  and  their  applicaNons   •  Discussion   •  Break   •  Neural  networks  and  their  applicaNons   •  Reinforcement  Learning  and  its  applicaNons   •  Other  Machine  Learning  techniques   •  Comparison  of  ML  for  BSNs   •  Open  discussion!   3   Copyright  A.Förster,  A.Puia4  2014  
  • 4. BSN:  The  Challenges   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   4  
  • 5. BSN  vs  WSN   DC-DC Sensors ADC MCU Memory Wireless Battery Node   Architecture   Network   Architecture   DC-DC Sensors ADC MCU Memory Wireless Battery DC-DC Sensors ADC MCU Memory Wireless Battery DC-DC Sensors ADC MCU Memory Wireless Battery SINK   5   Copyright  A.Förster,  A.Puia4  2014  
  • 6. BSN  vs  WSN:  Number  of  Nodes     WSN   BSN   6   Copyright  A.Förster,  A.Puia4  2014  
  • 7. BSN  vs  WSN:  Parameters   WSN   BSN   Almost  homogeneous:  same  sensors  in  every  node   Extremely  heterogeneous:  different  sensor  for  each   node   Temperature   Humidity   Light   Body   Temperature   EEG   EMG   SPO2   7   Copyright  A.Förster,  A.Puia4  2014  
  • 8. BSN  vs  WSN:  Other  requirements   8   Requirements   WSN   BSN   Babery  life   Years   App.  dependent   Network  topology   Mostly  Mesh   Star   Mobility   StaNc   Mobile   ComputaNon   Low   Low,  Medium,  High   Frequency   Low   High   Form  factor   Almost  indifferent   Hidden,  Invisible   “Wearability”   -­‐-­‐   Mandatory   Copyright  A.Förster,  A.Puia4  2014  
  • 9. BSN  Form  Factor   9   hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html   hbp://blog.broadcom.com/wireless-­‐technology/   Copyright  A.Förster,  A.Puia4  2014  
  • 10. BSN  Form  Factor   10   hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html   hbp://blog.broadcom.com/wireless-­‐technology/   Copyright  A.Förster,  A.Puia4  2014  
  • 11. BSN  Form  Factor   11   hbp://cnbi.epfl.ch/page-­‐39979-­‐en.html   hbp://blog.broadcom.com/wireless-­‐technology/   Copyright  A.Förster,  A.Puia4  2014  
  • 12. BSN  Devices   12   Copyright  A.Förster,  A.Puia4  2014  
  • 13. BSN  Applications     13   INTERNETT1 T1T1 T1 T1 hbp://si.epfl.ch/page-­‐34870-­‐en.html   Patel  at  al,  2012   hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/   Copyright  A.Förster,  A.Puia4  2014  
  • 14. BSN  Applications     14   INTERNETT1 T1T1 T1 T1 hbp://si.epfl.ch/page-­‐34870-­‐en.html   Patel  at  al,  2012   hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/   Copyright  A.Förster,  A.Puia4  2014  
  • 15. BSN  Applications     15   INTERNETT1 T1T1 T1 T1 hbp://si.epfl.ch/page-­‐34870-­‐en.html   Patel  at  al,  2012   hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/   Copyright  A.Förster,  A.Puia4  2014  
  • 16. BSN  Applications     16   INTERNETT1 T1T1 T1 T1 hbp://si.epfl.ch/page-­‐34870-­‐en.html   Patel  at  al,  2012   hbp://technabob.com/blog/2013/09/04/priovr-­‐full-­‐body-­‐sensor/   Copyright  A.Förster,  A.Puia4  2014  
  • 17. BSN:  In  Summary   •  High  heterogeneous  data   •  High  sampling/sending  frequency   •  Small  number  of  nodes  (even  only  one)   •  Many  applicaNons:  not  only  e-­‐health   Copyright  A.Förster,  A.Puia4  2014   17  
  • 18. Introduction  to   Machine  Learning   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   18  
  • 19. Major  goal   Produce  models  (rules,   paberns)     from  data     ProperGes   Robust  and  flexible   Global  models  from  local  data   No  environmental  model     Machine  Learning   …   Neural   Networks   Reinforcement   Learning   GeneNc   Algorithms   Decision   Trees   Swarm   Intelligence   Copyright  A.Förster,  A.Puia4  2014   Clustering   19  
  • 20. Classes  of  Machine  Learning  Algorithms   Copyright  A.Förster,  A.Puia4  2014   Pre-­‐labeled   Training  Dataset   TesNng  Dataset   (Usage)   Supervised   learning   Model   Unsupervised   learning   Model   Non-­‐labeled   data  item   Reinforcement   learning   Agent  / Model   Environment   20  
  • 21. Online  against  Batch  Learning   Training  dataset   Use  the  model   Batch  Learning   Model   Use  the  model  Online  learning   Model    Next  data   item   Copyright  A.Förster,  A.Puia4  2014   21  
