SlideShare a Scribd company logo
1 of 42
Chapter 20: Parallel Databases
Introduction
I/O Parallelism
Interquery Parallelism
Intraquery Parallelism
Intraoperation Parallelism
Interoperation Parallelism
Design of Parallel Systems

Database System Concepts

20.1

©Silberschatz, Korth and Sudarshan
Introduction
Parallel machines are becoming quite common and affordable
 Prices of microprocessors, memory and disks have dropped sharply

Databases are growing increasingly large
 large volumes of transaction data are collected and stored for later
analysis.
 multimedia objects like images are increasingly stored in databases

Large-scale parallel database systems increasingly used for:
 storing large volumes of data
 processing time-consuming decision-support queries
 providing high throughput for transaction processing

Database System Concepts

20.2

©Silberschatz, Korth and Sudarshan
Parallelism in Databases
Data can be partitioned across multiple disks for parallel I/O.
Individual relational operations (e.g., sort, join, aggregation) can
be executed in parallel
 data can be partitioned and each processor can work independently
on its own partition.

Queries are expressed in high level language (SQL, translated to
relational algebra)
 makes parallelization easier.

Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.
Thus, databases naturally lend themselves to parallelism.

Database System Concepts

20.3

©Silberschatz, Korth and Sudarshan
I/O Parallelism
Reduce the time required to retrieve relations from disk by partitioning
the relations on multiple disks.
Horizontal partitioning – tuples of a relation are divided among many
disks such that each tuple resides on one disk.
Partitioning techniques (number of disks = n):
Round-robin:
Send the ith tuple inserted in the relation to disk i mod n.
Hash partitioning:

 Choose one or more attributes as the partitioning attributes.
 Choose hash function h with range 0…n - 1
 Let i denote result of hash function h applied tothe partitioning attribute
value of a tuple. Send tuple to disk i.

Database System Concepts

20.4

©Silberschatz, Korth and Sudarshan
I/O Parallelism (Cont.)
Partitioning techniques (cont.):
Range partitioning:
 Choose an attribute as the partitioning attribute.
 A partitioning vector [vo, v1, ..., vn-2] is chosen.
 Let v be the partitioning attribute value of a tuple. Tuples such that vi
≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples with v
≥ vn-2 go to disk n-1.
E.g., with a partitioning vector [5,11], a tuple with partitioning attribute
value of 2 will go to disk 0, a tuple with value 8 will go to disk 1, while
a tuple with value 20 will go to disk2.

Database System Concepts

20.5

©Silberschatz, Korth and Sudarshan
Comparison of Partitioning
Techniques
Evaluate how well partitioning techniques support the following
types of data access:
1.Scanning the entire relation.
2.Locating a tuple associatively – point queries.
 E.g., r.A = 25.

3.Locating all tuples such that the value of a given attribute lies
within a specified range – range queries.
 E.g., 10 ≤ r.A < 25.

Database System Concepts

20.6

©Silberschatz, Korth and Sudarshan
Comparison of Partitioning Techniques (Cont.)

Round robin:
Advantages


Best suited for sequential scan of entire relation on each query.

 All disks have almost an equal number of tuples; retrieval work is
thus well balanced between disks.

Range queries are difficult to process
 No clustering -- tuples are scattered across all disks

Database System Concepts

20.7

©Silberschatz, Korth and Sudarshan
Comparison of Partitioning
Techniques(Cont.)

Hash partitioning:
Good for sequential access
 Assuming hash function is good, and partitioning attributes form a
key, tuples will be equally distributed between disks
 Retrieval work is then well balanced between disks.

Good for point queries on partitioning attribute
 Can lookup single disk, leaving others available for answering other
queries.
 Index on partitioning attribute can be local to disk, making lookup
and update more efficient

No clustering, so difficult to answer range queries

Database System Concepts

20.8

©Silberschatz, Korth and Sudarshan
Comparison of Partitioning Techniques
(Cont.)
Range partitioning:
Provides data clustering by partitioning attribute value.
Good for sequential access
Good for point queries on partitioning attribute: only one disk
needs to be accessed.
For range queries on partitioning attribute, one to a few disks
may need to be accessed
− Remaining disks are available for other queries.
− Good if result tuples are from one to a few blocks.
− If many blocks are to be fetched, they are still fetched from one

to a few disks, and potential parallelism in disk access is wasted
 Example of execution skew.

Database System Concepts

20.9

©Silberschatz, Korth and Sudarshan
Partitioning a Relation across Disks

If a relation contains only a few tuples which will fit into a single
disk block, then assign the relation to a single disk.
Large relations are preferably partitioned across all the available
disks.
If a relation consists of m disk blocks and there are n disks
available in the system, then the relation should be allocated
min(m,n) disks.

Database System Concepts

20.10

©Silberschatz, Korth and Sudarshan
Handling of Skew
The distribution of tuples to disks may be skewed — that is,
some disks have many tuples, while others may have fewer
tuples.
Types of skew:
 Attribute-value skew.
 Some values appear in the partitioning attributes of many tuples;
all the tuples with the same value for the partitioning attribute end
up in the same partition.
 Can occur with range-partitioning and hash-partitioning.
 Partition skew.
 With range-partitioning, badly chosen partition vector may assign
too many tuples to some partitions and too few to others.
 Less likely with hash-partitioning if a good hash-function is
chosen.

Database System Concepts

20.11

©Silberschatz, Korth and Sudarshan
Handling Skew in Range-Partitioning

To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):
 Sort the relation on the partitioning attribute.
 Construct the partition vector by scanning the relation in sorted order
as follows.
 After every 1/nth of the relation has been read, the value of the

partitioning attribute of the next tuple is added to the partition
vector.

 n denotes the number of partitions to be constructed.
 Duplicate entries or imbalances can result if duplicates are present in
partitioning attributes.

Alternative technique based on histograms used in practice

Database System Concepts

20.12

©Silberschatz, Korth and Sudarshan
Handling Skew using Histograms
Balanced partitioning vector can be constructed from histogram in a
relatively straightforward fashion
Assume uniform distribution within each range of the histogram
Histogram can be constructed by scanning relation, or sampling
(blocks containing) tuples of the relation

Database System Concepts

20.13

©Silberschatz, Korth and Sudarshan
Handling Skew Using Virtual
Processor Partitioning
Skew in range partitioning can be handled elegantly using
virtual processor partitioning:
 create a large number of partitions (say 10 to 20 times the number
of processors)
 Assign virtual processors to partitions either in round-robin fashion
or based on estimated cost of processing each virtual partition

Basic idea:
 If any normal partition would have been skewed, it is very likely the
skew is spread over a number of virtual partitions
 Skewed virtual partitions get spread across a number of processors,
so work gets distributed evenly!

