SlideShare a Scribd company logo
1 of 11
Download to read offline
Elsa de Sá Caetano
Trabalho RI-7
Experimental Modal Analysis of Civil Engineering Structures
CUNHA, A. & CAETANO, E.
Sound and Vibration, Vol. 6, No. 40, pp.12-20, 2006
12 SOUND AND VIBRATION/JUNE 2006
Experimental Modal Analysis of
Civil Engineering Structures
Álvaro Cunha and Elsa Caetano, University of Porto (FEUP), Portugal
This article presents the evolution of experimental modal
analysis in the civil engineering field, from input-output to
output-only modal identification techniques. Many case his-
tories are included from the experiences of the authors at the
Laboratory of Vibrations and Monitoring at the University of
Porto.
Decades ago, a major concern of structural engineers was the
development and application of new and powerful numerical
methods for the static and dynamic analysis of large civil en-
gineering structures. The rapid development of finite-element
techniques accompanied by tremendous technological progress
in the field of personal computers allowed structural design-
ers to use software packages for accurate simulation of struc-
tural behavior.
However, the design and construction of more and more
complex and ambitious civil structures, like dams, large cable-
stayed or suspension bridges, or other special structures have
led structural engineers to develop new experimental tools to
enable the accurate identification of the most relevant static
and dynamic properties. These tools would provide reliable
data to support calibrating, updating, and validating of struc-
tural analysis numerical models used at the design stage.
The continuous ageing and subsequent structural deteriora-
tion of a large number of existing structures have encouraged
the development of efficient vibration-based damage detection
techniques supported by structural health monitoring systems.
The natural tendency of civil engineering researchers was to
utilize well established input-output modal identification tech-
niques to accurately identify the main dynamic properties of
civil structures.
However, it is difficult to excite large civil structures in a con-
trolled manner. Fortunately, remarkable technological progress
in transducers and analog-to-digital converters has supported
modal analysis of large structures exclusively based on mea-
suring the structural response to ambient excitations and ap-
plying suitable stochastic modal identification methods.
The main purpose of this article is to briefly present our per-
spective concerning the evolution of experimental modal
analysis in the civil engineering field, from input-output to
output-only modal identification techniques. This discussion
is strongly influenced by our experience as researchers.
Input-Output Modal Identification
Equipment and Test Procedures. Conventional modal test-
ing is based on estimating a set of frequency response functions
(FRFs) relating the applied force and corresponding response
at several pairs of points along the structure with enough high
spatial and frequency resolution. The construction of FRFs re-
quires use of an instrumentation chain for structural excitation,
data acquisition, and signal processing.
In small and medium-size structures, the excitation can be
induced by an impulse hammer (Figure 1a) similar to those
currently used in mechanical engineering. This device has the
advantage of providing a wide-band input that is able to stimu-
late different modes of vibration. The main drawbacks are the
relatively low frequency resolution of the spectral estimates
(which can preclude the accurate estimation of modal damp-
ing factors) and the lack of energy to excite some relevant
modes of vibration. Due to this problem, some laboratories have
built special impulse devices specifically designed to excite
bridges (Figure 1d). An alternative, also derived from mechani-
cal engineering, is the use of large electrodynamic shakers (Fig-
ure 1c), which can apply a large variety of input signals (ran-
dom, multi-sine, etc.) when duly controlled both in frequency
and amplitude using a signal generator and a power amplifier.
The shakers have the capacity to excite structures in a lower
frequency range and higher frequency resolution. The possi-
bility of applying sinusoidal forces allows for the excitation of
the structure at resonance frequencies and, consequently, for
a direct identification of mode shapes.
The controlled excitation of large civil engineering structures
requires the use of heavy excitation equipment. One option
frequently used in the past in dynamic testing of dams was the
eccentric mass vibrator (Figure 1b), which enables the appli-
cation of sinusoidal forces with variable frequency and ampli-
tude. The main drawbacks of this technique are low force am-
plitude induced at low frequencies, some difficulty in
measuring the applied force, and restraining relative movement
of the vibrator with regard to the structure. A better option, in
terms of providing a wide-band excitation over the most inter-
esting frequency range for large civil structures, is the use of
servo-hydraulic shakers. For example, Figure 2 shows two
shakers of this type built at EMPA to excite bridges or dams
Based on a paper presented at the first International Modal Analysis
Conference, IOMAC, Copenhagen, Denmark, April 2005.
Figure 1. (a) Impulse hammer; (b) eccentric mass vibrator; (c) electro-
dynamic shaker over three load cells; d) impulse excitation device for
bridges (K.U. Leuven).
13SOUND AND VIBRATION/JUNE 2006
vertically and laterally, as well as an electro-hydraulic mass
reaction shaker from Arsenal Research.
The dynamic response of a structure is usually measured
with accelerometers – piezoelectric, piezoresistive, capacitive
or force balance,1 due to their relatively low cost and high sen-
sitivity (see Figure 3). A particular characteristic of piezoelec-
tric accelerometers is that they don’t need a power supply and
operate well over a wide frequency range. However, most are
not suited to low-frequency applications. On the contrary,
piezoresistive, capacitive, and force-balance accelerometers
can provide DC or low-frequency response capability. The elec-
trical signals generated by these transducers are usually rather
low and must be amplified by conditioning units that may also
provide anti-aliasing, low-pass filtering (allowing lower sam-
pling rates), and analog integration to velocities or displace-
ments.
The data acquisition and storage of dynamic data requires
the use of an analog-to-digital (A/D) converter in the measure-
ment chain. Raw data must be initially analyzed and processed;
considering operations of scale conversion, trend removal, and
decimation. Subsequently, the acceleration time history can be
multiplied by appropriate time windows (Hanning, Cosine-
Taper, etc.), to reduce leakage effects, and subdivided into dif-
ferent blocks for evaluation of average spectral, auto spectral,
and cross spectral estimates using the FFT algorithm. Finally,
FRFs (frequency response functions) can be obtained using es-
timators H1 or H2.1 The automatic evaluation of FRFs requires
appropriate software for analysis and signal processing, which
is already available in commercial Fourier analyzers. These
analyzers are sometimes implemented by a laptop PCMCIA
card to allow either the acquisition of data through input chan-
nels or the control of a shaker through an output channel.
Input-Output Modal Identification Methods. There is a wide
variety of input-output modal identification methods whose
application relies either on estimates of a set of FRFs or on the
corresponding impulse response functions (IRFs), which can
be obtained through the inverse Fourier transform. These meth-
ods attempt to perform some fitting between measured and
theoretical functions and employ different optimization pro-
cedures and different levels of simplification. Accordingly,
they are usually classified according to the following criteria:
• Domain of application (time or frequency)
• Type of formulation (indirect or modal and direct)
• Number of modes analyzed (SDOF or MDOF – single degree
of freedom or multi degree of freedom)
• Number of inputs and type of estimates (SISO, SIMO, MIMO,
MISO – single input single output, single input multi out-
put, multi input multi output, multi input single output).
Early methods of identification were developed for the fre-
quency domain. For simple SDOF formulations (peak ampli-
tude, curve-fit, inverse methods, for example), the fit between
a measured and a theoretical FRF of a SDOF system in the vi-
cinity of each resonant frequency is developed; neglecting the
contribution of resonant modes. In more sophisticated MDOF
methods – rational fraction polynomial (RFP), complex expo-
nential frequency domain (CEFD), polyreference frequency
domain (PRFD) – the fit between measured and theoretical
FRFs is made globally for a wide range of frequencies.
Time-domain methods, which tend to provide the best results
when a large frequency range or a large number of modes exist
in the data, were developed because of limitations in the fre-
quency resolution of spectral estimates and leakage errors in
the estimates. The most widely known methods are either in-
direct – complex exponential (CE), least-squares complex ex-
ponential (LSCE), polyreference complex exponential (PRCE),
Ibrahim time domain (ITD), eigen system realization algorithm
(ERA), or direct autoregressive moving-average (ARMA).
The gradual development of all these methods, which are ex-
tensively described by Maia, et al,1 tend to be completely au-
tomated systems of acquisition, analysis, processing, and iden-
tification, instead of interactive programs initially. Beyond that,
the best-performing methods have been implemented in robust
modal analysis software.2 A special class of modal identification
methods, called tuned-sinusoidal methods (e.g. Asher, Mau) cor-
responds to the particular type of tests that are based on the ap-
plication of a sinusoidal excitation at each natural frequency,
which can be implemented using eccentric mass vibrators.
Examples of Forced Vibration Tests. The performance of
classical input-output modal identification tests in civil engi-
neering structures can be of interest both for physical models
and for prototypes. Figures 4 and 5 show a physical model of
Jindo Bridge (South Korea), which was extensively tested to
analyze the importance of dynamic cable-structure interactions
in terms of seismic response analysis.3 Several forced vibra-
Figure 2. Servo-hydraulic shakers to excite: (a) bridges, vertically; (b)
electro-hydraulic shaker from Arsenal Research; (c) dams, laterally
(EMPA).
Figure 3. Schematic cross-section of accelerometers: (a) piezoelectric;
(b) piezoresistive; (c) capacitive; (d) force balance.
14 SOUND AND VIBRATION/JUNE 2006
tion tests were performed using electro-dynamic shakers (at the
University of Bristol and ISMES) and considering two alterna-
tive configurations for the model. First, additional masses were
distributed along the cables according to the similitude theory
to idealize the cables’ mass and consider lateral cable vibra-
tion. In a second phase, no distributed additional mass were
introduced along the cables, but equivalent masses were con-
centrated at their extremities. This study identified the exist-
ence of different sets of multiple modes; some being pure cable
modes and others coupled modes. Each of these sets presents
a common shape for the deck and towers and different cable
motions. The corresponding natural frequencies are very close,
always in the vicinity of a global mode of the primary system
(Figure 6).
Several large civil engineering structures, like buildings,
bridges or dams, have also been subjected to forced vibration
tests in the past using heavy excitation devices only available
at well equipped laboratories. That was the case of EMPA,
where Cantieni and other researchers have tested a significant
number of bridges and dams.4-6 Figures 7 through 9 show some
examples of that remarkable activity, presenting in particular
some of the modes of vibration accurately identified at the
Swedish Norsjö dam.
Figure 4. (a) Jindo cable-stayed bridge; (b) physical model on shake table
(EERC, Univ. Bristol); (c) physical model on shake table (ISMES).
Figure 5. Application of electro-dynamic shaker: (a) response measure-
ment with piezoelectric accelerometer; (b) measurement of cable ten-
sion; (c) whole unit.
Figure 7. (a) Dala bridge; (b) Aarburg bridge; (c) electro-hydraulic vi-
brator used at Aarburg bridge.
Figure 6. (a) amplitude of FRF relating vertical acceleration at 1/3 span
with the vertical force applied at the opposite 1/3 span; (b) identified
pattern of a set of multiple modes.
Figure 8. (a) Norsjö dam; (b) view of instrumented point at downstream
side of reinforced concrete wall.
8 9 10 11 12
Frequency, Hz
AmplitudeFRF,m/sec2
/N
0.01
0.1
1.0
10.0
Exp.
Ajust.
(a)
Shaker
° Freq. = 920 Hz
+ Freq. = 9.50 Hz
(b)
15SOUND AND VIBRATION/JUNE 2006
Output-Only Modal Identification
The main problem associated with forced vibration tests on
bridges, buildings, or dams stems from the difficulty in excit-
ing the most significant modes of vibration in a low range of
frequencies with sufficient energy and in a controlled manner.
In very large, flexible structures like cable-stayed or suspen-
sion bridges, the forced excitation requires extremely heavy
and expensive equipment usually not available in most dy-
namic labs. Figure 10 shows the impressive shakers used to
excite the Tatara and Yeongjong bridges.
Fortunately, recent technological developments in transduc-
ers and A/D converters have made it possible to accurately
measure the very low levels of dynamic response induced by
ambient excitations like wind or traffic. This has stimulated
the development of output-only modal identification methods.
Therefore, the performance of output-only modal identifica-