  • 22. Introduction  to   Decision  Trees   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   22  
  • 23. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   form    =    round   color  =    red,  orange,  green   taste  =  sweet   apple  orange   ?   23   Copyright  A.Förster,  A.Puia4  2014  
  • 24. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   form    =    round   color  =    red,  orange,  green   taste  =  sweet   apple  orange   form    =    ?   color  =    ?   taste  =  ?   24   Copyright  A.Förster,  A.Puia4  2014  
  • 25. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   form    =    round   color  =    red,  orange,  green   taste  =  sweet   apple  orange   form    =    round   color  =    ?   taste  =  ?   ???   25   Copyright  A.Förster,  A.Puia4  2014  
  • 26. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   apple  orange   form    =    round   color  =    orange   taste  =  ?   ???   form    =    round   color  =    red,  orange,  green   taste  =  sweet   26   Copyright  A.Förster,  A.Puia4  2014  
  • 27. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   apple  orange   form    =    round   color  =    orange   taste  =  sweet   apple!   form    =    round   color  =    red,  orange,  green   taste  =  sweet   27   Copyright  A.Förster,  A.Puia4  2014  
  • 28. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   apple  orange   form    =    round   color  =    orange   taste  =  sweet   apple!   form    =    round   color  =    red,  orange,  green   taste  =  sweet   3  quesNons!  28   Copyright  A.Förster,  A.Puia4  2014  
  • 29. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   apple  orange   taste  =  sweet   color  =    ?   form    =    ?     apple!   form    =    round   color  =    red,  orange,  green   taste  =  sweet   29   Copyright  A.Förster,  A.Puia4  2014  
  • 30. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   form    =    round   color  =    orange   taste  =  sour   apple  orange   taste  =  sweet   color  =    ?   form    =    ?     apple!   form    =    round   color  =    red,  orange,  green   taste  =  sweet   1  quesNon!   30   Copyright  A.Förster,  A.Puia4  2014  
  • 31. Decision  Tree  Learning   •  Supervised  learning  approach  (use  pre-­‐labeled  dataset)   •  Maps  observaNons  (features,  abributes)  into  classes  (decisions)   •  Very  powerful  and  efficient  technique  to  analyze  large  and  fuzzy   datasets   Is  male?   Is  age  <  9.5?   Family  on  board  >  2.5?   survived   survived  died   died   0.73  :  36%   0.89  :  2%  0.05  :  2%   0.17  :  61%   Probability  of  survival  on  the  Titanic  :  %observa@ons   31   Copyright  A.Förster,  A.Puia4  2014  
  • 32. Decision  Based  Learning   •  Classifying  objects  into  groups  based  on  abribute  pairs   •  Which  quesNons  to  ask  first,  which  next?   •  Compute  informaNon  gain  of  abributes   •  How  well  does  an  abribute  separates     the  tesNng  set?     32   Copyright  A.Förster,  A.Puia4  2014  
  • 33. C4.5  algorithm   Goal:  construct  a  decision  tree  with  aVribute  at  each  node   1.  Start  at  root   2.  Find  the  abribute  with  maximal  informaNon  gain,  which  is   not  an  ancestor  of  the  node   3.  Put  a  child  node  for  each  value  of  this  abribute   4.  Add  all  examples    from  the  training  set  to  the   corresponding  child   5.  If  all  examples  of  a  child  belong  to  the  same  class,  put  the   class  there  and  go  back  up  in  the  tree   6.  If  not,  conNnue  with  step  2  while  abributes  are  let   7.  When  no  more  abributes  are  let,  put  the  classificaNon  of   the  majority  of  the  examples  to  this  node   33   Copyright  A.Förster,  A.Puia4  2014  
  • 34. C4.5  algorithm:  Example   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  InformaNon  gain  of  FORM:  zero   ¡  InformaNon  gain  of  COLOR:  more   34   Copyright  A.Förster,  A.Puia4  2014  
  • 35. C4.5  algorithm:  Example   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  InformaNon  gain  of  FORM:  zero   ¡  InformaNon  gain  of  COLOR:  more   color   red   green   orange   yellow   35   Copyright  A.Förster,  A.Puia4  2014  