Database System Concepts

20.14

©Silberschatz, Korth and Sudarshan
Interquery Parallelism
Queries/transactions execute in parallel with one another.
Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.
Easiest form of parallelism to support, particularly in a sharedmemory parallel database, because even sequential database
systems support concurrent processing.
More complicated to implement on shared-disk or sharednothing architectures
 Locking and logging must be coordinated by passing messages
between processors.
 Data in a local buffer may have been updated at another processor.
 Cache-coherency has to be maintained — reads and writes of
data in buffer must find latest version of data.

Database System Concepts

20.15

©Silberschatz, Korth and Sudarshan
Cache Coherency Protocol

Example of a cache coherency protocol for shared disk systems:
 Before reading/writing to a page, the page must be locked in
shared/exclusive mode.
 On locking a page, the page must be read from disk
 Before unlocking a page, the page must be written to disk if it was
modified.

More complex protocols with fewer disk reads/writes exist.
Cache coherency protocols for shared-nothing systems are
similar. Each database page is assigned a home processor.
Requests to fetch the page or write it to disk are sent to the home
processor.

Database System Concepts

20.16

©Silberschatz, Korth and Sudarshan
Intraquery Parallelism

Execution of a single query in parallel on multiple
processors/disks; important for speeding up long-running
queries.
Two complementary forms of intraquery parallelism :
 Intraoperation Parallelism – parallelize the execution of each
individual operation in the query.
 Interoperation Parallelism – execute the different operations in
a query expression in parallel.

the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically
more than the number of operations in a query

Database System Concepts

20.17

©Silberschatz, Korth and Sudarshan
Parallel Processing of Relational Operations

Our discussion of parallel algorithms assumes:
 read-only queries
 shared-nothing architecture
 n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is
associated with processor Pi.

If a processor has multiple disks they can simply simulate a
single disk Di.
Shared-nothing architectures can be efficiently simulated on
shared-memory and shared-disk systems.
 Algorithms for shared-nothing systems can thus be run on sharedmemory and shared-disk systems.
 However, some optimizations may be possible.

Database System Concepts

20.18

©Silberschatz, Korth and Sudarshan
Parallel Sort
Range-Partitioning Sort
Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
Create range-partition vector with m entries, on the sorting attributes
Redistribute the relation using range partitioning


all tuples that lie in the ith range are sent to processor Pi

 Pi stores the tuples it received temporarily on disk Di.
 This step requires I/O and communication overhead.

Each processor Pi sorts its partition of the relation locally.
Each processors executes same operation (sort) in parallel with other
processors, without any interaction with the others (data
parallelism).
Final merge operation is trivial: range-partitioning ensures that, for 1 j
m, the key values in processor Pi are all less than the key values in Pj.

Database System Concepts

20.19

©Silberschatz, Korth and Sudarshan
Parallel Sort (Cont.)
Parallel External Sort-Merge
Assume the relation has already been partitioned among disks
D0, ..., Dn-1 (in whatever manner).
Each processor Pi locally sorts the data on disk Di.
The sorted runs on each processor are then merged to get the
final sorted output.
Parallelize the merging of sorted runs as follows:
 The sorted partitions at each processor Pi are range-partitioned
across the processors P0, ..., Pm-1.
 Each processor Pi performs a merge on the streams as they are
received, to get a single sorted run.
 The sorted runs on processors P0,..., Pm-1 are concatenated to get the
final result.
Database System Concepts

20.20

©Silberschatz, Korth and Sudarshan
Parallel Join
The join operation requires pairs of tuples to be tested to see if
they satisfy the join condition, and if they do, the pair is added to
the join output.
Parallel join algorithms attempt to split the pairs to be tested over
several processors. Each processor then computes part of the
join locally.
In a final step, the results from each processor can be collected
together to produce the final result.

Database System Concepts

20.21

©Silberschatz, Korth and Sudarshan
Partitioned Join
For equi-joins and natural joins, it is possible to partition the two input
relations across the processors, and compute the join locally at each
processor.
Let r and s be the input relations, and we want to compute r

r.A=s.B

s.

r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and s0,
s1, ..., sn-1.
Can use either range partitioning or hash partitioning.
r and s must be partitioned on their join attributes r.A and s.B), using
the same range-partitioning vector or hash function.
Partitions ri and si are sent to processor Pi,
Each processor Pi locally computes ri

ri.A=si.B si.

Any of the standard join

methods can be used.

Database System Concepts

20.22

©Silberschatz, Korth and Sudarshan
Partitioned Join (Cont.)

Database System Concepts

20.23

©Silberschatz, Korth and Sudarshan
Fragment-and-Replicate Join
Partitioning not possible for some join conditions
 e.g., non-equijoin conditions, such as r.A > s.B.

For joins were partitioning is not applicable, parallelization can
be accomplished by fragment and replicate technique
 Depicted on next slide

Special case – asymmetric fragment-and-replicate :
 One of the relations, say r, is partitioned; any partitioning technique
can be used.
 The other relation, s, is replicated across all the processors.
 Processor Pi then locally computes the join of ri with all of s using
any join technique.

Database System Concepts

20.24

©Silberschatz, Korth and Sudarshan
Depiction of Fragment-and-Replicate Joins

a. Asymmetric
Fragment and
Replicate
Database System Concepts

b. Fragment and Replicate
20.25

©Silberschatz, Korth and Sudarshan
Fragment-and-Replicate Join (Cont.)
General case: reduces the sizes of the relations at each
processor.
 r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m
partitions, s0, s1, ..., sm-1.
 Any partitioning technique may be used.
 There must be at least m * n processors.
 Label the processors as
 P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.
 Pi,j computes the join of ri with sj. In order to do so, ri is replicated to
Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i
 Any join technique can be used at each processor Pi,j.

Database System Concepts

20.26

©Silberschatz, Korth and Sudarshan
Fragment-and-Replicate Join (Cont.)
Both versions of fragment-and-replicate work with any join
condition, since every tuple in r can be tested with every tuple in s.
Usually has a higher cost than partitioning, since one of the
relations (for asymmetric fragment-and-replicate) or both relations
(for general fragment-and-replicate) have to be replicated.
Sometimes asymmetric fragment-and-replicate is preferable even
though partitioning could be used.
 E.g., say s is small and r is large, and already partitioned. It may be
cheaper to replicate s across all processors, rather than repartition r
and s on the join attributes.

Database System Concepts

20.27

©Silberschatz, Korth and Sudarshan
Partitioned Parallel Hash-Join
Parallelizing partitioned hash join:
Assume s is smaller than r and therefore s is chosen as the build
relation.
A hash function h1 takes the join attribute value of each tuple in s
and maps this tuple to one of the n processors.
Each processor Pi reads the tuples of s that are on its disk Di,
and sends each tuple to the appropriate processor based on
hash function h1. Let si denote the tuples of relation s that are
sent to processor Pi.
As tuples of relation s are received at the destination processors,
they are partitioned further using another hash function, h2, which
is used to compute the hash-join locally. (Cont.)