tion tests became an alternative of great importance in the field
of civil engineering. This allows accurate identification of
modal properties of large structures at the commissioning stage
or during their lifetime without interruption of normal traffic.
Equipment and Test Procedures. Modern force-balance ac-
celerometers (Figure 11a) are well suited for measurements in
the range of 0-50 Hz and are virtually insensitive to high-fre-
quency vibrations. They have contributed significantly to the
success of ambient vibration tests. In such tests, the structural
ambient response is captured by one or more reference sensors
at fixed positions and with a set of roving sensors at different
measurement points along the structure and in different set-
ups. The number of points used is conditioned by the spatial
resolution needed to characterize appropriately the shape of
the most relevant modes of vibration (according to preliminary-
finite element modeling), while the reference points must be
far enough from the corresponding nodal points.
Force-balance accelerometers require an appropriate power
supply, and their analog signals are usually transmitted to a
data acquisition system with an A/D conversion card of at least
16 bits through relatively long electrical cables. This system
can be implemented on a normal PC. Some data acquisition and
processing systems, specifically designed for ambient vibration
tests, are already available (Figure 11b). They are similar to the
Fourier analyzers used for classical experimental modal analy-
sis.
Most output-only modal identification tests in large civil
structures have been based worldwide on the use of long elec-
trical cables. Implementation of this solution is cumbersome
and time consuming. Wireless systems are being developed to
avoid this problem or at least drastically reduce cable length
through local digitization and single-cable signal transmission.
A very efficient alternative has been intensively used at FEUP7
and LNEC8 based on triaxial seismic recorders synchronized
through GPS sensors.
Output-Only Modal Identification Methods. Ambient exci-
tation usually provides multiple inputs and a wide-band fre-
quency content thus stimulating a significant number of vibra-
tion modes. For simplicity, output-only modal identification
methods assume that the excitation input is a zero-mean
Gaussian white noise This means that real excitation can be
expressed as the output of a suitable filter excited with white
noise input. Some additional computational poles without
physical meaning appear as a result of the white noise assump-
tion.
There are two main groups of output-only modal identifica-
tion methods – nonparametric methods essentially developed
in the frequency domain and parametric methods in the time
domain. The basic frequency domain method (peak-picking),
though already applied some decades ago to the modal identi-
fication of buildings9,10 and bridges11,12, was only conveniently
implemented by Felber13 about 12 years ago. This approach,
which leads to estimates of operational mode shapes, is based
on the construction of average normalized power spectral den-
Figure 10. Forced vibration tests: (a) Tatara cable-stayed bridge; (b)
Yeongjong suspension bridge; (c) high force shaker.
Figure 9. Some identified modes of vibration at Norsjö dam (modes 1, 2, 3, 10, 11, 12).
16 SOUND AND VIBRATION/JUNE 2006
Figure 11. (a) Force balance accelerometers; (b) multichannel data acquisition and processing system for ambient vibration tests; (c) strong motion
triaxial seismograph
sities (ANPSDs) and ambient response transfer functions in-
volving all the measurement points. This allowed the devel-
opment of software for modal identification and visualization
used at UBC and EMPA.13 The frequency domain approach was
subsequently improved14,15 by performing a single-value de-
composition of the matrix of response spectra to obtain power
spectral densities of a set of SDOF systems. This method, fre-
quency domain decomposition (FDD), was implemented by
Brincker, et al.,16 and subsequently enhanced17 to extract
modal damping factor estimates. In this last approach (EFDD),
these estimates are obtained through inspection of the decay
of auto-correlation functions evaluated by performing the in-
verse Fourier transform of the SDOF systems’ power spectral
densities.
The time-domain parametric methods involve the choice of
an appropriate mathematical model to idealize the dynamic
structural behavior (usually time-discrete, state-space stochas-
tic models, ARMAV or ARV) and the identification of the val-
ues of the modal parameters so the model fits the experimen-
tal data as well as possible following some appropriate
criterion. These methods can be directly applied to discrete
response time series or, alternatively, to response correlation
functions. The evaluation of these functions can be made based
on their definition using the FFT algorithm18 or applying the
random decrement method (RD).19 A peculiar aspect of output-
only modal identification based on the fitting of response cor-
relation functions is the possibility to use methods that stem
from classical input-output identification methods based on
impulse response functions. Some of these methods are the
Ibrahim time domain (ITD)20, the multiple reference Ibrahim
time domain (MRITD)21, the least-squares complex exponen-
tial (LSCE) 22, the polyreference complex exponential (PRCE),23
or the covariance-driven stochastic subspace identification
(SSI-COV).24
An alternative method that allows direct application to the
response time series is the data-driven stochastic subspace
identification (SSI-DATA).25 Note that the random decrement
technique usually associated with the application of time-do-
main methods like Ibrahim’s can also be the base for the ap-
plication of frequency domain methods (like PP, FDD or
PP method
FDD and EFDD methods
SVD
RD-PP method
RD-FDD and RD-EFDD methods
SVD
Modal
parameters:
fi
ξi
φi
SSI-DATA method
QR, SVD, LS, EVD
Response
time series
y(t)
Welch method
FFT
Numerical techniques used:
FFT – Fast Fourier transform
SVD – Singular value decomposition
LS – Least-squares fitting
EVD – Eigen vector decomposition
QR – Orthogonal decomposition
Estimates of
power spectral
density
functions
Sy
(f)
Estimates of
RD functions
Dy
(t)
Direct method
FFT-based method
FFT
Estimates of
correlation
functions
Ry
(t)
FFT
SSI-COV method
SVD, LS, EVD
LSCE and PTD methods
LS, EVD
ITD and MRITD methods
LS, EVD
Figure 12. Schematic representation of output-only modal identification methods.
EFDD).This leads to free vibration responses from which power
spectral densities can be evaluated using the FFT algorithm,26
thus reducing noise effects (methods RD-PP, RD-FDD and RD-
EFDD). These methods, schematically represented in Figure 12,
have been recently implemented, applied, and compared by
Rodrigues.8 Figure 12 also indicates the five different types of
numerical techniques employed in their development (FFT,
SVD, LS, EVD and QR).
A new operational polymax parameter estimation method
was recently introduced by LMS.27 It operates on spectra or half
spectra (i.e. the Fourier transforms of the positive time lags of
the correlation functions), and its main advantage consists in
yielding extremely clear stabilization diagrams, making an
automation of the parameter identification process rather
straightforward and possibly enabling continuous monitoring
of structural dynamic properties.
Examples of Ambient Vibration Tests. Ambient vibration
tests have been performed with great success in large buildings,
bridges, and other structures. High-quality experimental data-
bases have been used to compare the performance of different
output-only modal identification methods. A benchmark test
concerning the modal identification of the Heritage Court
Tower (Vancouver, Canada) was organized at IMAC-XVIII by
Ventura.28 This example considered a combination of measured
signals (half-sum and half-difference signals along two orthogo-
nal directions at two different points at each floor). This em-
phasized contributions from bending or torsion, as well as high-
frequency resolution to separate contributions from close
modes when using the classical PP method.29 Applying FDD
and SSI methods permitted a more automatic identification
procedure for distinguishing close modes and extracting modal
damping estimates (see Figure 13).
In the case of bridges, complete ambient vibration tests were
developed along about 5 km of the Vasco da Gama Bridge by
FEUP. Regarding the main cable-stayed bridge (Figure 14), the
ambient structural response was measured during periods of
16 minutes at 58 points along the deck and towers (upstream
and downstream) using a wireless system based on six triaxial,
16-bit seismographs synchronized by a laptop computer. The
identification of a significant number of lateral, vertical, and
17SOUND AND VIBRATION/JUNE 2006
torsion modes in the relevant frequency range of 0-1 Hz was
performed at first7 using the PP method. Subsequently, SSI and
FDD methods were applied30,31 and compared using the soft-
ware MACEC24 and ARTeMIS32. This lead to estimates of modal
damping factors, although very accurate damping estimates
require longer measurement periods. Figure 15 shows the sin-
gular value spectra and a stabilization diagram generated by
these two methods, while Figure 16 presents plots of some fun-
damental modes.
Note that the existence of cable components in the analysis
frequency range can make identification of global natural fre-
quencies difficult. Figures 17c and 17d show PSD (power spec-
tral density) functions concerning the ambient response of the
international Guadiana cable stayed-bridge (Figure 17a – link-
ing Portugal to Spain in Algarve), evaluated with three differ-
ent levels of average wind speed. This shows the appearance
of spectral contributions from the fundamental modes of stay
cables (in the range 0.6-0.9 Hz) or second harmonics leading
to spectral peaks that cannot be interpreted as global natural
frequencies of the bridge. Inspection of the spectral peaks (Fig-
ure 17b) shows the increase of modal damping with wind
speed, which can be evaluated through ambient vibration tests
using sufficiently long measurement periods.33
Note that the output-only modal identification technique
used in Vasco da Gama and Guadiana bridges by FEUP has been
recently applied with great success to the dynamic tests at the
commissioning stage of the outstanding Millau viaduct, coor-
dinated by Grillaud and Flamand (CSTB, France).34
Examples of Free Vibration Tests – Damping Estimation. The
accurate identification of modal damping factors is a major
problem in the identification process due to the considerably
larger scatter associated with various natural frequency and
mode shape estimates. This is also true because the viscous
damping assumption does not correspond exactly to real damp-
ing characteristics. The modal damping ratios increase gradu-
ally with levels of oscillation.
In several circumstances, the accurate identification of modal
damping factors is required, which is frequently achieved by
performing a free vibration test. This situation is unique to large
and slender cable-stayed or suspension bridges where knowl-
edge of certain damping factors is crucial for assessing
aeroelastic instability problems. Such tests have been per-
formed at Normandy, Vasco da Gama, or Millau bridges. At
Vasco da Gama Bridge, the test was made by suspending a barge
on a cable with a mass of 60 tons from an eccentric point at
the deck (Figure 18a)7 at one-third span upstream. The cable
was cut when the tide became low and the wind speed of less
than 3 m/s to avoid the influence of aerodynamic damping. The
sudden release of the mass caused a free vibration response,
which was measured over 16 minutes by six triaxial seismo-
graphs at one-half and one-third span cross-sections. Similar
techniques can be used on other structures, as is the case for
Mode 4
(b)(a)
Mode 1
Figure 13. (a) Heritage Court Tower; (b) two identified mode shapes; (c)
ANPSD spectra.
68
73
78
83
StateSpaceDimension
Frequency, Hz
0 0.3 0.6 0.9 1.2
(b)
Frequency, Hz
0 0.3 0.6 0.9 1.2
dB|1.0/Hz
-60
-40
-20
0
20
(a)
Figure 15. (a) Singular-value spectra; (b) stabilization diagram.
Figure 14. View of Vasco da Gama Bridge.
(c)
1.0
0 2 4 6 8 10 12
Frequency, Hz
ANPSD,E-W
1 x 10-5
1 x 10-6
1.0
0 2 4 6 8 10 12
Frequency, Hz
ANPSD,N-S
Half-sum
Half-diff.
18 SOUND AND VIBRATION/JUNE 2006
Figure 16. Identified modes: (a) first bending; (b) second bending; (c)
first torsional; (d) second torsional.
the Madeira airport extension35 where a mass of 60.8 tons
(Figure18b and 18c) was suspended from the deck. The sud-
den release of the mass was achieved via detonation of a fus-
ible element incorporated in the suspension device.
The aeroeleastic stability of the cable roof of the new Braga
Stadium (EURO’2004, Figure 19) was proven by different ex-
perimental tests on physical models. The modal damping iden-
tification was essentially required to study possible resonance
effects that could affect long-term structural integrity and du-
rability. Sinusoidal excitations were applied at different points
by a mechanical vibrator connected to the cable roof. By stop-
ping the vibrator suddenly, it was possible to measure modal-
free vibration responses as plotted in Figure 19. The exponen-
tial fitting of the free vibration envelopes led to very accurate
estimates of modal damping factors for different levels of os-
cillation.36
Finite-Element Correlation and Updating
Finite-Element Correlation. The modal identification of
bridges and other civil structures is required for validation of
finite-element models used to predict static and dynamic struc-
tural behavior either at the design stage or at rehabilitation.
After appropriate experimental validation, finite-element mod-
els can provide essential baseline information that can subse-