  • 36. C4.5  algorithm:  Example   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  InformaNon  gain  of  FORM:  zero   ¡  InformaNon  gain  of  COLOR:  more   color   red   green   orange   yellow   1   4   2,3,6   5   36   Copyright  A.Förster,  A.Puia4  2014  
  • 37. C4.5  algorithm:  Example   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  InformaNon  gain  of  FORM:  zero   ¡  InformaNon  gain  of  COLOR:  more   color   red   green   orange   yellow   1   4   2,3,6   5   apple   apple   apple  ?   37   Copyright  A.Förster,  A.Puia4  2014  
  • 38. C4.5  algorithm:  Example   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  InformaNon  gain  of  FORM:  zero   ¡  InformaNon  gain  of  COLOR:  more   ¡  Only  let  abribute:  FORM   color   red   green   orange   yellow   1   4   2,3,6   5   apple   apple   apple   form   round   2,3,6   orange   38   Copyright  A.Förster,  A.Puia4  2014  
  • 39. C4.5  algorithm:  Problems   example   form   color   class   1   round   red   apple   2   round   orange   apple   3   round   orange   orange   4   round   green   apple   5   round   yellow   apple   6   round   orange   orange   ¡  All  orange  apples  will  be  classified  as  oranges   ¡  Leaf  node  FORM  unnecessary   ¡  DECISION  TREE  DEPENDS  ON  TRAINING  SET   color   red   green   orange   yellow   1   4   2,3,6   5   apple   apple   apple   form   round   2,3,6   orange   39   Copyright  A.Förster,  A.Puia4  2014  
  • 40. Information  Gain   •  Input  are  T  tuples  (classified  samples  with  K  features):       •  The  informaNon  gain  of  feature  a  is  defined  in  terms  of  the   entropy  as  follows:   x,Y( )= x1, x2, x3,..., xk,Y( ) xa ∈ vals a( ),Y = class IG T,a( )= H T( )− x ∈ T xa = v{ } T ⋅ H x ∈ T xa = v{ }( )∑ H(T) = − pi log2 i=1 Y ∑ (pi ) Entropy  of  the   full  dataset   Entropies  of  the  sub-­‐ datasets  “MALE”  and   “FEMALE”   40   Copyright  A.Förster,  A.Puia4  2014  
  • 41. Properties  of  Decision  Based  Learning   •  Good  for  fast  classificaNon  of  fuzzy,  overlapping  groups   •  Tree  generated  only  once   •  Well-­‐suited  for  staNc,  but  error-­‐prone  environments   •  Needs  a  good  large  training  set   •  Moderate  processing  and  large  memory  requirements  (to   hold  the  training  set)   41   Copyright  A.Förster,  A.Puia4  2014  
  • 42. Incremental  Decision  Trees   •  Hoeffding  tree  algorithm   •  Hoeffding  bound  guarantees   that  if         Xa  is  indeed  the  best  feature   with  some  small  probability     Copyright  A.Förster,  A.Puia4  2014   Pre   DT   +/-­‐   WSN   IDT   Disc   Classify  the  new  sample   Save  the  sample  at  the  leaf   Compute  IG  for  each  feature  X   All  samples   belong  to  same   class?   IG(Xa )− IG(Xb ) < ε Split  the  node  according  to   feature  Xa   true   false   IG(Xa )− IG(Xb ) < ε [Domingos:2000]  P.  Domingos  and  G.  Hulten:  Mining   High-­‐speed  Data  Streams,  in  Proceedings  of  the  6th   ACM  Interna@onal  Conference  on  Knowledge  Discovery   and  Data  Mining  (SIGKDD)     42  
  • 43. Neural  Networks  –     Introduction  and  Applications   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   43  
  • 44. Background   •  Simplified  (extremely!)  model  of  the  human  brain  and  its   neurons   44   Copyright  A.Förster,  A.Puia4  2014  
  • 45. Fundamentals   45   Copyright  A.Förster,  A.Puia4  2014  
  • 46. Perceptron   •  Simplest  form  of  neural  network   •  Computes  linear  funcNons  only   •  AcNvaNon  funcNon  is  simple  threshold   •  Where  do  the  weights  come  from?   46   Copyright  A.Förster,  A.Puia4  2014  
  • 47. Perceptron  Learning   1.  Present  the  network  with  an  input   2.  Calculate  its  current  output   3.  Compare  with  real  output  (supervised  learning!)   4.  Correct  the  weights  to  minimize  the  error  between  the   computer  output  and  the  desired  one   wnew  =  wold  –  α*(desired-­‐output)*input,  α  –  learning  constant   47   Copyright  A.Förster,  A.Puia4  2014  
  • 48. Multi-­‐Layer  Networks   48   •  Generalizes  all   possible  funcNons   •  Uses  the  logisNc   funcNon  (sigmoid)  for   acNvaNon   •  Back  propagaNon  is   the  most  oten  used   weight  learning   method   Copyright  A.Förster,  A.Puia4  2014  
