B&i2013 donderdag 14.15_zaal_c_the freedom of form and material

833 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
833
On SlideShare
0
From Embeds
0
Number of Embeds
144
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

B&i2013 donderdag 14.15_zaal_c_the freedom of form and material

  1. 1. Freedom of form and material Arno Pronk
  2. 2. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  3. 3. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  4. 4. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  5. 5. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  6. 6. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  7. 7. Modeling/remodeling bone structures Trabecular bone Cortical bone Polymer foam
  8. 8. Freedom of form and material Arno Pronk
  9. 9. STRUCTURE FORCE 1 FORCE 2 SITE FORM CURVE Typology Capabilit y to resist Bending Tension + Pressure - Insitu Prefab. 2D – 3D Zeroclastic Monoclastic Synclastic Anticlastic 2D Zeroclastic Beam Mass active High + and - Insi. Pref. 3D Zeroclastic Floor 2D Zeroclastic Truss 3D Zeroclastic Space structure Vector active Low + and - APPLICATION Insi. Pref. Tensigrity Zeroclastic Monoclastic + and - Insitu Dome Anticlastic Low Wagon Vault Synclastic Surface active Fold Structure Shell 3D Inflatable Synclastic + Prefab 3D Tent Structure Anticlastic Form active No Bend. Cable Structure - Insi. Pref. 2D Monoclastic Arc
  10. 10. STRUCTURE FORCE1 FORCE2 SITE FORM CURVE Typology Capabilit y to resist Bending Tension+ Pressure- Insitu Prefab. 2D – 3D Zeroclastic Monoclastic Synclastic Anticlastic 2D Zeroclastic Beam Mass active High + and - Insi. Pref. 3D Zeroclastic Floor 2D Zeroclastic Truss 3D Zeroclastic Space structure Vector active Low + and - APPLICATION Insi. Pref. Tensigrity Zeroclastic Monoclastic + and - Insitu Dome Anticlastic Low Wagon Vault Synclastic Surface active Fold Structure Shell 3D Inflatable Synclastic + Prefab 3D Tent Structure Anticlastic Form active No Bend. Cable Structure - Insi. Pref. 2D Monoclastic Arc
  11. 11. Synclastic Form active + and - Prefab Inflatable Anticlastic Low Tent Structure 3D Cable Structure Synclastic No Bending + Insitu Dome Anticlastic Surface active Shell 3D Grid shell Form-active Mould to Surface-active Shell
  12. 12. 85 ways to manipulate a membrane
  13. 13. Form-active Mould to Surface-active Shell
  14. 14. 1. Making a physical model. 2. Rigidizing the model. 3. Digital scan of the model. 4. Analyse form-active behaviour. 5. Analyse surface-active behaviour. 6. Method of construction.
  15. 15. ISoFF www.fabricforming.org Your case? Form-active Mould to Surface-active Shell
  16. 16. * * * *
  17. 17. Form-active Mould to Surface-active Shell
  18. 18. * * * * * *
  19. 19. Form-active Mould to Surface-active Shell
  20. 20. * * * * * * * * *
  21. 21. Form-active Mould to Surface-active Shell
  22. 22. Form-active Mould to Surface-active Shell
  23. 23. Jurgen Bey
  24. 24. The inflatables
  25. 25. Free forms with modular inflatables
  26. 26. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  27. 27. outer layer has to be plastered to get a smooth surface. the concrete will be pigmented to Get the right colour
  28. 28. outer layer has to be plastered to get a smooth surface. the concrete will be pigmented to Get the right colour
  29. 29. 18 septemberplein Eindhoven Design M. Fuksas TU/e www.arnopronk.com
  30. 30. outer layer has to be plastered to get a smooth surface. the concrete will be pigmented to Get the right colour Design: Massimiliano Fuksas for municipal of Eindhoven
  31. 31. 18 septemberplein Eindhoven Design M. Fuksas TU/e www.arnopronk.com
  32. 32. 18 septemberplein Eindhoven Design M. Fuksas
  33. 33. Elective Arno Pronk
  34. 34. Elective Arno Pronk
  35. 35. Elective Arno Pronk
  36. 36. Some events
  37. 37. Some events
  38. 38. Elective Arno Pronk
  39. 39. Elective Arno Pronk
  40. 40. Elective Arno Pronk
  41. 41. Elective Arno Pronk
  42. 42. Elective Arno Pronk
  43. 43. Elective Arno Pronk
  44. 44. Elective Arno Pronk
  45. 45. Elective Arno Pronk
  46. 46. Elective Arno Pronk
  47. 47. Elective Arno Pronk
  48. 48. Structural Optimization [topology] Topology optimized beam based on the funicular shapes of inflatables
  49. 49. Structural Optimization [shape and size] Interpretation of inspire model for parametric modeling Buelow, 2011 Paragen Cycle
  50. 50. Structural Optimization [shape and size] Weight vs modalfrequency ID 1269 ID 1249 ID 1259 Scatter plot ParaGen results
  51. 51. Structural Optimization [scale models] Manufacturing method [Dominicus et al, 2009]
  52. 52. Structural Optimization [scale models] Producing– Prototyping of the fittest solutions. Theory vs practice Concrete Scale models
  53. 53. ICE
  54. 54. Arno Pronk TU/e
  55. 55. Arno Pronk TU/e
  56. 56. www.pykretedome.com
  57. 57. Adjustable Mouldings
  58. 58. 1 Jeroen van Helvoirt, 2 Daan Rietbergen, Karel Vollers, 3 Ivo van Rooy, Pieter Schinkel 4 Sebastiaan Boers, 5 Christiaan Raun e.a.
  59. 59. height adjustable tubes Steel frame EPDM profile edge beam to fix the rubber on
  60. 60. Design of an adjustable mould for hot bending glass, using steel wire netting Research in cooperation with Jan Belis University of Gent
  61. 61. FREE FORM GLASS STRUCTURES
  62. 62. Adaptability of net structure
  63. 63. Net fixation Friction in the wires - no clamping - movement of wires
  64. 64. Net fixation test
  65. 65. Tensegrity plate structure
  66. 66. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  67. 67. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  68. 68. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  69. 69. Tensegrity Rods and cables can be replaced by double curved glass plates
  70. 70. Final model
  71. 71. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  72. 72. Pavilion for NIMK Design & Engineering: Michiel Kluiters and Arno Pronk construction: Jan Huisman, Plavercon and Carpro
  73. 73. 2015 IASS conference in the Muziekgebouw in Amsterdam IASS Pavilion Contest 2014 – 2015 The IASS invites universities and/or companies to participate in a contest and exhibition structurally innovative pavilions. The exhibition will be held during the 2015 IASS conference in the Muziekgebouw in Amsterdam and will be part of the Holland Festival at the end of June 2015 as well. Two phases The pavilion contest consists of two phases. The first phase is the exhibition and selection of proposals at the 2014 IASS confere Brazil. The second phase is the building of the selected pavilions by the participants and exhib the pavilions in Amsterdam in July and August 2015. During the 2015 conference in aug IASS will select the winning pavilions. www.iass-structures.org www.pykretedome.com www.ArnoPronk.com

×