quently be compared with information captured by long-term
monitoring systems to detect structural damage.
The correlation of modal parameters can be analyzed both
in terms of identified and calculated natural frequencies and
by corresponding mode shapes using correlation coefficients
or MAC (modal analysis criteria) values. Beyond that, modal
damping estimates can be also compared with the values as-
sumed for numerical modelling. This type of analysis has al-
ready been developed for the Vasco da Gama and Luiz I bridges
with excellent results7,37 and has recently been applied at two
Portuguese bridges over Douro River (Figure 20). The New
Hintze Ribeiro Bridge is a six span composite bridge that re-
placed the centenary bridge that collapsed in 2001 and the
Pinhão Bridge (a three-span simply-supported metallic bridge
with a concrete slab at the deck) is presently under rehabilita-
tion.
In the first case (Figure 20a), good correlation between iden-
tified and calculated modal parameters was achieved for the
vertical bending modes. Regarding the lateral response of the
bridge, identified frequencies were higher than calculated val-
ues even though good correlation of modal shapes had been ob-
tained.38 Such a discrepancy stems from the difficulty in nu-
merically simulating the real characteristics of soil-structure
(b)
1x10-6
0.01
0.25 0.35 0.45 0.55 0.65
Frequency, Hz
S1 - v=2m/s
S2 - v=2m/s
S3 - v=2m/s
S4 - v=9m/s
S5 - v=9m/s
S6 - v=9m/s
S7 - v=14m/s
Amplitude
(c)
1x10-6
0.01
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.0
Frequency, Hz
Amplitude
wind - 2 m/s wind - 10 m/s wind - 14 m/s
(d)
1x10-7
0.01
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Frequency, Hz
Amplitude
wind - 2 m/s wind - 10 m/s wind - 14 m/s
Figure 17. (a) Guadiana cable-stayed bridge; (b, c) PSD functions of half-
sum vertical; lateral (d) acceleration at reference section as function
of mean wind speed.
19SOUND AND VIBRATION/JUNE 2006
interactions at the foundation of several piers and it shows the
large influence that variations in boundary conditions can have
on the global dynamic bridge properties.
In the case of the Pinhão Bridge (Figure 20b), very similar
modal estimates were obtained in the three similar spans, and
good correlation was achieved between significant identified
and calculated modal parameters considering either the verti-
cal or lateral behavior of the bridge. It was clear39 that initial
numerical modeling developed by the designer should be im-
proved to correctly simulate the lateral dynamic response by
including the stiffness associated with the concrete slab of the
deck which was made through a discretization of shell ele-
ments.
Finite-Element Updating. The accurate identification of the
most significant modal parameters based on output-only tests
can support the updating of finite-element models, which may
overcome several uncertainties associated with numerical
modeling. Such updating can be developed on the basis of a
sensitivity analysis using several types of models and chang-
ing the values of some structural properties to achieve a good
match between identified and calculated modal parameters.
This procedure has been followed recently to study the dy-
namic behavior of a stress-ribbon footbridge at the FEUP Cam-
pus (Figure 21). For that purpose, initial finite-element mod-
els were developed for the bridge deck as a set of beam elements
with the geometry considered at the design stage or measured
through a topographic survey (Models 1 and 2). Afterward, due
to the clear nonlinear geometrical behavior of the bridge, a third
model (Model 3) was developed. The deck was modeled in
truss finite elements with the cable axial stiffness (neglecting
bending stiffness) and adjusting the initial cable tension to
obtain the measured longitudinal profile after progressive ap-
plication of the loads. To also take into account the bending
stiffness of the concrete slab, this model was subsequently
adapted (Model 4) by discretizing the deck in truss finite ele-
ments with progressive loading and activation of beam ele-
ments connecting the nodes of the truss elements. Finally, this
model was slightly modified to consider partial rotations be-
tween beam elements and to simulate the lack of sealing of the
joints. The area and inertia of the beam elements was also re-
duced to simulate the effects of cracking and lack of adherence
between precast and in situ concrete. After all these iterations,
very good correlation between identified and calculated natu-
ral frequencies and mode shapes was achieved.40
Beyond this type of sensitivity analysis, more automatic fi-
nite-element updating techniques can also be used.41 The draw-
back of output-only modal identification is that it seems to be
impossible to obtain mass normalized mode shapes. However,
this inconvenience can be overcome42 by introducing appro-
priate mass changes.
Conclusions
Civil engineering structures have peculiar characteristics
(large size and relatively low natural frequencies) that make the
current application of classical input-output modal identifica-
tion techniques difficult. Therefore, there is presently a clear
tendency worldwide to explore and improve the potential of
output-only modal identification techniques, whose efficiency
and accuracy were clearly illustrated with the applications
shown. The techniques that may be used under normal opera-
tion conditions can provide a solid basis for:
• Developing finite-element correlation analyses.
• Finite-element updating and validation.
• Defining a baseline set of dynamic properties of the initially
undamaged structure that can subsequently be used for the
application of vibration-based damage detection techniques.
• Integrating output-only modal identification techniques in
health monitoring systems.
• Implementing vibration-control devices.
Figure 18. (a) Free vibration test of Vasco da Gama cable-stayed bridge;
(b) aerial view of Madeira airport extension; (c) mass of 60.8 tons used
in the free vibration test of Madeira airport extension.
Figure 19. Measurement of free vibration response at three different
points of Braga stadium cable-roof after inducing resonance.
Figure 20. (a) New Hintze Ribeiro and (b) Pinhão bridges, over Douro
River.
Figure 21. Stress-ribbon footbridge at FEUP Campus.
20 SOUND AND VIBRATION/JUNE 2006
References
1. Maia, N., et al., Theoretical and Experimental Modal Analysis, Re-
search Studies Press, UK, 1997.
2. Han, M-C , and Wicks, A. L., “On the Application of Forsythe Or-
thogonal Polynomials for Global Modal Parameter Estimation,”
Proc. 7th Int. Modal Analysis Conference, 1989.
3. Caetano, E., Cunha, A., and Taylor, C., “Investigation of Dynamic
Cable-Deck Interaction in a Physical Model of a Cable-stayed Bridge.
Part I: Modal Analysis,” Int. Journal Earthquake Engineering and
Structural Dynamics, Vol. 29, No. 4, pp. 481-498, 2000.
4. Pietrzko, S., Cantieni, R., and Deger, Y., “Modal Testing of a Steel/
Concrete Composite Bridge with a Servo-Hydraulic Shaker,” Proc.
14th Int. Modal Analysis Conference, Dearborn, MI, 1996.
5. Cantieni, R., Deger, Y., and Pietrzko, S., “Large Structure Investi-
gation with Dynamic Methods: the Bridge on the River Aare at
Aarburg,” Prestressed Concrete in Switzerland, Report of the Swiss
FIP Group to the 12th FIP Congress, Washington D.C., 1994.
6. Cantieni, R., “Assessing a Dam’s Structural Properties Using Forced
Vibration Testing,” Proc. IABSE International Conference on Safety,
Risk and Reliability - Trends in Engineering, Malta, 2001.
7. Cunha, A., Caetano, E., and Delgado, R., “Dynamic Tests on a Large
Cable-Stayed Bridge – An Efficient Approach,” Journal Bridge En-
gineering, ASCE, Vol. 6, No. 1, pp. 54-62, 2001.
8. Rodrigues, J., “Stochastic Modal Identification – Methods and Ap-
plications in Civil Engineering Structures,” Ph.D. Thesis (in
Portug.), Univ. of Porto (FEUP/LNEC), 2004.
9. Crawford, R., and Ward, H. S., “Determination of the Natural Pe-
riod of Buildings,” Bulletin of the Seismological Society of America,
Vol. 54, No. 6, pp. 1743-1756, 1964.
10. Trifunac, M. D., “Comparison Between Ambient and Forced Vibra-
tion Experiments,” Earthquake Engineering and Structural Dynam-
ics, Vol. 1, pp. 133-150, 1972.
11. McLamore, V. R., Hart, G., and Stubbs, I. R., “Ambient Vibration of
Two Suspension Bridges,” Journal of the Structural Division, ASCE,
Vol. 97, N.ST10, pp. 2567-2582, 1971.
12. Abdel-Ghaffar, A. M., “Vibration Studies and Tests of a Suspension
Bridge,” Earthquake Engineering and Structural Dynamics, Vol. 6,
pp. 473-496, 1978.
13. Felber, A., “Development of a Hybrid Bridge Evaluation System,”
Ph.D. Thesis, University of British Columbia (UBC), Vancouver,
Canada, 1993.
14. Prevosto, M., “Algorithmes d’Identification des Caractéristiques
Vibratoires de Structures Mécaniques Complexes,” Ph.D. Thesis,
Univ. de Rennes I, France, 1982.
15. Corrêa, M. R., and Campos Costa, A., “Ensaios Dinâmicos da Ponte
sobre o Rio Arade,” Pontes Atirantadas do Guadiana e do Arade
(in Portuguese), ed. by LNEC, 1992.
16. Brincker, R., Zhang, L., and Andersen, P., “Modal Identification from
Ambient Responses using Frequency Domain Decomposition,” Proc.
18th Int. Modal Analysis Conference, Kissimmee, FL, 2001.
17. Brincker, R., Ventura, C., and Andersen, P., “Damping Estimation
by Frequency Domain Decomposition,” Proc. 19th Int. Modal Analy-
sis Conference, San Antonio, TX, 2000.
18. Brincker, R., Krenk, S., Kirkegaard, P. H., and Rytter, A., “Identifi-
cation of the Dynamical Properties from Correlation Function Esti-
mates,” Bygningsstatiske Meddelelser, Danish Society for Structural
Science and Engineering, Vol. 63, No. 1, pp. 1-38, 1992.
19. Asmussen, J. C., “Modal Analysis Based on the Random Decrement
Technique – Application to Civil Engineering Structures,” Ph.D.
Thesis, Univ. Aalborg, 1997.
20. Ibrahim, S. R., and Mikulcik, E. C., “A Method for the Direct Iden-
tification of Vibration Parameters from the Free Response,” The
Shock and Vibration Bulletin, Vol. 47, No. 4, pp. 183-198, 1977.
21. Fukuzono, K., “Investigation of Multiple-Reference Ibrahim Time
Domain Modal Parameter Estimation Technique,” M.Sc. Thesis,
Univ. Cincinnati, OH, 1986.
22. Brown, D. L., Allemang, R. J., Zimmerman, R., and Mergeay, M.,
“Parameter Estimation Techniques for Modal Analysis, SAE Tech-
nical Paper Series, No. 790221, 1979.
23. Vold, H., Kundrat, J., Rocklin, G. T., and Russel, R., “A Multi-Input
Modal Estimation Algorithm for Mini-Computers,” SAE Technical
Paper Series, No. 820194, 1982.
24. Peeters, B., “System Identification and Damage Detection in Civil
Engineering,” Ph.D. Thesis, K. U. Leuven, Belgium, 2000.
25. Van Overschee, P., and DeMoor, B., Subspace Identification for Lin-
ear Systems – Theory, Implementation, Applications, Kluwer Aca-
demic Publishers, The Netherlands, 1996.
26. Rodrigues, J., Brincker, R., and Andersen, P. “Improvement of Fre-
quency Domain Output-Only Modal Identification from the Appli-
cation of the Random Decrement Technique,” Proc. 23rd Int. Modal
Analysis Conference, Deaborn, MI, 2004.
27. Peeters, B., Vanhollebeke, F., and Van der Auweraer, H., “Opera-
tional PolyMAX for Estimating the Dynamic Properties of a Stadium
Structure During a Football Game,” Proc. 23rd Int. Modal Analysis
Conference, Orlando, FL, 2005.
28. Ventura, C. E., and Horyna, T., “Measured and Calculated Modal
Characteristics of the Heritage Court Tower in Vancouver,” Proc.
18th Int. Modal Analysis Conference, San Antonio, TX, 2000.
29. Cunha, A., Caetano, E., and Moutinho, C., “Ambient Vibration Data
Analysis of Heritage Court Tower – Contribution of University of
Porto to IMAC Benchmark,” Proc. of the 18th Int. Modal Analysis
Conference (IMAC), San Antonio, TX, 2000.
30. Peeters, B., De Roeck, G., Caetano, E., and Cunha, A., “Dynamic
Study of the Vasco da Gama Bridge,” Proc. of the International Con-
ference on Noise and Vibration Engineering, ISMA, Leuven, Bel-
gium, 2002.
31. Cunha, A., Caetano, E., Brincker, R., and Andersen, P., “Identifica-
tion from the Natural Response of Vasco da Gama Bridge,” Proc. 22nd
Int. Modal Analysis Conference, Dearborn, MI, 2004.
32. ARTeMIS Extractor Pro, Structural Vibration Solutions, Aalborg,
Denmark.
33. Magalhães, F. “Stochastic Modal Identification for Validation of
Numerical Models,” M.Sc. Thesis (in Portuguese), Univ. Porto,
FEUP, 2004.
34. Flamand, O., and Grillaud, G., “Identification Modale du Viaduc
de Millau,” Technical Report EN-CAPE 05.007 C-V0, CSTB, France,
2005.
35. Rodrigues, J., and Campos Costa, A., “Dynamic Tests of the Struc-
ture for Extension of the Madeira Island Airport,” Proc. 20th Int.
Modal Analysis Conference, Los Angeles, CA, 2002.
36. Magalhães, F., Caetano, E., and Cunha, A., “Experimental Identifi-
cation of Modal Damping Coefficients of the New Braga Stadium
Cable-Roof,” Technical Report (in Portuguese), Univ. Porto, FEUP/
VIBEST, 2004.
37. Cunha, A., and Calçada, R., “Ambient Vibration Test of a Steel
Trussed Arch Bridge,” Proc. of the 18th Int. Modal Analysis Con-
ference, San Antonio, TX, 2000.
38. Caetano, E., and Cunha, A., “Ambient Vibration Test and Finite
Element Correlation of the New Hintze Ribeiro Bridge,” Proc. Int.
Modal Analysis Conf., Kissimmee, FL, 2003.
39. Magalhães, F., Caetano, E., and Cunha, A., “Ambient Vibration Test
of Pinhão Bridge,” Technical Report (in Portuguese), Univ. Porto,
FEUP/VIBEST, 2004.
40. Caetano, E., and Cunha, A., “Experimental and Numerical Assess-
ment of the Dynamic Behaviour of a Stress-Ribbon Bridge,” Struc-
tural Concrete, Journal of FIB, Vol. 5, No. 1, pp. 29-38, 2004.
41. Teughels, A., “Inverse Modelling of Civil Engineering Structures
based on Operational Modal Data,” Ph.D. Thesis, K. U. Leuven,
Belgium, 2003.
42. Brincker, R., and Andersen, P., “A way of getting Scaled Mode
Shapes in Output Only Modal Testing,” Proc. 21st Int. Modal Analy-
sis Conference, Kissimmee, FL, 2003.
The author may be contacted at: acunha@fe.up.pt.