  • 49. Applications   •  Very  well  suited  for   •  Pabern  recogniNon,  image  recogniNon   •  Noise  cancelling   •  PredicNon  (based  on  extrapolated  data)   •  ProperNes:   •  Supervised  learning,  requires  a  large  training  set   •  Memory  and  processing  intensive  training   •  TesNng  is  also  processing  intensive   •  Examples  from  BSN:   •  Paberns  recogniNon  based  on  mulN-­‐modal  data   •  Cardio-­‐vascular  problems,  heart  abacks     •  Falls   •  AcNviNes   49   Zhanpeng  Jin,  Yuwen  Sun,  and  Allen  C.  Cheng:  PredicNng  Cardiovascular  Disease  from  Real-­‐Time  Electrocardiographic   Monitoring:  An  AdapNve  Machine  Learning  Approach  on  a  Cell  Phone,  IEEE  EMBS  2009.   Copyright  A.Förster,  A.Puia4  2014  
  • 50. Introduction  to   Reinforcement  Learning   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   50  
  • 51. Reinforcement  Learning   •  A  learning  agent   •  A  pool  of  possible  acNons   •  Goodness  of  acNons   •  A  reward  funcNon   •  Select  one  acNon   •  Execute  the  acNon   •  Observe  the  reward   •  Correct  the  goodness  of  the  executed  acNon   51   Copyright  A.Förster,  A.Puia4  2014  
  • 52. Introduction  to  Q-­‐Learning   52   Copyright  A.Förster,  A.Puia4  2014  
  • 53. Introduction  to  Q-­‐Learning   ¤  Learning  agent   53   Copyright  A.Förster,  A.Puia4  2014  
  • 54. D B A E F C START Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   54   Copyright  A.Förster,  A.Puia4  2014  
  • 55. D B A E F C START Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   55   Copyright  A.Förster,  A.Puia4  2014  
  • 56. Introduction  to  Q-­‐Learning   D B A E F C START ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   56   Copyright  A.Förster,  A.Puia4  2014  
  • 57. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon     1.  select  an  ac+on   57   Copyright  A.Förster,  A.Puia4  2014  
  • 58. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon   ¤  Learning  procedure:   ¤  select  an  acNon  1.  select  an  ac+on   58   Copyright  A.Förster,  A.Puia4  2014  
  • 59. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon   ¤  Learning  procedure:   ¤  select  an  acNon   ¤  execute  the  acNon   1.  select  an  ac+on   2.  execute  the  ac+on   59   Copyright  A.Förster,  A.Puia4  2014  
  • 60. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon   ¤  Learning  procedure:   ¤  select  an  acNon   ¤  execute  the  acNon   ¤  observe  reward   1.  select  an  ac+on   2.  execute  the  ac+on   3.  receive  reward   60   Copyright  A.Förster,  A.Puia4  2014  
  • 61. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon   ¤  Learning  procedure:   ¤  select  an  acNon   ¤  execute  the  acNon   ¤  observe  reward   ¤  update  state  and  Q-­‐ values   1.  select  an  ac+on   2.  execute  the  ac+on   3.  receive  reward   4.  st  =  D,  Q(aD,  C)   61   Copyright  A.Förster,  A.Puia4  2014  
  • 62. D B A E F C START 0 0 0 0 100 0 0 0 100 0 0 action with immediate reward 0 and cost -1 action with immediate reward 100 and cost -2 0 100 100 Introduction  to  Q-­‐Learning   ¤  Learning  agent   ¤  Internal  current  state  st   ¤  Pool  of  possible  acNons   At(st)   ¤  Associated  Q-­‐value  to  each   acNon  in  each  state   ¤  Immediate  reward  ater   each  acNon   ¤  Learning  procedure:   ¤  select  an  acNon   ¤  execute  the  acNon   ¤  observe  reward   ¤  update  state  and  Q-­‐ values   1.  select  an  ac+on   2.  execute  the  ac+on   3.  receive  reward   4.  st  =  D,  Q(aD,  C)   62   Copyright  A.Förster,  A.Puia4  2014  
  • 63. How  to  recompute  the  Q-­‐values?   € Q st +1,at( ) = Q st,at( )+ γ R st,at( )− Q st,at( )( ) new  Q-­‐Value   old  Q-­‐Value   immediate  reward  received   a`er  execuGng  acGon   a  in  state  s  at  Gme  t   old  Q-­‐Value  learning  constant   ¡  Learning  constant:  avoid  oscillaNons  of  Q  values  at  the   beginning  of  the  learning  process  (smooth  the  Q-­‐Values)   ¡  γ  ≈    1    :  new  Q-­‐Value  is  exchanged  with  the  reward   ¡  γ  ≈  0  :  new  Q-­‐Value  is  the  same  as  the  old  one   63   Copyright  A.Förster,  A.Puia4  2014  