Database System Concepts

20.28

©Silberschatz, Korth and Sudarshan
Partitioned Parallel Hash-Join
(Cont.)
Once the tuples of s have been distributed, the larger relation r is
redistributed across the m processors using the hash function h1


Let ri denote the tuples of relation r that are sent to processor Pi.

As the r tuples are received at the destination processors, they
are repartitioned using the function h2
 (just as the probe relation is partitioned in the sequential hash-join
algorithm).

Each processor Pi executes the build and probe phases of the
hash-join algorithm on the local partitions ri and s of r and s to
produce a partition of the final result of the hash-join.
Note: Hash-join optimizations can be applied to the parallel case


e.g., the hybrid hash-join algorithm can be used to cache some of
the incoming tuples in memory and avoid the cost of writing them
and reading them back in.

Database System Concepts

20.29

©Silberschatz, Korth and Sudarshan
Parallel Nested-Loop Join
Assume that
 relation s is much smaller than relation r and that r is stored by
partitioning.
 there is an index on a join attribute of relation r at each of the
partitions of relation r.

Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r.
Each processor Pj where a partition of relation s is stored reads
the tuples of relation s stored in Dj, and replicates the tuples to
every other processor Pi.
 At the end of this phase, relation s is replicated at all sites that store
tuples of relation r.

Each processor Pi performs an indexed nested-loop join of
relation s with the ith partition of relation r.
Database System Concepts

20.30

©Silberschatz, Korth and Sudarshan
Other Relational Operations
Selection σθ(r)
If θ is of the form ai = v, where ai is an attribute and v a value.
 If r is partitioned on ai the selection is performed at a single
processor.

If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the
relation has been range-partitioned on ai
 Selection is performed at each processor whose partition overlaps
with the specified range of values.

In all other cases: the selection is performed in parallel at all the
processors.

Database System Concepts

20.31

©Silberschatz, Korth and Sudarshan
Other Relational Operations (Cont.)
Duplicate elimination
 Perform by using either of the parallel sort techniques
 eliminate duplicates as soon as they are found during sorting.

 Can also partition the tuples (using either range- or hashpartitioning) and perform duplicate elimination locally at each
processor.

Projection
 Projection without duplicate elimination can be performed as tuples
are read in from disk in parallel.
 If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.

Database System Concepts

20.32

©Silberschatz, Korth and Sudarshan
Grouping/Aggregation
Partition the relation on the grouping attributes and then compute
the aggregate values locally at each processor.
Can reduce cost of transferring tuples during partitioning by
partly computing aggregate values before partitioning.
Consider the sum aggregation operation:
 Perform aggregation operation at each processor Pi on those tuples
stored on disk Di
 results in tuples with partial sums at each processor.

 Result of the local aggregation is partitioned on the grouping
attributes, and the aggregation performed again at each processor
Pi to get the final result.

Fewer tuples need to be sent to other processors during
partitioning.
Database System Concepts

20.33

©Silberschatz, Korth and Sudarshan
Cost of Parallel Evaluation of
Operations
If there is no skew in the partitioning, and there is no overhead
due to the parallel evaluation, expected speed-up will be 1/n
If skew and overheads are also to be taken into account, the time
taken by a parallel operation can be estimated as
Tpart + Tasm + max (T0, T1, …, Tn-1)

 Tpart is the time for partitioning the relations
 Tasm is the time for assembling the results
 Ti is the time taken for the operation at processor Pi
 this needs to be estimated taking into account the skew, and the

time wasted in contentions.

Database System Concepts

20.34

©Silberschatz, Korth and Sudarshan
Interoperator Parallelism
Pipelined parallelism
 Consider a join of four relations
r
1

r2

r3

r4

 Set up a pipeline that computes the three joins in parallel
 Let P1 be assigned the computation of

temp1 = r1

r2

 And P2 be assigned the computation of temp2 = temp1
 And P3 be assigned the computation of temp2

r3

r4

 Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing
further results
 Provided a pipelineable join evaluation algorithm (e.g. indexed

nested loops join) is used
Database System Concepts

20.35

©Silberschatz, Korth and Sudarshan
Factors Limiting Utility of Pipeline
Parallelism
Pipeline parallelism is useful since it avoids writing intermediate
results to disk
Useful with small number of processors, but does not scale up
well with more processors. One reason is that pipeline chains do
not attain sufficient length.
Cannot pipeline operators which do not produce output until all
inputs have been accessed (e.g. aggregate and sort)
Little speedup is obtained for the frequent cases of skew in which
one operator's execution cost is much higher than the others.

Database System Concepts

20.36

©Silberschatz, Korth and Sudarshan
Independent Parallelism
Independent parallelism
 Consider a join of four relations
r1

r2

r3

r4

 Let P1 be assigned the computation of

temp1 = r1

r2

 And P2 be assigned the computation of temp2 = r
3
 And P3 be assigned the computation of temp1

r4

temp2

 P1 and P2 can work independently in parallel
 P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining
independent parallelism and pipelined parallelism

 Does not provide a high degree of parallelism
 useful with a lower degree of parallelism.
 less useful in a highly parallel system,
Database System Concepts

20.37

©Silberschatz, Korth and Sudarshan
Query Optimization
Query optimization in parallel databases is significantly more complex
than query optimization in sequential databases.
Cost models are more complicated, since we must take into account
partitioning costs and issues such as skew and resource contention.
When scheduling execution tree in parallel system, must decide:
 How to parallelize each operation and how many processors to use for it.
 What operations to pipeline, what operations to execute independently in
parallel, and what operations to execute sequentially, one after the other.

Determining the amount of resources to allocate for each operation is a
problem.


E.g., allocating more processors than optimal can result in high
communication overhead.

Long pipelines should be avoided as the final operation may wait a lot
for inputs, while holding precious resources

Database System Concepts

20.38

©Silberschatz, Korth and Sudarshan
Query Optimization (Cont.)
The number of parallel evaluation plans from which to choose from is
much larger than the number of sequential evaluation plans.


Therefore heuristics are needed while optimization

Two alternative heuristics for choosing parallel plans:
 No pipelining and inter-operation pipelining; just parallelize every operation
across all processors.
 Finding best plan is now much easier --- use standard optimization
technique, but with new cost model
 Volcano parallel database popularize the exchange-operator model
– exchange operator is introduced into query plans to partition and
distribute tuples
– each operation works independently on local data on each processor,
in parallel with other copies of the operation
 First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.
 Can explore pipelined parallelism as an option

Choosing a good physical organization (partitioning technique) is
important to speed up queries.

Database System Concepts

20.39

©Silberschatz, Korth and Sudarshan
Design of Parallel Systems
Some issues in the design of parallel systems:
Parallel loading of data from external sources is needed in order
to handle large volumes of incoming data.
Resilience to failure of some processors or disks.
 Probability of some disk or processor failing is higher in a parallel
system.
 Operation (perhaps with degraded performance) should be possible
in spite of failure.
 Redundancy achieved by storing extra copy of every data item at
another processor.