More Related Content

What's hot

Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service Systems
Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service SystemsLessons Learned of AC Arc Flash Studies for Station Auxiliary Service Systems
Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service SystemsPower System Operation
 
Using Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringUsing Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringPower System Operation
 
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...IRJET Journal
 
IRJET- Structural Analysis of Transmission Tower: State of Art
IRJET-  	  Structural Analysis of Transmission Tower: State of ArtIRJET-  	  Structural Analysis of Transmission Tower: State of Art
IRJET- Structural Analysis of Transmission Tower: State of ArtIRJET Journal
 
Optimization and analysis failure mode effect and finite element of a common ...
Optimization and analysis failure mode effect and finite element of a common ...Optimization and analysis failure mode effect and finite element of a common ...
Optimization and analysis failure mode effect and finite element of a common ...IAEME Publication
 
Efficient robotic path planning algorithm based on artificial potential field
Efficient robotic path planning algorithm based on  artificial potential field Efficient robotic path planning algorithm based on  artificial potential field
Efficient robotic path planning algorithm based on artificial potential field IJECEIAES
 
Experimental Evaluation of Torque Performance of Voltage and Current Models u...
Experimental Evaluation of Torque Performance of Voltage and Current Models u...Experimental Evaluation of Torque Performance of Voltage and Current Models u...
Experimental Evaluation of Torque Performance of Voltage and Current Models u...IJPEDS-IAES
 

What's hot (10)

Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service Systems
Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service SystemsLessons Learned of AC Arc Flash Studies for Station Auxiliary Service Systems
Lessons Learned of AC Arc Flash Studies for Station Auxiliary Service Systems
 
Using Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle MonitoringUsing Synchrophasor Data for Phase Angle Monitoring
Using Synchrophasor Data for Phase Angle Monitoring
 
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...
IRJET- Broadcasting Test Patterns to Integrated Circuit Via Single Bidirectio...
 
IRJET- Structural Analysis of Transmission Tower: State of Art
IRJET-  	  Structural Analysis of Transmission Tower: State of ArtIRJET-  	  Structural Analysis of Transmission Tower: State of Art
IRJET- Structural Analysis of Transmission Tower: State of Art
 
Optimization and analysis failure mode effect and finite element of a common ...
Optimization and analysis failure mode effect and finite element of a common ...Optimization and analysis failure mode effect and finite element of a common ...
Optimization and analysis failure mode effect and finite element of a common ...
 
Efficient robotic path planning algorithm based on artificial potential field
Efficient robotic path planning algorithm based on  artificial potential field Efficient robotic path planning algorithm based on  artificial potential field
Efficient robotic path planning algorithm based on artificial potential field
 
RE 07 - art.02
RE  07 - art.02RE  07 - art.02
RE 07 - art.02
 
A modeling and performance of the triple field plate HEMT
A modeling and performance of the triple field plate HEMTA modeling and performance of the triple field plate HEMT
A modeling and performance of the triple field plate HEMT
 
Experimental Evaluation of Torque Performance of Voltage and Current Models u...
Experimental Evaluation of Torque Performance of Voltage and Current Models u...Experimental Evaluation of Torque Performance of Voltage and Current Models u...
Experimental Evaluation of Torque Performance of Voltage and Current Models u...
 