  • 64. How  to  deTine  the  reward   function?   •  Two  main  types:   •  Pre-­‐defined   •  Computed  ater  each  acNon   •  Oten  used  :   •  zero  awards  for  acNons  leading  directly  to  the  goal   •  negaNve  for  all  others  (e.g.  -­‐1)   •  Also  used:   •  Manhaban  distance  to  the  goal   •  Geographic  distance  to  the  goal   •  Currently  best  available  Q  value  at  the  state  (!!)   64   Copyright  A.Förster,  A.Puia4  2014  
  • 65. How  to  decide  which  action  to   take?   •  ExploraGon  strategy  (acGon  selecGon  policy)   •  Cannot  be  random,  need  to  use  accumulated  knowledge   •  Cannot  be  greedy,  need  to  explore  all  possibiliNes     •  Oten  used:  ε-­‐greedy   •  select  a  random  acNon  with  probability  ε   •  select  the  best  available  one  (best  Q-­‐value)  with  probability  (1-­‐ε)   65   Copyright  A.Förster,  A.Puia4  2014  
  • 66. Properties  of  Reinforcement  Learning   •  Simple,  flexible  model   •  Adapts  to  changing  environments,  re-­‐learns  quickly   •  Copes  successfully  with  mobile  or  unreliable  environments   •  Simple  to  design  and  implement   •  Small  to  moderate  processing  and  memory  needs   •  Can  be  implemented  fully  distributed   66   Copyright  A.Förster,  A.Puia4  2014  
  • 67. Reinforcement  Learning  for  BSNs?   •  All  distributed  problems:   •  RouNng  protocols   •  Clustering  protocols   •  Neighborhood  management  protocols   •  Medium  Access  protocols   •  Further   •  Parameter  opNmizaNon  and  learning   •  ApplicaNon-­‐level  cooperaNon  among  nodes   67   Copyright  A.Förster,  A.Puia4  2014  
  • 68. Applications  of   Reinforcement  Learning   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   68  
  • 69. Q-­‐Learning  in  WSN  Routing   •  Agents:  the  packets   •  States:  the  nodes   •  AcGons:  next  hops   •  q-­‐values:  esNmaNons  of  rouNng  costs   •  IniGal  q-­‐values:  some  first  guess  about  rouNng  costs   •  Reward  funcNon:  the  best  cost  esNmaNon     of  the  next  hop   •  ExploraGon  strategy:  simple,  e.g.  ε-­‐greedy   69   Copyright  A.Förster,  A.Puia4  2014  
  • 70. Unicast  routing  with  RL   Sending  a  packet  from  A  to  D   Init  all  q  values  to  10  (guess)   A   B   C   D   Rewards:" "r = qbest, if not sink" "r = 0, if sink" Send rewards to all neighbors (broadcast)" 70   Copyright  A.Förster,  A.Puia4  2014  
  • 71. Sending  a  packet  from  A  to  D   Init  all  q  values  to  10  (guess)   A   B   C   D   QB = 10 (initial)" QC = 10 (initial)" Action selection policy" (Exploration strategy)" "ε-greedy" Balance exploration/exploitation" Unicast  routing  with  RL   state   Q   B   10   C   10   state   Q   A   10   C   10   D   10   state   Q   B   10   A   10   D   10   71   Copyright  A.Förster,  A.Puia4  2014  
  • 72. A   B   C   D   QB = 10 (initial)" Sending  a  packet  from  A  to  D   Select  next  hop  (state)  B   Unicast  routing  with  RL   state   Q   B   10   C   10   72   Copyright  A.Förster,  A.Puia4  2014  
  • 73. A   B   C   D   QA = 10 (initial)" Sending  a  packet  from  A  to  D   B  has  3  possible  next  hops,  with  qbest  =  10   QC = 10 (initial)" QD = 10 (initial)" Unicast  routing  with  RL   state   Q   A   10   C   10   D   10   73   Copyright  A.Förster,  A.Puia4  2014  
  • 74. A   B   C   D   Sending  a  packet  from  A  to  D   B  selects  D  as  next  hop,       packet" Unicast  routing  with  RL   state   Q   A   10   C   10   D   10   74   Copyright  A.Förster,  A.Puia4  2014  
  • 75. A   B   C   D   Sending  a  packet  from  A  to  D   B  selects  D  as  next  hop,     reward  =  qbest  =  10   packet" reward" reward" Unicast  routing  with  RL   state   Q   A   10   C   10   D   10   75   Copyright  A.Förster,  A.Puia4  2014  
  • 76. A   B   C   D   Sending  a  packet  from  A  to  D   B  selects  D  as  next  hop,     reward  =  qbest  =  10   packet" reward" QB = cB + rB = 11" QC = 10" reward" QA = 10" QB = cB + rB = 11" QD = 10" Unicast  routing  with  RL   state   Q   A   10   C   10   D   10   76   Copyright  A.Förster,  A.Puia4  2014  