Database System Concepts

20.40

©Silberschatz, Korth and Sudarshan
Design of Parallel Systems (Cont.)
On-line reorganization of data and schema changes must be
supported.
 For example, index construction on terabyte databases can take
hours or days even on a parallel system.
 Need to allow other processing (insertions/deletions/updates) to

be performed on relation even as index is being constructed.

 Basic idea: index construction tracks changes and ``catches up'‘ on
changes at the end.

Also need support for on-line repartitioning and schema changes
(executed concurrently with other processing).

Database System Concepts

20.41

©Silberschatz, Korth and Sudarshan
End of Chapter

More Related Content

What's hot

Geo distributed parallelization pacts in map reduce
Geo distributed parallelization pacts in map reduceGeo distributed parallelization pacts in map reduce
Geo distributed parallelization pacts in map reduceeSAT Publishing House
 
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)Beat Signer
 
Efficient load rebalancing for distributed file system in Clouds
Efficient load rebalancing for distributed file system in CloudsEfficient load rebalancing for distributed file system in Clouds
Efficient load rebalancing for distributed file system in CloudsIJERA Editor
 
23. Advanced Datatypes and New Application in DBMS
23. Advanced Datatypes and New Application in DBMS23. Advanced Datatypes and New Application in DBMS
23. Advanced Datatypes and New Application in DBMSkoolkampus
 
Cassandra advanced-I
Cassandra advanced-ICassandra advanced-I
Cassandra advanced-Iachudhivi
 
Introduction to distributed database
Introduction to distributed databaseIntroduction to distributed database
Introduction to distributed databaseSonia Panesar
 
Distributed databases
Distributed databasesDistributed databases
Distributed databasessourabhdave
 
thilaganga journal 2
thilaganga journal 2thilaganga journal 2
thilaganga journal 2thilaganga
 
Clustering for Stream and Parallelism (DATA ANALYTICS)
Clustering for Stream and Parallelism (DATA ANALYTICS)Clustering for Stream and Parallelism (DATA ANALYTICS)
Clustering for Stream and Parallelism (DATA ANALYTICS)DheerajPachauri
 
Aeneas:: An Extensible NoSql Enhancing Application System
Aeneas:: An Extensible NoSql Enhancing Application SystemAeneas:: An Extensible NoSql Enhancing Application System
Aeneas:: An Extensible NoSql Enhancing Application SystemCesare Cugnasco
 
Dynamo cassandra
Dynamo cassandraDynamo cassandra
Dynamo cassandraWu Liang
 
Lecture 11 - distributed database
Lecture 11 - distributed databaseLecture 11 - distributed database
Lecture 11 - distributed databaseHoneySah
 
Distributed processing
Distributed processingDistributed processing
Distributed processingNeil Stein
 

What's hot (19)

Chapter25
Chapter25Chapter25
Chapter25
 
Geo distributed parallelization pacts in map reduce
Geo distributed parallelization pacts in map reduceGeo distributed parallelization pacts in map reduce
Geo distributed parallelization pacts in map reduce
 
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)
Storage Management - Lecture 8 - Introduction to Databases (1007156ANR)
 
Efficient load rebalancing for distributed file system in Clouds
Efficient load rebalancing for distributed file system in CloudsEfficient load rebalancing for distributed file system in Clouds
Efficient load rebalancing for distributed file system in Clouds
 
23. Advanced Datatypes and New Application in DBMS
23. Advanced Datatypes and New Application in DBMS23. Advanced Datatypes and New Application in DBMS
23. Advanced Datatypes and New Application in DBMS
 
Cassandra advanced-I
Cassandra advanced-ICassandra advanced-I
Cassandra advanced-I
 
Introduction to distributed database
Introduction to distributed databaseIntroduction to distributed database
Introduction to distributed database
 
Distributed databases
Distributed databasesDistributed databases
Distributed databases
 
1 ddbms jan 2011_u
1 ddbms jan 2011_u1 ddbms jan 2011_u
1 ddbms jan 2011_u
 
thilaganga journal 2
thilaganga journal 2thilaganga journal 2
thilaganga journal 2
 
Clustering for Stream and Parallelism (DATA ANALYTICS)
Clustering for Stream and Parallelism (DATA ANALYTICS)Clustering for Stream and Parallelism (DATA ANALYTICS)
Clustering for Stream and Parallelism (DATA ANALYTICS)
 
Aeneas:: An Extensible NoSql Enhancing Application System
Aeneas:: An Extensible NoSql Enhancing Application SystemAeneas:: An Extensible NoSql Enhancing Application System
Aeneas:: An Extensible NoSql Enhancing Application System
 
basic concept of ddbms
basic concept of ddbmsbasic concept of ddbms
basic concept of ddbms
 
Discover Database
Discover DatabaseDiscover Database
Discover Database
 
Database fragmentation
Database fragmentationDatabase fragmentation
Database fragmentation
 
Dynamo cassandra
Dynamo cassandraDynamo cassandra
Dynamo cassandra
 
Lecture 11 - distributed database
Lecture 11 - distributed databaseLecture 11 - distributed database
Lecture 11 - distributed database
 
DDBMS Paper with Solution
DDBMS Paper with SolutionDDBMS Paper with Solution
DDBMS Paper with Solution
 
Distributed processing
Distributed processingDistributed processing
Distributed processing
 

Viewers also liked (19)

Kitab sistem operasi 4.0 [masyarakat digital gotong royong]
Kitab sistem operasi 4.0 [masyarakat digital gotong royong]Kitab sistem operasi 4.0 [masyarakat digital gotong royong]
Kitab sistem operasi 4.0 [masyarakat digital gotong royong]
 
E3 chap-19
E3 chap-19E3 chap-19
E3 chap-19
 
Ch14 security
Ch14   securityCh14   security
Ch14 security
 
Ch18
Ch18Ch18
Ch18
 
Proses stokastik
Proses stokastikProses stokastik
Proses stokastik
 
Hci [1]introduction
Hci [1]introductionHci [1]introduction
Hci [1]introduction
 
Aksioma Peluang
Aksioma PeluangAksioma Peluang
Aksioma Peluang
 
Imk pertemuan-2-compress
Imk pertemuan-2-compressImk pertemuan-2-compress
Imk pertemuan-2-compress
 
Hci [2]human
Hci [2]humanHci [2]human
Hci [2]human
 
E3 chap-07
E3 chap-07E3 chap-07
E3 chap-07
 
E3 chap-17-extra
E3 chap-17-extraE3 chap-17-extra
E3 chap-17-extra
 
Ch23
Ch23Ch23
Ch23
 
Ch3 processes
Ch3   processesCh3   processes
Ch3 processes
 
Hci [3]computer
Hci [3]computerHci [3]computer
Hci [3]computer
 
E3 chap-04-extra
E3 chap-04-extraE3 chap-04-extra
E3 chap-04-extra
 
Ch10
Ch10Ch10
Ch10
 
Ch19
Ch19Ch19
Ch19
 
Ch3 a
Ch3 aCh3 a
Ch3 a
 
E3 chap-05
E3 chap-05E3 chap-05
E3 chap-05
 

Similar to Ch20

ADBS_parallel Databases in Advanced DBMS
ADBS_parallel Databases in Advanced DBMSADBS_parallel Databases in Advanced DBMS
ADBS_parallel Databases in Advanced DBMSchandugoswami
 