Zhe huangm sc
Zhe huangm scZhe huangm sc
Zhe huangm sc
 

Similar to Ri 7

A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...
A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...
A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...IJPEDS-IAES
 
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...An Improved of Multiple Harmonic Sources Identification in Distribution Syste...
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...IAES-IJPEDS
 
Accurate harmonic source identification using S-transform
Accurate harmonic source identification using S-transformAccurate harmonic source identification using S-transform
Accurate harmonic source identification using S-transformTELKOMNIKA JOURNAL
 
Diagnosis of broken bars fault in induction machines using higher order spect...
Diagnosis of broken bars fault in induction machines using higher order spect...Diagnosis of broken bars fault in induction machines using higher order spect...
Diagnosis of broken bars fault in induction machines using higher order spect...ISA Interchange
 
Characterization of transients and fault diagnosis in transformer by discrete
Characterization of transients and fault diagnosis in transformer by discreteCharacterization of transients and fault diagnosis in transformer by discrete
Characterization of transients and fault diagnosis in transformer by discreteIAEME Publication
 
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...Power System Operation
 
Development of Seakeeping Test and Data Processing System
Development of Seakeeping Test and Data Processing SystemDevelopment of Seakeeping Test and Data Processing System
Development of Seakeeping Test and Data Processing Systemijceronline
 
BigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyBigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyvincentlaulagnet
 
BigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyBigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyvincentlaulagnet
 
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...Wireilla
 
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...ijfls
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Sensors multi fault detection
Sensors multi fault detectionSensors multi fault detection
Sensors multi fault detectionSidra Khanam
 
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET Journal
 
International journal of engineering issues vol 2015 - no 2 - paper7
International journal of engineering issues   vol 2015 - no 2 - paper7International journal of engineering issues   vol 2015 - no 2 - paper7
International journal of engineering issues vol 2015 - no 2 - paper7sophiabelthome
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...ijsc
 

Similar to Ri 7 (20)

A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...
A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...
A Tactical Chaos based PWM Technique for Distortion Restraint and Power Spect...
 
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...An Improved of Multiple Harmonic Sources Identification in Distribution Syste...
An Improved of Multiple Harmonic Sources Identification in Distribution Syste...
 
Accurate harmonic source identification using S-transform
Accurate harmonic source identification using S-transformAccurate harmonic source identification using S-transform
Accurate harmonic source identification using S-transform
 
Diagnosis of broken bars fault in induction machines using higher order spect...
Diagnosis of broken bars fault in induction machines using higher order spect...Diagnosis of broken bars fault in induction machines using higher order spect...
Diagnosis of broken bars fault in induction machines using higher order spect...
 
I0423056065
I0423056065I0423056065
I0423056065
 
Characterization of transients and fault diagnosis in transformer by discrete
Characterization of transients and fault diagnosis in transformer by discreteCharacterization of transients and fault diagnosis in transformer by discrete
Characterization of transients and fault diagnosis in transformer by discrete
 
40520130101002
4052013010100240520130101002
40520130101002
 
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...
Experimental Testing of a Real-Time Implementation of a PMU-Based Wide-Area D...
 
Development of Seakeeping Test and Data Processing System
Development of Seakeeping Test and Data Processing SystemDevelopment of Seakeeping Test and Data Processing System
Development of Seakeeping Test and Data Processing System
 
BigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyBigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudy
 
BigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudyBigData_MultiDimensional_CaseStudy
BigData_MultiDimensional_CaseStudy
 
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
 
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
WAVELET- FUZZY BASED MULTI TERMINAL TRANSMISSION SYSTEM PROTECTION SCHEME IN ...
 
E1082935
E1082935E1082935
E1082935
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Sensors multi fault detection
Sensors multi fault detectionSensors multi fault detection
Sensors multi fault detection
 
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
IRJET- Compressed Sensing based Modified Orthogonal Matching Pursuit in DTTV ...
 
Gene's law
Gene's lawGene's law
Gene's law
 
International journal of engineering issues vol 2015 - no 2 - paper7
International journal of engineering issues   vol 2015 - no 2 - paper7International journal of engineering issues   vol 2015 - no 2 - paper7
International journal of engineering issues vol 2015 - no 2 - paper7
 
Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...Fault diagnosis of a high voltage transmission line using waveform matching a...
Fault diagnosis of a high voltage transmission line using waveform matching a...
 

Recently uploaded

💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋nirzagarg
 
Enhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionEnhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionRocioDanicaCondorGol1
 
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Environmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptxEnvironmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptxhossanmdjobayer103
 
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756dollysharma2066
 
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxHertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxEdgar Hertwich
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...SUHANI PANDEY
 
CSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENCSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENGeorgeDiamandis11
 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayGeorgeDiamandis11
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...tanu pandey
 
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...SUHANI PANDEY
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...AICCRA
 
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...SUHANI PANDEY
 
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 

Recently uploaded (20)

💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
💚😋 Mathura Escort Service Call Girls, 9352852248 ₹5000 To 25K With AC💚😋
 
Enhancing forest data transparency for climate action
Enhancing forest data transparency for climate actionEnhancing forest data transparency for climate action
Enhancing forest data transparency for climate action
 
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Jejuri Call Me 7737669865 Budget Friendly No Advance Booking
 
Environmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptxEnvironmental Science - Nuclear Hazards and Us.pptx
Environmental Science - Nuclear Hazards and Us.pptx
 
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
GENUINE Babe,Call Girls IN Chhatarpur Delhi | +91-8377877756
 
Deforestation
DeforestationDeforestation
Deforestation
 
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptxHertwich_EnvironmentalImpacts_BuildingsGRO.pptx
Hertwich_EnvironmentalImpacts_BuildingsGRO.pptx
 
Climate Change
Climate ChangeClimate Change
Climate Change
 
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
(NEHA) Call Girls Navi Mumbai Call Now 8250077686 Navi Mumbai Escorts 24x7
 
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
(INDIRA) Call Girl Katra Call Now 8617697112 Katra Escorts 24x7
 
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
VVIP Pune Call Girls Moshi WhatSapp Number 8005736733 With Elite Staff And Re...
 
CSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -ENCSR_Tested activities in the classroom -EN
CSR_Tested activities in the classroom -EN
 
CSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting DayCSR_Module5_Green Earth Initiative, Tree Planting Day
CSR_Module5_Green Earth Initiative, Tree Planting Day
 
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Budhwar Peth Call Me 7737669865 Budget Friendly No Advance Booking
 
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...Verified Trusted Kalyani Nagar Call Girls  8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
Verified Trusted Kalyani Nagar Call Girls 8005736733 𝐈𝐍𝐃𝐄𝐏𝐄𝐍𝐃𝐄𝐍𝐓 Call 𝐆𝐈𝐑𝐋 𝐕...
 
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...
VIP Model Call Girls Charholi Budruk ( Pune ) Call ON 8005736733 Starting Fro...
 
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...Presentation: Farmer-led climate adaptation - Project launch and overview by ...
Presentation: Farmer-led climate adaptation - Project launch and overview by ...
 
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
Call Girls Service Pune ₹7.5k Pick Up & Drop With Cash Payment 8005736733 Cal...
 
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Moshi Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Ramtek Call Me 7737669865 Budget Friendly No Advance Booking
 