  • 77. A   B   C   D   Sending  a  packet  from  A  to  D   B  selects  D  as  next  hop,     reward  =  qbest  =  10   packet" reward" QB = cB + rB = 11" reward" QB = cB + rB = 11" Unicast  routing  with  RL   state   Q   A   10   C   10   D   10   state   Q   B   11   C   10   state   Q   B   11   A   10   D   10   77   Copyright  A.Förster,  A.Puia4  2014  
  • 78. A   B   C   D   Sending  a  packet  from  A  to  D   D  is  the  sink,  goal  reached     Unicast  routing  with  RL   78   Copyright  A.Förster,  A.Puia4  2014  
  • 79. A   B   C   D   Sending  a  packet  from  A  to  D   D  is  the  sink,  goal  reached   reward  =  0  (real  costs)   reward" reward" Unicast  routing  with  RL   79   Copyright  A.Förster,  A.Puia4  2014  
  • 80. A   B   C   D   Sending  a  packet  from  A  to  D   D  is  the  sink,  goal  reached   reward  =  0  (real  costs)   reward" QD = cB + rB = 1" QD = cB + rB = 1" reward" Unicast  routing  with  RL   state   Q   A   10   C   10   D   1   state   Q   B   11   A   10   D   1   80   Copyright  A.Förster,  A.Puia4  2014  
  • 81. A   B   C   D   Sending  a  packet  from  A  to  D   State  of  the  network  ater  first  packet   Unicast  routing  with  RL   state   Q   B   11   C   10   state   Q   A   10   C   10   D   1   state   Q   B   11   A   10   D   1   81   Copyright  A.Förster,  A.Puia4  2014  
  • 82. A   B   C   D   Sending  a  packet  from  A  to  D   State  of  the  network  ater  many  packets   Unicast  routing  with  RL   state   Q   B   2   C   2   state   Q   A   3   C   2   D   1   state   Q   B   2   A   3   D   1   How to go faster?! Make better guesses!! 82   Copyright  A.Förster,  A.Puia4  2014  
  • 83. Unicast  routing  with  RL   Bene3its   •  Simple  and  powerful   •  Reacts  immediately  to  changes:   •  New  rewards  propagate  quickly   •  New  routes  are  learnt   •  Only  necessary  changes  in  the  immediate  neighborhood  of  failure   •  Route  iniNalizaNon  is  sink/source  driven   •  Low  memory  and  processing  overhead   83   Copyright  A.Förster,  A.Puia4  2014  
  • 84. Unicast  Routing  with  RL   •  Hops:  too  trivial  to  deserve  a  publicaNon…   •  Maximum  aggregaNon  rate:   P.  Beyens,  M.  Peeters,  K.  Steenhaut,  and  A.  Nowe.  RouGng  with  compression  in   wireless  sensor  networks:  A  Q-­‐learning  approach.  In  Proceedings  of  the  5th   European  Workshop  on  AdapNve  Agents  and  MulN-­‐Agent  Systems  (AAMAS),  page   12pp.,  Paris,  France,  2005.   •  Combined  with  geographic  rouNng:   R.  Arroyo-­‐Valles,  R.  Alaiz-­‐Rodrigues,  A.  Guerrero-­‐Curieses,  and  J.  Cid-­‐  Suiero.    Q-­‐probabilisGc  rouGng  in  wireless  sensor  networks.  In  Proceedings  of  the  3rd   InternaNonal  Conference  on  Intelligent  Sensors,  Sensor  Networks  and  InformaNon   Processing  (ISSNIP),  pages  1–6,  Melbourne,  Australia,  2007.   •  Minimum  delay:   J.  A.  Boyan  and  M.  L.  Libman.  Packet  rouGng  in  dynamically  changing  networks:    A  reinforcement  learning  approach.  Advances  in  Neural  InformaNon  Processing   Systems,  6:671–678,  1994.     84   Copyright  A.Förster,  A.Puia4  2014  
  • 85. •  Challenges:   •  AcNons  need  to  reflect  not  the  next  hop,   but  HOPS   •  Reward  funcNon  is  distributed  among   several  neighbors   •  Set  of  acNons  very  large  –  needs  a  lot  of   exploraNon!   •  SoluNon  steps:   •  Separate  acNons  into  sub-­‐acNons   •  Smart  iniNal  Q  values   Multicast  Routing  with  RL   A   B   C   D   A.  Förster  and  A.  L.  Murphy.     FROMS:  A  Failure  Tolerant  and  Mobility  Enabled  MulGcast  RouGng  Paradigm   with  Reinforcement  Learning.     Elsevier  Ad  Hoc  Networks,  2011   85   Copyright  A.Förster,  A.Puia4  2014  
  • 86. FROMS:  Multicast  routing  with  Q-­‐Learning   §  Localized  view  ater  sink  announcement   §  The  minimum  esNmated  is  not  the  opNmal:   §  best  esNmate  for    (A,B):  3  +  3  -­‐  1  =  5  hops   §  opNmal  for      (A,B):  4  hops   A  -­‐  5  hops   B  -­‐  3  hops   A  -­‐  3  hops   B  -­‐  5  hops   2   1   3   A   B   A  -­‐  4  hops   B  -­‐  4  hops   st+1,  Qt+1   environmentagent rt(st,at)   at   st,   At,   Qt   86   Copyright  A.Förster,  A.Puia4  2014  