Database Management systems concept.pptx
Database Management systems concept.pptxDatabase Management systems concept.pptx
Database Management systems concept.pptxSHRIJANANIM
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
Simple Load Rebalancing For Distributed Hash Tables In Cloud
Simple Load Rebalancing For Distributed Hash Tables In CloudSimple Load Rebalancing For Distributed Hash Tables In Cloud
Simple Load Rebalancing For Distributed Hash Tables In CloudIOSR Journals
 
Java Abs Peer To Peer Design & Implementation Of A Tuple Space
Java Abs   Peer To Peer Design & Implementation Of A Tuple SpaceJava Abs   Peer To Peer Design & Implementation Of A Tuple Space
Java Abs Peer To Peer Design & Implementation Of A Tuple Spacencct
 
Java Abs Peer To Peer Design & Implementation Of A Tuple S
Java Abs   Peer To Peer Design & Implementation Of A Tuple SJava Abs   Peer To Peer Design & Implementation Of A Tuple S
Java Abs Peer To Peer Design & Implementation Of A Tuple Sncct
 
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME JP BLAKE, ASSURED INFORMATION SE...
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME  JP BLAKE, ASSURED INFORMATION SE...XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME  JP BLAKE, ASSURED INFORMATION SE...
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME JP BLAKE, ASSURED INFORMATION SE...The Linux Foundation
 
Basics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed StorageBasics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed StorageNilesh Salpe
 
Advanced databases -client /server arch
Advanced databases -client /server archAdvanced databases -client /server arch
Advanced databases -client /server archAravindharamanan S
 
Distributed Algorithms
Distributed AlgorithmsDistributed Algorithms
Distributed Algorithms913245857
 
Distributed Caching - Cache Unleashed
Distributed Caching - Cache UnleashedDistributed Caching - Cache Unleashed
Distributed Caching - Cache UnleashedAvishek Patra
 
Distributed Shared Memory-jhgfdsserty.pdf
Distributed Shared Memory-jhgfdsserty.pdfDistributed Shared Memory-jhgfdsserty.pdf
Distributed Shared Memory-jhgfdsserty.pdfRichardMathengeSPASP
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONijdms
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONijdms
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONijdms
 
Modeling data and best practices for the Azure Cosmos DB.
Modeling data and best practices for the Azure Cosmos DB.Modeling data and best practices for the Azure Cosmos DB.
Modeling data and best practices for the Azure Cosmos DB.Mohammad Asif
 

Similar to Ch20 (20)

ADBS_parallel Databases in Advanced DBMS
ADBS_parallel Databases in Advanced DBMSADBS_parallel Databases in Advanced DBMS
ADBS_parallel Databases in Advanced DBMS
 
Database Management systems concept.pptx
Database Management systems concept.pptxDatabase Management systems concept.pptx
Database Management systems concept.pptx
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Ch21
Ch21Ch21
Ch21
 
Simple Load Rebalancing For Distributed Hash Tables In Cloud
Simple Load Rebalancing For Distributed Hash Tables In CloudSimple Load Rebalancing For Distributed Hash Tables In Cloud
Simple Load Rebalancing For Distributed Hash Tables In Cloud
 
Java Abs Peer To Peer Design & Implementation Of A Tuple Space
Java Abs   Peer To Peer Design & Implementation Of A Tuple SpaceJava Abs   Peer To Peer Design & Implementation Of A Tuple Space
Java Abs Peer To Peer Design & Implementation Of A Tuple Space
 
Java Abs Peer To Peer Design & Implementation Of A Tuple S
Java Abs   Peer To Peer Design & Implementation Of A Tuple SJava Abs   Peer To Peer Design & Implementation Of A Tuple S
Java Abs Peer To Peer Design & Implementation Of A Tuple S
 
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME JP BLAKE, ASSURED INFORMATION SE...
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME  JP BLAKE, ASSURED INFORMATION SE...XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME  JP BLAKE, ASSURED INFORMATION SE...
XPDS13: VIRTUAL DISK INTEGRITY IN REAL TIME JP BLAKE, ASSURED INFORMATION SE...
 
Basics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed StorageBasics of Distributed Systems - Distributed Storage
Basics of Distributed Systems - Distributed Storage
 
Advance DBMS
Advance DBMSAdvance DBMS
Advance DBMS
 
Advancedrn
AdvancedrnAdvancedrn
Advancedrn
 
Advanced databases -client /server arch
Advanced databases -client /server archAdvanced databases -client /server arch
Advanced databases -client /server arch
 
Distributed Algorithms
Distributed AlgorithmsDistributed Algorithms
Distributed Algorithms
 
Distributed Caching - Cache Unleashed
Distributed Caching - Cache UnleashedDistributed Caching - Cache Unleashed
Distributed Caching - Cache Unleashed
 
Distributed Shared Memory-jhgfdsserty.pdf
Distributed Shared Memory-jhgfdsserty.pdfDistributed Shared Memory-jhgfdsserty.pdf
Distributed Shared Memory-jhgfdsserty.pdf
 
Csc concepts
Csc conceptsCsc concepts
Csc concepts
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
 
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATIONSCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
SCALING DISTRIBUTED DATABASE JOINS BY DECOUPLING COMPUTATION AND COMMUNICATION
 
Modeling data and best practices for the Azure Cosmos DB.
Modeling data and best practices for the Azure Cosmos DB.Modeling data and best practices for the Azure Cosmos DB.
Modeling data and best practices for the Azure Cosmos DB.
 