Ri 7

  • 1. Elsa de Sá Caetano Trabalho RI-7 Experimental Modal Analysis of Civil Engineering Structures CUNHA, A. & CAETANO, E. Sound and Vibration, Vol. 6, No. 40, pp.12-20, 2006
  • 2.
  • 3. 12 SOUND AND VIBRATION/JUNE 2006 Experimental Modal Analysis of Civil Engineering Structures Álvaro Cunha and Elsa Caetano, University of Porto (FEUP), Portugal This article presents the evolution of experimental modal analysis in the civil engineering field, from input-output to output-only modal identification techniques. Many case his- tories are included from the experiences of the authors at the Laboratory of Vibrations and Monitoring at the University of Porto. Decades ago, a major concern of structural engineers was the development and application of new and powerful numerical methods for the static and dynamic analysis of large civil en- gineering structures. The rapid development of finite-element techniques accompanied by tremendous technological progress in the field of personal computers allowed structural design- ers to use software packages for accurate simulation of struc- tural behavior. However, the design and construction of more and more complex and ambitious civil structures, like dams, large cable- stayed or suspension bridges, or other special structures have led structural engineers to develop new experimental tools to enable the accurate identification of the most relevant static and dynamic properties. These tools would provide reliable data to support calibrating, updating, and validating of struc- tural analysis numerical models used at the design stage. The continuous ageing and subsequent structural deteriora- tion of a large number of existing structures have encouraged the development of efficient vibration-based damage detection techniques supported by structural health monitoring systems. The natural tendency of civil engineering researchers was to utilize well established input-output modal identification tech- niques to accurately identify the main dynamic properties of civil structures. However, it is difficult to excite large civil structures in a con- trolled manner. Fortunately, remarkable technological progress in transducers and analog-to-digital converters has supported modal analysis of large structures exclusively based on mea- suring the structural response to ambient excitations and ap- plying suitable stochastic modal identification methods. The main purpose of this article is to briefly present our per- spective concerning the evolution of experimental modal analysis in the civil engineering field, from input-output to output-only modal identification techniques. This discussion is strongly influenced by our experience as researchers. Input-Output Modal Identification Equipment and Test Procedures. Conventional modal test- ing is based on estimating a set of frequency response functions (FRFs) relating the applied force and corresponding response at several pairs of points along the structure with enough high spatial and frequency resolution. The construction of FRFs re- quires use of an instrumentation chain for structural excitation, data acquisition, and signal processing. In small and medium-size structures, the excitation can be induced by an impulse hammer (Figure 1a) similar to those currently used in mechanical engineering. This device has the advantage of providing a wide-band input that is able to stimu- late different modes of vibration. The main drawbacks are the relatively low frequency resolution of the spectral estimates (which can preclude the accurate estimation of modal damp- ing factors) and the lack of energy to excite some relevant modes of vibration. Due to this problem, some laboratories have built special impulse devices specifically designed to excite bridges (Figure 1d). An alternative, also derived from mechani- cal engineering, is the use of large electrodynamic shakers (Fig- ure 1c), which can apply a large variety of input signals (ran- dom, multi-sine, etc.) when duly controlled both in frequency and amplitude using a signal generator and a power amplifier. The shakers have the capacity to excite structures in a lower frequency range and higher frequency resolution. The possi- bility of applying sinusoidal forces allows for the excitation of the structure at resonance frequencies and, consequently, for a direct identification of mode shapes. The controlled excitation of large civil engineering structures requires the use of heavy excitation equipment. One option frequently used in the past in dynamic testing of dams was the eccentric mass vibrator (Figure 1b), which enables the appli- cation of sinusoidal forces with variable frequency and ampli- tude. The main drawbacks of this technique are low force am- plitude induced at low frequencies, some difficulty in measuring the applied force, and restraining relative movement of the vibrator with regard to the structure. A better option, in terms of providing a wide-band excitation over the most inter- esting frequency range for large civil structures, is the use of servo-hydraulic shakers. For example, Figure 2 shows two shakers of this type built at EMPA to excite bridges or dams Based on a paper presented at the first International Modal Analysis Conference, IOMAC, Copenhagen, Denmark, April 2005. Figure 1. (a) Impulse hammer; (b) eccentric mass vibrator; (c) electro- dynamic shaker over three load cells; d) impulse excitation device for bridges (K.U. Leuven).
  • 4. 13SOUND AND VIBRATION/JUNE 2006 vertically and laterally, as well as an electro-hydraulic mass reaction shaker from Arsenal Research. The dynamic response of a structure is usually measured with accelerometers – piezoelectric, piezoresistive, capacitive or force balance,1 due to their relatively low cost and high sen- sitivity (see Figure 3). A particular characteristic of piezoelec- tric accelerometers is that they don’t need a power supply and operate well over a wide frequency range. However, most are not suited to low-frequency applications. On the contrary, piezoresistive, capacitive, and force-balance accelerometers can provide DC or low-frequency response capability. The elec- trical signals generated by these transducers are usually rather low and must be amplified by conditioning units that may also provide anti-aliasing, low-pass filtering (allowing lower sam- pling rates), and analog integration to velocities or displace- ments. The data acquisition and storage of dynamic data requires the use of an analog-to-digital (A/D) converter in the measure- ment chain. Raw data must be initially analyzed and processed; considering operations of scale conversion, trend removal, and decimation. Subsequently, the acceleration time history can be multiplied by appropriate time windows (Hanning, Cosine- Taper, etc.), to reduce leakage effects, and subdivided into dif- ferent blocks for evaluation of average spectral, auto spectral, and cross spectral estimates using the FFT algorithm. Finally, FRFs (frequency response functions) can be obtained using es- timators H1 or H2.1 The automatic evaluation of FRFs requires appropriate software for analysis and signal processing, which is already available in commercial Fourier analyzers. These analyzers are sometimes implemented by a laptop PCMCIA card to allow either the acquisition of data through input chan- nels or the control of a shaker through an output channel. Input-Output Modal Identification Methods. There is a wide variety of input-output modal identification methods whose application relies either on estimates of a set of FRFs or on the corresponding impulse response functions (IRFs), which can be obtained through the inverse Fourier transform. These meth- ods attempt to perform some fitting between measured and theoretical functions and employ different optimization pro- cedures and different levels of simplification. Accordingly, they are usually classified according to the following criteria: • Domain of application (time or frequency) • Type of formulation (indirect or modal and direct) • Number of modes analyzed (SDOF or MDOF – single degree of freedom or multi degree of freedom) • Number of inputs and type of estimates (SISO, SIMO, MIMO, MISO – single input single output, single input multi out- put, multi input multi output, multi input single output). Early methods of identification were developed for the fre- quency domain. For simple SDOF formulations (peak ampli- tude, curve-fit, inverse methods, for example), the fit between a measured and a theoretical FRF of a SDOF system in the vi- cinity of each resonant frequency is developed; neglecting the contribution of resonant modes. In more sophisticated MDOF methods – rational fraction polynomial (RFP), complex expo- nential frequency domain (CEFD), polyreference frequency domain (PRFD) – the fit between measured and theoretical FRFs is made globally for a wide range of frequencies. Time-domain methods, which tend to provide the best results when a large frequency range or a large number of modes exist in the data, were developed because of limitations in the fre- quency resolution of spectral estimates and leakage errors in the estimates. The most widely known methods are either in- direct – complex exponential (CE), least-squares complex ex- ponential (LSCE), polyreference complex exponential (PRCE), Ibrahim time domain (ITD), eigen system realization algorithm (ERA), or direct autoregressive moving-average (ARMA). The gradual development of all these methods, which are ex- tensively described by Maia, et al,1 tend to be completely au- tomated systems of acquisition, analysis, processing, and iden- tification, instead of interactive programs initially. Beyond that, the best-performing methods have been implemented in robust modal analysis software.2 A special class of modal identification methods, called tuned-sinusoidal methods (e.g. Asher, Mau) cor- responds to the particular type of tests that are based on the ap- plication of a sinusoidal excitation at each natural frequency, which can be implemented using eccentric mass vibrators. Examples of Forced Vibration Tests. The performance of classical input-output modal identification tests in civil engi- neering structures can be of interest both for physical models and for prototypes. Figures 4 and 5 show a physical model of Jindo Bridge (South Korea), which was extensively tested to analyze the importance of dynamic cable-structure interactions in terms of seismic response analysis.3 Several forced vibra- Figure 2. Servo-hydraulic shakers to excite: (a) bridges, vertically; (b) electro-hydraulic shaker from Arsenal Research; (c) dams, laterally (EMPA). Figure 3. Schematic cross-section of accelerometers: (a) piezoelectric; (b) piezoresistive; (c) capacitive; (d) force balance.
  • 5. 14 SOUND AND VIBRATION/JUNE 2006 tion tests were performed using electro-dynamic shakers (at the University of Bristol and ISMES) and considering two alterna- tive configurations for the model. First, additional masses were distributed along the cables according to the similitude theory to idealize the cables’ mass and consider lateral cable vibra- tion. In a second phase, no distributed additional mass were introduced along the cables, but equivalent masses were con- centrated at their extremities. This study identified the exist- ence of different sets of multiple modes; some being pure cable modes and others coupled modes. Each of these sets presents a common shape for the deck and towers and different cable motions. The corresponding natural frequencies are very close, always in the vicinity of a global mode of the primary system (Figure 6). Several large civil engineering structures, like buildings, bridges or dams, have also been subjected to forced vibration tests in the past using heavy excitation devices only available at well equipped laboratories. That was the case of EMPA, where Cantieni and other researchers have tested a significant number of bridges and dams.4-6 Figures 7 through 9 show some examples of that remarkable activity, presenting in particular some of the modes of vibration accurately identified at the Swedish Norsjö dam. Figure 4. (a) Jindo cable-stayed bridge; (b) physical model on shake table (EERC, Univ. Bristol); (c) physical model on shake table (ISMES). Figure 5. Application of electro-dynamic shaker: (a) response measure- ment with piezoelectric accelerometer; (b) measurement of cable ten- sion; (c) whole unit. Figure 7. (a) Dala bridge; (b) Aarburg bridge; (c) electro-hydraulic vi- brator used at Aarburg bridge. Figure 6. (a) amplitude of FRF relating vertical acceleration at 1/3 span with the vertical force applied at the opposite 1/3 span; (b) identified pattern of a set of multiple modes. Figure 8. (a) Norsjö dam; (b) view of instrumented point at downstream side of reinforced concrete wall. 8 9 10 11 12 Frequency, Hz AmplitudeFRF,m/sec2 /N 0.01 0.1 1.0 10.0 Exp. Ajust. (a) Shaker ° Freq. = 920 Hz + Freq. = 9.50 Hz (b)