  • 87. FROMS:  Multicast  routing  with  Q-­‐Learning   agent   st+1,  Qt+1   environmentagent rt(st,at)   at   st,   At,   Qt   §  Agent:  each  node  in  the  network   87   Copyright  A.Förster,  A.Puia4  2014  
  • 88. FROMS:  Multicast  routing  with  Q-­‐Learning   agent   st+1,  Qt+1   environmentagent rt(st,at)   at   st,     At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   88   Copyright  A.Förster,  A.Puia4  2014  
  • 89. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   agent   for  sink  A     for  sink  B     ai = {n1 for A}, {n3 for B} ! Actions:! aj = {n2 for A,B} ! for  sinks  A,  B     sub-actions   st+1,  Qt+1   environmentagent rt(st,at)   at   st,   At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of  neighbors  to  reach   all  sinks   89   Copyright  A.Förster,  A.Puia4  2014  
  • 90. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   for  sink  A     for  sink  B     for  sinks  A,  B     Q(n2,  {A,B})   Q(n3,  {B})  Q(n1,  {A})   st+1,  Qt+1   environmentagent rt(st,at)   at   st,   At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of  neighbors   §  Q  Values:  associate  with   §  each  sub-­‐acNon   §  computable  for  each  (full)  acNon   90   Copyright  A.Förster,  A.Puia4  2014  
  • 91. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   for  sinks  A  (4  hops)   B  (4  hops)     Q(n2,  {A,B})  =  4+4-­‐1   st+1,  Qt+1   environmentagent rt(st,at)   at   st,   At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of  neighbors   §  Q  Values:  associate  with  sub-­‐acNons,     compute  for  acNons   §  IniNalize  Q  Values  with  number  of  esNmated  hops   91   Copyright  A.Förster,  A.Puia4  2014  
  • 92. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   st+1,  Qt+1   environmentagent rt(st,at)   at   st,     At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of  neighbors   §  Q  Values:  associate  with  sub-­‐acNons,     compute  for  acNons   §  IniNalize  Q  Values  with  number  of  esNmated  hops   §  Environment:  all  other  nodes   92   Copyright  A.Förster,  A.Puia4  2014  
  • 93. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   for  sinks  A,B     st+1,  Qt+1   environmentagent rt(st,at)   at   st,     At,   Qt   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of   §  Q  Values:  associate  with  sub-­‐acNons,     compute  for  acNons   §  IniNalize  Q  Values  with  number  of  esNmated  hops   §  Environment:  all  other  nodes   93   Copyright  A.Förster,  A.Puia4  2014  
  • 94. FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of   §  Q  Values:  associate  with  sub-­‐acNons,     compute  for  acNons   §  IniNalize  Q  Values  with  number  of  esNmated  hops   §  Environment:  all  other  nodes   §  Reward:  the  best  available  Q  value  +  1  hop   for  sinks  A,B      i   st+1,  Qt+1   environmentagent rt(st,at)   at   st,     At,   Qt   94   Copyright  A.Förster,  A.Puia4  2014  
  • 95. environmentagent FROMS:  Multicast  routing  with  Q-­‐Learning   2   1   3   §  Agent:  each  node  in  the  network   §  State:  agent’s  neighbors   §  Possible  acNons:  combinaNon  of   §  Q  Values:  associate  with  sub-­‐acNons,     compute  for  acNons   §  IniNalize  Q  Values  with  number  of  esNmated  hops   §  Environment:  all  other  nodes   §  Reward:  the  best  available  Q  value  +  1  hop   §  Update  at  neighboring  nodes  (learn)   for  sinks  A,B      i   st+1,  Qt+1   rt(st,at)   at   st,     At,   Qt   exploraNon  strategy   update  rules   reward  computaNon   95   Copyright  A.Förster,  A.Puia4  2014  
  • 96. Parameters  of  FROMS   •  Possible  cost  funcNons:   •  Any  cost  funcNon  defined  over  the  edges  or   nodes  of  the  communicaNon  graph   •  Here:  minimum  hops  to  desGnaGons   •  Further:  minimum  delay  to  the  sinks;  minimum   geographic  progress;  minimum  transmission   power;  maximum  remaining  energy  on  the   nodes;  combinaNons;  …   •  ExploraNon  strategy   •  Balance  exploraNon  against  exploitaNon   •  Depend  on  the  used  cost  funcNon   •  Memory  management   •  HeurisNcs  for  pruning  the  available  acNons  and   sub-­‐acNons   st+1,  Qt+1   environmentagent rt(st,at)   at   st,     At,   Qt   96   Copyright  A.Förster,  A.Puia4  2014  