Recently uploaded

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 

Recently uploaded (20)

Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 

Ch20

  • 1. Chapter 20: Parallel Databases Introduction I/O Parallelism Interquery Parallelism Intraquery Parallelism Intraoperation Parallelism Interoperation Parallelism Design of Parallel Systems Database System Concepts 20.1 ©Silberschatz, Korth and Sudarshan
  • 2. Introduction Parallel machines are becoming quite common and affordable  Prices of microprocessors, memory and disks have dropped sharply Databases are growing increasingly large  large volumes of transaction data are collected and stored for later analysis.  multimedia objects like images are increasingly stored in databases Large-scale parallel database systems increasingly used for:  storing large volumes of data  processing time-consuming decision-support queries  providing high throughput for transaction processing Database System Concepts 20.2 ©Silberschatz, Korth and Sudarshan
  • 3. Parallelism in Databases Data can be partitioned across multiple disks for parallel I/O. Individual relational operations (e.g., sort, join, aggregation) can be executed in parallel  data can be partitioned and each processor can work independently on its own partition. Queries are expressed in high level language (SQL, translated to relational algebra)  makes parallelization easier. Different queries can be run in parallel with each other. Concurrency control takes care of conflicts. Thus, databases naturally lend themselves to parallelism. Database System Concepts 20.3 ©Silberschatz, Korth and Sudarshan
  • 4. I/O Parallelism Reduce the time required to retrieve relations from disk by partitioning the relations on multiple disks. Horizontal partitioning – tuples of a relation are divided among many disks such that each tuple resides on one disk. Partitioning techniques (number of disks = n): Round-robin: Send the ith tuple inserted in the relation to disk i mod n. Hash partitioning:  Choose one or more attributes as the partitioning attributes.  Choose hash function h with range 0…n - 1  Let i denote result of hash function h applied tothe partitioning attribute value of a tuple. Send tuple to disk i. Database System Concepts 20.4 ©Silberschatz, Korth and Sudarshan
  • 5. I/O Parallelism (Cont.) Partitioning techniques (cont.): Range partitioning:  Choose an attribute as the partitioning attribute.  A partitioning vector [vo, v1, ..., vn-2] is chosen.  Let v be the partitioning attribute value of a tuple. Tuples such that vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples with v ≥ vn-2 go to disk n-1. E.g., with a partitioning vector [5,11], a tuple with partitioning attribute value of 2 will go to disk 0, a tuple with value 8 will go to disk 1, while a tuple with value 20 will go to disk2. Database System Concepts 20.5 ©Silberschatz, Korth and Sudarshan
  • 6. Comparison of Partitioning Techniques Evaluate how well partitioning techniques support the following types of data access: 1.Scanning the entire relation. 2.Locating a tuple associatively – point queries.  E.g., r.A = 25. 3.Locating all tuples such that the value of a given attribute lies within a specified range – range queries.  E.g., 10 ≤ r.A < 25. Database System Concepts 20.6 ©Silberschatz, Korth and Sudarshan
  • 7. Comparison of Partitioning Techniques (Cont.) Round robin: Advantages  Best suited for sequential scan of entire relation on each query.  All disks have almost an equal number of tuples; retrieval work is thus well balanced between disks. Range queries are difficult to process  No clustering -- tuples are scattered across all disks Database System Concepts 20.7 ©Silberschatz, Korth and Sudarshan
  • 8. Comparison of Partitioning Techniques(Cont.) Hash partitioning: Good for sequential access  Assuming hash function is good, and partitioning attributes form a key, tuples will be equally distributed between disks  Retrieval work is then well balanced between disks. Good for point queries on partitioning attribute  Can lookup single disk, leaving others available for answering other queries.  Index on partitioning attribute can be local to disk, making lookup and update more efficient No clustering, so difficult to answer range queries Database System Concepts 20.8 ©Silberschatz, Korth and Sudarshan
  • 9. Comparison of Partitioning Techniques (Cont.) Range partitioning: Provides data clustering by partitioning attribute value. Good for sequential access Good for point queries on partitioning attribute: only one disk needs to be accessed. For range queries on partitioning attribute, one to a few disks may need to be accessed − Remaining disks are available for other queries. − Good if result tuples are from one to a few blocks. − If many blocks are to be fetched, they are still fetched from one to a few disks, and potential parallelism in disk access is wasted  Example of execution skew. Database System Concepts 20.9 ©Silberschatz, Korth and Sudarshan
  • 10. Partitioning a Relation across Disks If a relation contains only a few tuples which will fit into a single disk block, then assign the relation to a single disk. Large relations are preferably partitioned across all the available disks. If a relation consists of m disk blocks and there are n disks available in the system, then the relation should be allocated min(m,n) disks. Database System Concepts 20.10 ©Silberschatz, Korth and Sudarshan
  • 11. Handling of Skew The distribution of tuples to disks may be skewed — that is, some disks have many tuples, while others may have fewer tuples. Types of skew:  Attribute-value skew.  Some values appear in the partitioning attributes of many tuples; all the tuples with the same value for the partitioning attribute end up in the same partition.  Can occur with range-partitioning and hash-partitioning.  Partition skew.  With range-partitioning, badly chosen partition vector may assign too many tuples to some partitions and too few to others.  Less likely with hash-partitioning if a good hash-function is chosen. Database System Concepts 20.11 ©Silberschatz, Korth and Sudarshan
  • 12. Handling Skew in Range-Partitioning To create a balanced partitioning vector (assuming partitioning attribute forms a key of the relation):  Sort the relation on the partitioning attribute.  Construct the partition vector by scanning the relation in sorted order as follows.  After every 1/nth of the relation has been read, the value of the partitioning attribute of the next tuple is added to the partition vector.  n denotes the number of partitions to be constructed.  Duplicate entries or imbalances can result if duplicates are present in partitioning attributes. Alternative technique based on histograms used in practice Database System Concepts 20.12 ©Silberschatz, Korth and Sudarshan
  • 13. Handling Skew using Histograms Balanced partitioning vector can be constructed from histogram in a relatively straightforward fashion Assume uniform distribution within each range of the histogram Histogram can be constructed by scanning relation, or sampling (blocks containing) tuples of the relation Database System Concepts 20.13 ©Silberschatz, Korth and Sudarshan
  • 14. Handling Skew Using Virtual Processor Partitioning Skew in range partitioning can be handled elegantly using virtual processor partitioning:  create a large number of partitions (say 10 to 20 times the number of processors)  Assign virtual processors to partitions either in round-robin fashion or based on estimated cost of processing each virtual partition Basic idea:  If any normal partition would have been skewed, it is very likely the skew is spread over a number of virtual partitions  Skewed virtual partitions get spread across a number of processors, so work gets distributed evenly! Database System Concepts 20.14 ©Silberschatz, Korth and Sudarshan
  • 15. Interquery Parallelism Queries/transactions execute in parallel with one another. Increases transaction throughput; used primarily to scale up a transaction processing system to support a larger number of transactions per second. Easiest form of parallelism to support, particularly in a sharedmemory parallel database, because even sequential database systems support concurrent processing. More complicated to implement on shared-disk or sharednothing architectures  Locking and logging must be coordinated by passing messages between processors.  Data in a local buffer may have been updated at another processor.  Cache-coherency has to be maintained — reads and writes of data in buffer must find latest version of data. Database System Concepts 20.15 ©Silberschatz, Korth and Sudarshan