  • 6. 15SOUND AND VIBRATION/JUNE 2006 Output-Only Modal Identification The main problem associated with forced vibration tests on bridges, buildings, or dams stems from the difficulty in excit- ing the most significant modes of vibration in a low range of frequencies with sufficient energy and in a controlled manner. In very large, flexible structures like cable-stayed or suspen- sion bridges, the forced excitation requires extremely heavy and expensive equipment usually not available in most dy- namic labs. Figure 10 shows the impressive shakers used to excite the Tatara and Yeongjong bridges. Fortunately, recent technological developments in transduc- ers and A/D converters have made it possible to accurately measure the very low levels of dynamic response induced by ambient excitations like wind or traffic. This has stimulated the development of output-only modal identification methods. Therefore, the performance of output-only modal identifica- tion tests became an alternative of great importance in the field of civil engineering. This allows accurate identification of modal properties of large structures at the commissioning stage or during their lifetime without interruption of normal traffic. Equipment and Test Procedures. Modern force-balance ac- celerometers (Figure 11a) are well suited for measurements in the range of 0-50 Hz and are virtually insensitive to high-fre- quency vibrations. They have contributed significantly to the success of ambient vibration tests. In such tests, the structural ambient response is captured by one or more reference sensors at fixed positions and with a set of roving sensors at different measurement points along the structure and in different set- ups. The number of points used is conditioned by the spatial resolution needed to characterize appropriately the shape of the most relevant modes of vibration (according to preliminary- finite element modeling), while the reference points must be far enough from the corresponding nodal points. Force-balance accelerometers require an appropriate power supply, and their analog signals are usually transmitted to a data acquisition system with an A/D conversion card of at least 16 bits through relatively long electrical cables. This system can be implemented on a normal PC. Some data acquisition and processing systems, specifically designed for ambient vibration tests, are already available (Figure 11b). They are similar to the Fourier analyzers used for classical experimental modal analy- sis. Most output-only modal identification tests in large civil structures have been based worldwide on the use of long elec- trical cables. Implementation of this solution is cumbersome and time consuming. Wireless systems are being developed to avoid this problem or at least drastically reduce cable length through local digitization and single-cable signal transmission. A very efficient alternative has been intensively used at FEUP7 and LNEC8 based on triaxial seismic recorders synchronized through GPS sensors. Output-Only Modal Identification Methods. Ambient exci- tation usually provides multiple inputs and a wide-band fre- quency content thus stimulating a significant number of vibra- tion modes. For simplicity, output-only modal identification methods assume that the excitation input is a zero-mean Gaussian white noise This means that real excitation can be expressed as the output of a suitable filter excited with white noise input. Some additional computational poles without physical meaning appear as a result of the white noise assump- tion. There are two main groups of output-only modal identifica- tion methods – nonparametric methods essentially developed in the frequency domain and parametric methods in the time domain. The basic frequency domain method (peak-picking), though already applied some decades ago to the modal identi- fication of buildings9,10 and bridges11,12, was only conveniently implemented by Felber13 about 12 years ago. This approach, which leads to estimates of operational mode shapes, is based on the construction of average normalized power spectral den- Figure 10. Forced vibration tests: (a) Tatara cable-stayed bridge; (b) Yeongjong suspension bridge; (c) high force shaker. Figure 9. Some identified modes of vibration at Norsjö dam (modes 1, 2, 3, 10, 11, 12).
  • 7. 16 SOUND AND VIBRATION/JUNE 2006 Figure 11. (a) Force balance accelerometers; (b) multichannel data acquisition and processing system for ambient vibration tests; (c) strong motion triaxial seismograph sities (ANPSDs) and ambient response transfer functions in- volving all the measurement points. This allowed the devel- opment of software for modal identification and visualization used at UBC and EMPA.13 The frequency domain approach was subsequently improved14,15 by performing a single-value de- composition of the matrix of response spectra to obtain power spectral densities of a set of SDOF systems. This method, fre- quency domain decomposition (FDD), was implemented by Brincker, et al.,16 and subsequently enhanced17 to extract modal damping factor estimates. In this last approach (EFDD), these estimates are obtained through inspection of the decay of auto-correlation functions evaluated by performing the in- verse Fourier transform of the SDOF systems’ power spectral densities. The time-domain parametric methods involve the choice of an appropriate mathematical model to idealize the dynamic structural behavior (usually time-discrete, state-space stochas- tic models, ARMAV or ARV) and the identification of the val- ues of the modal parameters so the model fits the experimen- tal data as well as possible following some appropriate criterion. These methods can be directly applied to discrete response time series or, alternatively, to response correlation functions. The evaluation of these functions can be made based on their definition using the FFT algorithm18 or applying the random decrement method (RD).19 A peculiar aspect of output- only modal identification based on the fitting of response cor- relation functions is the possibility to use methods that stem from classical input-output identification methods based on impulse response functions. Some of these methods are the Ibrahim time domain (ITD)20, the multiple reference Ibrahim time domain (MRITD)21, the least-squares complex exponen- tial (LSCE) 22, the polyreference complex exponential (PRCE),23 or the covariance-driven stochastic subspace identification (SSI-COV).24 An alternative method that allows direct application to the response time series is the data-driven stochastic subspace identification (SSI-DATA).25 Note that the random decrement technique usually associated with the application of time-do- main methods like Ibrahim’s can also be the base for the ap- plication of frequency domain methods (like PP, FDD or PP method FDD and EFDD methods SVD RD-PP method RD-FDD and RD-EFDD methods SVD Modal parameters: fi ξi φi SSI-DATA method QR, SVD, LS, EVD Response time series y(t) Welch method FFT Numerical techniques used: FFT – Fast Fourier transform SVD – Singular value decomposition LS – Least-squares fitting EVD – Eigen vector decomposition QR – Orthogonal decomposition Estimates of power spectral density functions Sy (f) Estimates of RD functions Dy (t) Direct method FFT-based method FFT Estimates of correlation functions Ry (t) FFT SSI-COV method SVD, LS, EVD LSCE and PTD methods LS, EVD ITD and MRITD methods LS, EVD Figure 12. Schematic representation of output-only modal identification methods. EFDD).This leads to free vibration responses from which power spectral densities can be evaluated using the FFT algorithm,26 thus reducing noise effects (methods RD-PP, RD-FDD and RD- EFDD). These methods, schematically represented in Figure 12, have been recently implemented, applied, and compared by Rodrigues.8 Figure 12 also indicates the five different types of numerical techniques employed in their development (FFT, SVD, LS, EVD and QR). A new operational polymax parameter estimation method was recently introduced by LMS.27 It operates on spectra or half spectra (i.e. the Fourier transforms of the positive time lags of the correlation functions), and its main advantage consists in yielding extremely clear stabilization diagrams, making an automation of the parameter identification process rather straightforward and possibly enabling continuous monitoring of structural dynamic properties. Examples of Ambient Vibration Tests. Ambient vibration tests have been performed with great success in large buildings, bridges, and other structures. High-quality experimental data- bases have been used to compare the performance of different output-only modal identification methods. A benchmark test concerning the modal identification of the Heritage Court Tower (Vancouver, Canada) was organized at IMAC-XVIII by Ventura.28 This example considered a combination of measured signals (half-sum and half-difference signals along two orthogo- nal directions at two different points at each floor). This em- phasized contributions from bending or torsion, as well as high- frequency resolution to separate contributions from close modes when using the classical PP method.29 Applying FDD and SSI methods permitted a more automatic identification procedure for distinguishing close modes and extracting modal damping estimates (see Figure 13). In the case of bridges, complete ambient vibration tests were developed along about 5 km of the Vasco da Gama Bridge by FEUP. Regarding the main cable-stayed bridge (Figure 14), the ambient structural response was measured during periods of 16 minutes at 58 points along the deck and towers (upstream and downstream) using a wireless system based on six triaxial, 16-bit seismographs synchronized by a laptop computer. The identification of a significant number of lateral, vertical, and
  • 8. 17SOUND AND VIBRATION/JUNE 2006 torsion modes in the relevant frequency range of 0-1 Hz was performed at first7 using the PP method. Subsequently, SSI and FDD methods were applied30,31 and compared using the soft- ware MACEC24 and ARTeMIS32. This lead to estimates of modal damping factors, although very accurate damping estimates require longer measurement periods. Figure 15 shows the sin- gular value spectra and a stabilization diagram generated by these two methods, while Figure 16 presents plots of some fun- damental modes. Note that the existence of cable components in the analysis frequency range can make identification of global natural fre- quencies difficult. Figures 17c and 17d show PSD (power spec- tral density) functions concerning the ambient response of the international Guadiana cable stayed-bridge (Figure 17a – link- ing Portugal to Spain in Algarve), evaluated with three differ- ent levels of average wind speed. This shows the appearance of spectral contributions from the fundamental modes of stay cables (in the range 0.6-0.9 Hz) or second harmonics leading to spectral peaks that cannot be interpreted as global natural frequencies of the bridge. Inspection of the spectral peaks (Fig- ure 17b) shows the increase of modal damping with wind speed, which can be evaluated through ambient vibration tests using sufficiently long measurement periods.33 Note that the output-only modal identification technique used in Vasco da Gama and Guadiana bridges by FEUP has been recently applied with great success to the dynamic tests at the commissioning stage of the outstanding Millau viaduct, coor- dinated by Grillaud and Flamand (CSTB, France).34 Examples of Free Vibration Tests – Damping Estimation. The accurate identification of modal damping factors is a major problem in the identification process due to the considerably larger scatter associated with various natural frequency and mode shape estimates. This is also true because the viscous damping assumption does not correspond exactly to real damp- ing characteristics. The modal damping ratios increase gradu- ally with levels of oscillation. In several circumstances, the accurate identification of modal damping factors is required, which is frequently achieved by performing a free vibration test. This situation is unique to large and slender cable-stayed or suspension bridges where knowl- edge of certain damping factors is crucial for assessing aeroelastic instability problems. Such tests have been per- formed at Normandy, Vasco da Gama, or Millau bridges. At Vasco da Gama Bridge, the test was made by suspending a barge on a cable with a mass of 60 tons from an eccentric point at the deck (Figure 18a)7 at one-third span upstream. The cable was cut when the tide became low and the wind speed of less than 3 m/s to avoid the influence of aerodynamic damping. The sudden release of the mass caused a free vibration response, which was measured over 16 minutes by six triaxial seismo- graphs at one-half and one-third span cross-sections. Similar techniques can be used on other structures, as is the case for Mode 4 (b)(a) Mode 1 Figure 13. (a) Heritage Court Tower; (b) two identified mode shapes; (c) ANPSD spectra. 68 73 78 83 StateSpaceDimension Frequency, Hz 0 0.3 0.6 0.9 1.2 (b) Frequency, Hz 0 0.3 0.6 0.9 1.2 dB|1.0/Hz -60 -40 -20 0 20 (a) Figure 15. (a) Singular-value spectra; (b) stabilization diagram. Figure 14. View of Vasco da Gama Bridge. (c) 1.0 0 2 4 6 8 10 12 Frequency, Hz ANPSD,E-W 1 x 10-5 1 x 10-6 1.0 0 2 4 6 8 10 12 Frequency, Hz ANPSD,N-S Half-sum Half-diff.