  • 97. Further  Applications  of  RL  to   WSNs   •  Clustering  for  WSNs:   Anna  Förster  and  Amy  L.  Murphy,  Clique:  Role-­‐free  Clustering  with  Q-­‐ Learning  for  Wireless  Sensor  Networks,  in  Proceedings  of  the  29th   InternaNonal  Conference  on  Distributed  CompuNng  Systems  (ICDCS)  2009,   9pp.,  Canada,  June  2009   •  MAC  protocols:   Z.  Liu  and  I.  Elahanany.  RL-­‐MAC:  A  reinforcement  learning  based  MAC   protocol  for  wireless  sensor  networks.  InternaNonal  Journal  on  Sensor   Networks,  1(3/4):117–124,  2006.   •  Best  coverage:   M.W.M.  Seah,  C.K.  Tham,  K.  Srinivasan,  and  A.  Xin.  Achieving  coverage   through  distributed  reinforcement  learning  in  wireless  sensor  networks.  In   Proceedings  of  the  3rd  InternaNonal  Conference  on  Intelligent  Sensors,   Sensor  Networks  and  InformaNon  Processing  (ISSNIP),  2007.   97   Copyright  A.Förster,  A.Puia4  2014  
  • 98. Discussion   Dr.  Anna  Förster,  Alessandro  Puia4   BSN  Tutorial,  June  17th  2014   Zürich,  Switzerland   Copyright  A.Förster,  A.Puia4  2014   98  
  • 99. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   required  memory   for  on-­‐node  storage     required  processing   on  the  node  or  base   staNon     flexibility  of  the   found  soluNon  to   environmental   changes   opNmality  of  derived   soluNon  compared   to  a  centrally   computed  opNmal   soluNon   required   communicaNon  or   processing  costs   before  starNng   normal  work   addiNonal   communicaNon  or   processing  costs   during  runNme   99   Copyright  A.Förster,  A.Puia4  2014  
  • 100. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   100   Copyright  A.Förster,  A.Puia4  2014  
  • 101. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   101   Copyright  A.Förster,  A.Puia4  2014  
  • 102. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   102   Copyright  A.Förster,  A.Puia4  2014  
  • 103. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   103   Copyright  A.Förster,  A.Puia4  2014  
  • 104. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   104   Copyright  A.Förster,  A.Puia4  2014  
  • 105. ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Comparison  of  properties   105   Copyright  A.Förster,  A.Puia4  2014  
  • 106. Comparison  of  properties   ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" 106   Copyright  A.Förster,  A.Puia4  2014  
  • 107. Comparison  of  properties   ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" Low   " Decision  Trees   medium   medium   low   high   high   low   107   Copyright  A.Förster,  A.Puia4  2014  
  • 108. Comparison  of  properties   ML  Techniques! Memory! ComputaGon! Tolerance  to   topology   changes! OpGmality! Init.costs! Add.   costs! Reinforcement   Learning! low" low" high" high" medium" low" Swarm   Intelligence! medium" low" high" high" high" medium" HeurisGcs! low" low" low/medium" medium" high" low" Mobile  Agents! low" low" medium" low" low" medium /high" Neural   networks! medium" medium" low" high" high" low" GeneGc   algorithms! high" medium" low" high" high" low" Decision Trees! high" medium" low" high" high" low" Distributed problems Centralized and localized problems Optimization 108   Copyright  A.Förster,  A.Puia4  2014  
  • 109. Further  readings   M.  Dorigo  and  T.  Stuetzle.     Ant  Colony  OpGmizaGon.     MIT  Press,  2004.   J.  Kennedy  and  R.C.  Eberhart.     Swarm  Intelligence.     Morgan  Kaufmann,  2001.   T.M.  Mitchell.     Machine  Learning.     McGraw-­‐Hill,  1997.   A.  Förster.     Teaching  Networks  How  to   Learn   SVH  Verlag,  2009   S.J.  Russell  and  P.  Norvig.  ArGficial   Intelligence:     A  Modern  Approach.     PrenNce  Hall  InternaNonal,  2003.   R.  S.  Subon  and  A.  G.  Barto.     Reinforcement  Learning:     An  IntroducGon.     The  MIT  Press,  March  1998.     109   Copyright  A.Förster,  A.Puia4  2014  
  • 111. OPEN  DISCUSSION   111   Copyright  A.Förster,  A.Puia4  2014