  • 16. Cache Coherency Protocol Example of a cache coherency protocol for shared disk systems:  Before reading/writing to a page, the page must be locked in shared/exclusive mode.  On locking a page, the page must be read from disk  Before unlocking a page, the page must be written to disk if it was modified. More complex protocols with fewer disk reads/writes exist. Cache coherency protocols for shared-nothing systems are similar. Each database page is assigned a home processor. Requests to fetch the page or write it to disk are sent to the home processor. Database System Concepts 20.16 ©Silberschatz, Korth and Sudarshan
  • 17. Intraquery Parallelism Execution of a single query in parallel on multiple processors/disks; important for speeding up long-running queries. Two complementary forms of intraquery parallelism :  Intraoperation Parallelism – parallelize the execution of each individual operation in the query.  Interoperation Parallelism – execute the different operations in a query expression in parallel. the first form scales better with increasing parallelism because the number of tuples processed by each operation is typically more than the number of operations in a query Database System Concepts 20.17 ©Silberschatz, Korth and Sudarshan
  • 18. Parallel Processing of Relational Operations Our discussion of parallel algorithms assumes:  read-only queries  shared-nothing architecture  n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1, where disk Di is associated with processor Pi. If a processor has multiple disks they can simply simulate a single disk Di. Shared-nothing architectures can be efficiently simulated on shared-memory and shared-disk systems.  Algorithms for shared-nothing systems can thus be run on sharedmemory and shared-disk systems.  However, some optimizations may be possible. Database System Concepts 20.18 ©Silberschatz, Korth and Sudarshan
  • 19. Parallel Sort Range-Partitioning Sort Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting. Create range-partition vector with m entries, on the sorting attributes Redistribute the relation using range partitioning  all tuples that lie in the ith range are sent to processor Pi  Pi stores the tuples it received temporarily on disk Di.  This step requires I/O and communication overhead. Each processor Pi sorts its partition of the relation locally. Each processors executes same operation (sort) in parallel with other processors, without any interaction with the others (data parallelism). Final merge operation is trivial: range-partitioning ensures that, for 1 j m, the key values in processor Pi are all less than the key values in Pj. Database System Concepts 20.19 ©Silberschatz, Korth and Sudarshan
  • 20. Parallel Sort (Cont.) Parallel External Sort-Merge Assume the relation has already been partitioned among disks D0, ..., Dn-1 (in whatever manner). Each processor Pi locally sorts the data on disk Di. The sorted runs on each processor are then merged to get the final sorted output. Parallelize the merging of sorted runs as follows:  The sorted partitions at each processor Pi are range-partitioned across the processors P0, ..., Pm-1.  Each processor Pi performs a merge on the streams as they are received, to get a single sorted run.  The sorted runs on processors P0,..., Pm-1 are concatenated to get the final result. Database System Concepts 20.20 ©Silberschatz, Korth and Sudarshan
  • 21. Parallel Join The join operation requires pairs of tuples to be tested to see if they satisfy the join condition, and if they do, the pair is added to the join output. Parallel join algorithms attempt to split the pairs to be tested over several processors. Each processor then computes part of the join locally. In a final step, the results from each processor can be collected together to produce the final result. Database System Concepts 20.21 ©Silberschatz, Korth and Sudarshan
  • 22. Partitioned Join For equi-joins and natural joins, it is possible to partition the two input relations across the processors, and compute the join locally at each processor. Let r and s be the input relations, and we want to compute r r.A=s.B s. r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and s0, s1, ..., sn-1. Can use either range partitioning or hash partitioning. r and s must be partitioned on their join attributes r.A and s.B), using the same range-partitioning vector or hash function. Partitions ri and si are sent to processor Pi, Each processor Pi locally computes ri ri.A=si.B si. Any of the standard join methods can be used. Database System Concepts 20.22 ©Silberschatz, Korth and Sudarshan
  • 23. Partitioned Join (Cont.) Database System Concepts 20.23 ©Silberschatz, Korth and Sudarshan
  • 24. Fragment-and-Replicate Join Partitioning not possible for some join conditions  e.g., non-equijoin conditions, such as r.A > s.B. For joins were partitioning is not applicable, parallelization can be accomplished by fragment and replicate technique  Depicted on next slide Special case – asymmetric fragment-and-replicate :  One of the relations, say r, is partitioned; any partitioning technique can be used.  The other relation, s, is replicated across all the processors.  Processor Pi then locally computes the join of ri with all of s using any join technique. Database System Concepts 20.24 ©Silberschatz, Korth and Sudarshan
  • 25. Depiction of Fragment-and-Replicate Joins a. Asymmetric Fragment and Replicate Database System Concepts b. Fragment and Replicate 20.25 ©Silberschatz, Korth and Sudarshan
  • 26. Fragment-and-Replicate Join (Cont.) General case: reduces the sizes of the relations at each processor.  r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m partitions, s0, s1, ..., sm-1.  Any partitioning technique may be used.  There must be at least m * n processors.  Label the processors as  P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.  Pi,j computes the join of ri with sj. In order to do so, ri is replicated to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i  Any join technique can be used at each processor Pi,j. Database System Concepts 20.26 ©Silberschatz, Korth and Sudarshan
  • 27. Fragment-and-Replicate Join (Cont.) Both versions of fragment-and-replicate work with any join condition, since every tuple in r can be tested with every tuple in s. Usually has a higher cost than partitioning, since one of the relations (for asymmetric fragment-and-replicate) or both relations (for general fragment-and-replicate) have to be replicated. Sometimes asymmetric fragment-and-replicate is preferable even though partitioning could be used.  E.g., say s is small and r is large, and already partitioned. It may be cheaper to replicate s across all processors, rather than repartition r and s on the join attributes. Database System Concepts 20.27 ©Silberschatz, Korth and Sudarshan
  • 28. Partitioned Parallel Hash-Join Parallelizing partitioned hash join: Assume s is smaller than r and therefore s is chosen as the build relation. A hash function h1 takes the join attribute value of each tuple in s and maps this tuple to one of the n processors. Each processor Pi reads the tuples of s that are on its disk Di, and sends each tuple to the appropriate processor based on hash function h1. Let si denote the tuples of relation s that are sent to processor Pi. As tuples of relation s are received at the destination processors, they are partitioned further using another hash function, h2, which is used to compute the hash-join locally. (Cont.) Database System Concepts 20.28 ©Silberschatz, Korth and Sudarshan
  • 29. Partitioned Parallel Hash-Join (Cont.) Once the tuples of s have been distributed, the larger relation r is redistributed across the m processors using the hash function h1  Let ri denote the tuples of relation r that are sent to processor Pi. As the r tuples are received at the destination processors, they are repartitioned using the function h2  (just as the probe relation is partitioned in the sequential hash-join algorithm). Each processor Pi executes the build and probe phases of the hash-join algorithm on the local partitions ri and s of r and s to produce a partition of the final result of the hash-join. Note: Hash-join optimizations can be applied to the parallel case  e.g., the hybrid hash-join algorithm can be used to cache some of the incoming tuples in memory and avoid the cost of writing them and reading them back in. Database System Concepts 20.29 ©Silberschatz, Korth and Sudarshan
  • 30. Parallel Nested-Loop Join Assume that  relation s is much smaller than relation r and that r is stored by partitioning.  there is an index on a join attribute of relation r at each of the partitions of relation r. Use asymmetric fragment-and-replicate, with relation s being replicated, and using the existing partitioning of relation r. Each processor Pj where a partition of relation s is stored reads the tuples of relation s stored in Dj, and replicates the tuples to every other processor Pi.  At the end of this phase, relation s is replicated at all sites that store tuples of relation r. Each processor Pi performs an indexed nested-loop join of relation s with the ith partition of relation r. Database System Concepts 20.30 ©Silberschatz, Korth and Sudarshan
  • 31. Other Relational Operations Selection σθ(r) If θ is of the form ai = v, where ai is an attribute and v a value.  If r is partitioned on ai the selection is performed at a single processor. If θ is of the form l <= ai <= u (i.e., θ is a range selection) and the relation has been range-partitioned on ai  Selection is performed at each processor whose partition overlaps with the specified range of values. In all other cases: the selection is performed in parallel at all the processors. Database System Concepts 20.31 ©Silberschatz, Korth and Sudarshan
  • 32. Other Relational Operations (Cont.) Duplicate elimination  Perform by using either of the parallel sort techniques  eliminate duplicates as soon as they are found during sorting.  Can also partition the tuples (using either range- or hashpartitioning) and perform duplicate elimination locally at each processor. Projection  Projection without duplicate elimination can be performed as tuples are read in from disk in parallel.  If duplicate elimination is required, any of the above duplicate elimination techniques can be used. Database System Concepts 20.32 ©Silberschatz, Korth and Sudarshan
  • 33. Grouping/Aggregation Partition the relation on the grouping attributes and then compute the aggregate values locally at each processor. Can reduce cost of transferring tuples during partitioning by partly computing aggregate values before partitioning. Consider the sum aggregation operation:  Perform aggregation operation at each processor Pi on those tuples stored on disk Di  results in tuples with partial sums at each processor.  Result of the local aggregation is partitioned on the grouping attributes, and the aggregation performed again at each processor Pi to get the final result. Fewer tuples need to be sent to other processors during partitioning. Database System Concepts 20.33 ©Silberschatz, Korth and Sudarshan
  • 34. Cost of Parallel Evaluation of Operations If there is no skew in the partitioning, and there is no overhead due to the parallel evaluation, expected speed-up will be 1/n If skew and overheads are also to be taken into account, the time taken by a parallel operation can be estimated as Tpart + Tasm + max (T0, T1, …, Tn-1)  Tpart is the time for partitioning the relations  Tasm is the time for assembling the results  Ti is the time taken for the operation at processor Pi  this needs to be estimated taking into account the skew, and the time wasted in contentions. Database System Concepts 20.34 ©Silberschatz, Korth and Sudarshan
  • 35. Interoperator Parallelism Pipelined parallelism  Consider a join of four relations r 1 r2 r3 r4  Set up a pipeline that computes the three joins in parallel  Let P1 be assigned the computation of temp1 = r1 r2  And P2 be assigned the computation of temp2 = temp1  And P3 be assigned the computation of temp2 r3 r4  Each of these operations can execute in parallel, sending result tuples it computes to the next operation even as it is computing further results  Provided a pipelineable join evaluation algorithm (e.g. indexed nested loops join) is used Database System Concepts 20.35 ©Silberschatz, Korth and Sudarshan
  • 36. Factors Limiting Utility of Pipeline Parallelism Pipeline parallelism is useful since it avoids writing intermediate results to disk Useful with small number of processors, but does not scale up well with more processors. One reason is that pipeline chains do not attain sufficient length. Cannot pipeline operators which do not produce output until all inputs have been accessed (e.g. aggregate and sort) Little speedup is obtained for the frequent cases of skew in which one operator's execution cost is much higher than the others. Database System Concepts 20.36 ©Silberschatz, Korth and Sudarshan
  • 37. Independent Parallelism Independent parallelism  Consider a join of four relations r1 r2 r3 r4  Let P1 be assigned the computation of temp1 = r1 r2  And P2 be assigned the computation of temp2 = r 3  And P3 be assigned the computation of temp1 r4 temp2  P1 and P2 can work independently in parallel  P3 has to wait for input from P1 and P2 – Can pipeline output of P1 and P2 to P3, combining independent parallelism and pipelined parallelism  Does not provide a high degree of parallelism  useful with a lower degree of parallelism.  less useful in a highly parallel system, Database System Concepts 20.37 ©Silberschatz, Korth and Sudarshan
  • 38. Query Optimization Query optimization in parallel databases is significantly more complex than query optimization in sequential databases. Cost models are more complicated, since we must take into account partitioning costs and issues such as skew and resource contention. When scheduling execution tree in parallel system, must decide:  How to parallelize each operation and how many processors to use for it.  What operations to pipeline, what operations to execute independently in parallel, and what operations to execute sequentially, one after the other. Determining the amount of resources to allocate for each operation is a problem.  E.g., allocating more processors than optimal can result in high communication overhead. Long pipelines should be avoided as the final operation may wait a lot for inputs, while holding precious resources Database System Concepts 20.38 ©Silberschatz, Korth and Sudarshan
  • 39. Query Optimization (Cont.) The number of parallel evaluation plans from which to choose from is much larger than the number of sequential evaluation plans.  Therefore heuristics are needed while optimization Two alternative heuristics for choosing parallel plans:  No pipelining and inter-operation pipelining; just parallelize every operation across all processors.  Finding best plan is now much easier --- use standard optimization technique, but with new cost model  Volcano parallel database popularize the exchange-operator model – exchange operator is introduced into query plans to partition and distribute tuples – each operation works independently on local data on each processor, in parallel with other copies of the operation  First choose most efficient sequential plan and then choose how best to parallelize the operations in that plan.  Can explore pipelined parallelism as an option Choosing a good physical organization (partitioning technique) is important to speed up queries. Database System Concepts 20.39 ©Silberschatz, Korth and Sudarshan
  • 40. Design of Parallel Systems Some issues in the design of parallel systems: Parallel loading of data from external sources is needed in order to handle large volumes of incoming data. Resilience to failure of some processors or disks.  Probability of some disk or processor failing is higher in a parallel system.  Operation (perhaps with degraded performance) should be possible in spite of failure.  Redundancy achieved by storing extra copy of every data item at another processor. Database System Concepts 20.40 ©Silberschatz, Korth and Sudarshan
  • 41. Design of Parallel Systems (Cont.) On-line reorganization of data and schema changes must be supported.  For example, index construction on terabyte databases can take hours or days even on a parallel system.  Need to allow other processing (insertions/deletions/updates) to be performed on relation even as index is being constructed.  Basic idea: index construction tracks changes and ``catches up'‘ on changes at the end. Also need support for on-line repartitioning and schema changes (executed concurrently with other processing). Database System Concepts 20.41 ©Silberschatz, Korth and Sudarshan