  • 9. 18 SOUND AND VIBRATION/JUNE 2006 Figure 16. Identified modes: (a) first bending; (b) second bending; (c) first torsional; (d) second torsional. the Madeira airport extension35 where a mass of 60.8 tons (Figure18b and 18c) was suspended from the deck. The sud- den release of the mass was achieved via detonation of a fus- ible element incorporated in the suspension device. The aeroeleastic stability of the cable roof of the new Braga Stadium (EURO’2004, Figure 19) was proven by different ex- perimental tests on physical models. The modal damping iden- tification was essentially required to study possible resonance effects that could affect long-term structural integrity and du- rability. Sinusoidal excitations were applied at different points by a mechanical vibrator connected to the cable roof. By stop- ping the vibrator suddenly, it was possible to measure modal- free vibration responses as plotted in Figure 19. The exponen- tial fitting of the free vibration envelopes led to very accurate estimates of modal damping factors for different levels of os- cillation.36 Finite-Element Correlation and Updating Finite-Element Correlation. The modal identification of bridges and other civil structures is required for validation of finite-element models used to predict static and dynamic struc- tural behavior either at the design stage or at rehabilitation. After appropriate experimental validation, finite-element mod- els can provide essential baseline information that can subse- quently be compared with information captured by long-term monitoring systems to detect structural damage. The correlation of modal parameters can be analyzed both in terms of identified and calculated natural frequencies and by corresponding mode shapes using correlation coefficients or MAC (modal analysis criteria) values. Beyond that, modal damping estimates can be also compared with the values as- sumed for numerical modelling. This type of analysis has al- ready been developed for the Vasco da Gama and Luiz I bridges with excellent results7,37 and has recently been applied at two Portuguese bridges over Douro River (Figure 20). The New Hintze Ribeiro Bridge is a six span composite bridge that re- placed the centenary bridge that collapsed in 2001 and the Pinhão Bridge (a three-span simply-supported metallic bridge with a concrete slab at the deck) is presently under rehabilita- tion. In the first case (Figure 20a), good correlation between iden- tified and calculated modal parameters was achieved for the vertical bending modes. Regarding the lateral response of the bridge, identified frequencies were higher than calculated val- ues even though good correlation of modal shapes had been ob- tained.38 Such a discrepancy stems from the difficulty in nu- merically simulating the real characteristics of soil-structure (b) 1x10-6 0.01 0.25 0.35 0.45 0.55 0.65 Frequency, Hz S1 - v=2m/s S2 - v=2m/s S3 - v=2m/s S4 - v=9m/s S5 - v=9m/s S6 - v=9m/s S7 - v=14m/s Amplitude (c) 1x10-6 0.01 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3.0 Frequency, Hz Amplitude wind - 2 m/s wind - 10 m/s wind - 14 m/s (d) 1x10-7 0.01 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 Frequency, Hz Amplitude wind - 2 m/s wind - 10 m/s wind - 14 m/s Figure 17. (a) Guadiana cable-stayed bridge; (b, c) PSD functions of half- sum vertical; lateral (d) acceleration at reference section as function of mean wind speed.
  • 10. 19SOUND AND VIBRATION/JUNE 2006 interactions at the foundation of several piers and it shows the large influence that variations in boundary conditions can have on the global dynamic bridge properties. In the case of the Pinhão Bridge (Figure 20b), very similar modal estimates were obtained in the three similar spans, and good correlation was achieved between significant identified and calculated modal parameters considering either the verti- cal or lateral behavior of the bridge. It was clear39 that initial numerical modeling developed by the designer should be im- proved to correctly simulate the lateral dynamic response by including the stiffness associated with the concrete slab of the deck which was made through a discretization of shell ele- ments. Finite-Element Updating. The accurate identification of the most significant modal parameters based on output-only tests can support the updating of finite-element models, which may overcome several uncertainties associated with numerical modeling. Such updating can be developed on the basis of a sensitivity analysis using several types of models and chang- ing the values of some structural properties to achieve a good match between identified and calculated modal parameters. This procedure has been followed recently to study the dy- namic behavior of a stress-ribbon footbridge at the FEUP Cam- pus (Figure 21). For that purpose, initial finite-element mod- els were developed for the bridge deck as a set of beam elements with the geometry considered at the design stage or measured through a topographic survey (Models 1 and 2). Afterward, due to the clear nonlinear geometrical behavior of the bridge, a third model (Model 3) was developed. The deck was modeled in truss finite elements with the cable axial stiffness (neglecting bending stiffness) and adjusting the initial cable tension to obtain the measured longitudinal profile after progressive ap- plication of the loads. To also take into account the bending stiffness of the concrete slab, this model was subsequently adapted (Model 4) by discretizing the deck in truss finite ele- ments with progressive loading and activation of beam ele- ments connecting the nodes of the truss elements. Finally, this model was slightly modified to consider partial rotations be- tween beam elements and to simulate the lack of sealing of the joints. The area and inertia of the beam elements was also re- duced to simulate the effects of cracking and lack of adherence between precast and in situ concrete. After all these iterations, very good correlation between identified and calculated natu- ral frequencies and mode shapes was achieved.40 Beyond this type of sensitivity analysis, more automatic fi- nite-element updating techniques can also be used.41 The draw- back of output-only modal identification is that it seems to be impossible to obtain mass normalized mode shapes. However, this inconvenience can be overcome42 by introducing appro- priate mass changes. Conclusions Civil engineering structures have peculiar characteristics (large size and relatively low natural frequencies) that make the current application of classical input-output modal identifica- tion techniques difficult. Therefore, there is presently a clear tendency worldwide to explore and improve the potential of output-only modal identification techniques, whose efficiency and accuracy were clearly illustrated with the applications shown. The techniques that may be used under normal opera- tion conditions can provide a solid basis for: • Developing finite-element correlation analyses. • Finite-element updating and validation. • Defining a baseline set of dynamic properties of the initially undamaged structure that can subsequently be used for the application of vibration-based damage detection techniques. • Integrating output-only modal identification techniques in health monitoring systems. • Implementing vibration-control devices. Figure 18. (a) Free vibration test of Vasco da Gama cable-stayed bridge; (b) aerial view of Madeira airport extension; (c) mass of 60.8 tons used in the free vibration test of Madeira airport extension. Figure 19. Measurement of free vibration response at three different points of Braga stadium cable-roof after inducing resonance. Figure 20. (a) New Hintze Ribeiro and (b) Pinhão bridges, over Douro River. Figure 21. Stress-ribbon footbridge at FEUP Campus.
  • 11. 20 SOUND AND VIBRATION/JUNE 2006 References 1. Maia, N., et al., Theoretical and Experimental Modal Analysis, Re- search Studies Press, UK, 1997. 2. Han, M-C , and Wicks, A. L., “On the Application of Forsythe Or- thogonal Polynomials for Global Modal Parameter Estimation,” Proc. 7th Int. Modal Analysis Conference, 1989. 3. Caetano, E., Cunha, A., and Taylor, C., “Investigation of Dynamic Cable-Deck Interaction in a Physical Model of a Cable-stayed Bridge. Part I: Modal Analysis,” Int. Journal Earthquake Engineering and Structural Dynamics, Vol. 29, No. 4, pp. 481-498, 2000. 4. Pietrzko, S., Cantieni, R., and Deger, Y., “Modal Testing of a Steel/ Concrete Composite Bridge with a Servo-Hydraulic Shaker,” Proc. 14th Int. Modal Analysis Conference, Dearborn, MI, 1996. 5. Cantieni, R., Deger, Y., and Pietrzko, S., “Large Structure Investi- gation with Dynamic Methods: the Bridge on the River Aare at Aarburg,” Prestressed Concrete in Switzerland, Report of the Swiss FIP Group to the 12th FIP Congress, Washington D.C., 1994. 6. Cantieni, R., “Assessing a Dam’s Structural Properties Using Forced Vibration Testing,” Proc. IABSE International Conference on Safety, Risk and Reliability - Trends in Engineering, Malta, 2001. 7. Cunha, A., Caetano, E., and Delgado, R., “Dynamic Tests on a Large Cable-Stayed Bridge – An Efficient Approach,” Journal Bridge En- gineering, ASCE, Vol. 6, No. 1, pp. 54-62, 2001. 8. Rodrigues, J., “Stochastic Modal Identification – Methods and Ap- plications in Civil Engineering Structures,” Ph.D. Thesis (in Portug.), Univ. of Porto (FEUP/LNEC), 2004. 9. Crawford, R., and Ward, H. S., “Determination of the Natural Pe- riod of Buildings,” Bulletin of the Seismological Society of America, Vol. 54, No. 6, pp. 1743-1756, 1964. 10. Trifunac, M. D., “Comparison Between Ambient and Forced Vibra- tion Experiments,” Earthquake Engineering and Structural Dynam- ics, Vol. 1, pp. 133-150, 1972. 11. McLamore, V. R., Hart, G., and Stubbs, I. R., “Ambient Vibration of Two Suspension Bridges,” Journal of the Structural Division, ASCE, Vol. 97, N.ST10, pp. 2567-2582, 1971. 12. Abdel-Ghaffar, A. M., “Vibration Studies and Tests of a Suspension Bridge,” Earthquake Engineering and Structural Dynamics, Vol. 6, pp. 473-496, 1978. 13. Felber, A., “Development of a Hybrid Bridge Evaluation System,” Ph.D. Thesis, University of British Columbia (UBC), Vancouver, Canada, 1993. 14. Prevosto, M., “Algorithmes d’Identification des Caractéristiques Vibratoires de Structures Mécaniques Complexes,” Ph.D. Thesis, Univ. de Rennes I, France, 1982. 15. Corrêa, M. R., and Campos Costa, A., “Ensaios Dinâmicos da Ponte sobre o Rio Arade,” Pontes Atirantadas do Guadiana e do Arade (in Portuguese), ed. by LNEC, 1992. 16. Brincker, R., Zhang, L., and Andersen, P., “Modal Identification from Ambient Responses using Frequency Domain Decomposition,” Proc. 18th Int. Modal Analysis Conference, Kissimmee, FL, 2001. 17. Brincker, R., Ventura, C., and Andersen, P., “Damping Estimation by Frequency Domain Decomposition,” Proc. 19th Int. Modal Analy- sis Conference, San Antonio, TX, 2000. 18. Brincker, R., Krenk, S., Kirkegaard, P. H., and Rytter, A., “Identifi- cation of the Dynamical Properties from Correlation Function Esti- mates,” Bygningsstatiske Meddelelser, Danish Society for Structural Science and Engineering, Vol. 63, No. 1, pp. 1-38, 1992. 19. Asmussen, J. C., “Modal Analysis Based on the Random Decrement Technique – Application to Civil Engineering Structures,” Ph.D. Thesis, Univ. Aalborg, 1997. 20. Ibrahim, S. R., and Mikulcik, E. C., “A Method for the Direct Iden- tification of Vibration Parameters from the Free Response,” The Shock and Vibration Bulletin, Vol. 47, No. 4, pp. 183-198, 1977. 21. Fukuzono, K., “Investigation of Multiple-Reference Ibrahim Time Domain Modal Parameter Estimation Technique,” M.Sc. Thesis, Univ. Cincinnati, OH, 1986. 22. Brown, D. L., Allemang, R. J., Zimmerman, R., and Mergeay, M., “Parameter Estimation Techniques for Modal Analysis, SAE Tech- nical Paper Series, No. 790221, 1979. 23. Vold, H., Kundrat, J., Rocklin, G. T., and Russel, R., “A Multi-Input Modal Estimation Algorithm for Mini-Computers,” SAE Technical Paper Series, No. 820194, 1982. 24. Peeters, B., “System Identification and Damage Detection in Civil Engineering,” Ph.D. Thesis, K. U. Leuven, Belgium, 2000. 25. Van Overschee, P., and DeMoor, B., Subspace Identification for Lin- ear Systems – Theory, Implementation, Applications, Kluwer Aca- demic Publishers, The Netherlands, 1996. 26. Rodrigues, J., Brincker, R., and Andersen, P. “Improvement of Fre- quency Domain Output-Only Modal Identification from the Appli- cation of the Random Decrement Technique,” Proc. 23rd Int. Modal Analysis Conference, Deaborn, MI, 2004. 27. Peeters, B., Vanhollebeke, F., and Van der Auweraer, H., “Opera- tional PolyMAX for Estimating the Dynamic Properties of a Stadium Structure During a Football Game,” Proc. 23rd Int. Modal Analysis Conference, Orlando, FL, 2005. 28. Ventura, C. E., and Horyna, T., “Measured and Calculated Modal Characteristics of the Heritage Court Tower in Vancouver,” Proc. 18th Int. Modal Analysis Conference, San Antonio, TX, 2000. 29. Cunha, A., Caetano, E., and Moutinho, C., “Ambient Vibration Data Analysis of Heritage Court Tower – Contribution of University of Porto to IMAC Benchmark,” Proc. of the 18th Int. Modal Analysis Conference (IMAC), San Antonio, TX, 2000. 30. Peeters, B., De Roeck, G., Caetano, E., and Cunha, A., “Dynamic Study of the Vasco da Gama Bridge,” Proc. of the International Con- ference on Noise and Vibration Engineering, ISMA, Leuven, Bel- gium, 2002. 31. Cunha, A., Caetano, E., Brincker, R., and Andersen, P., “Identifica- tion from the Natural Response of Vasco da Gama Bridge,” Proc. 22nd Int. Modal Analysis Conference, Dearborn, MI, 2004. 32. ARTeMIS Extractor Pro, Structural Vibration Solutions, Aalborg, Denmark. 33. Magalhães, F. “Stochastic Modal Identification for Validation of Numerical Models,” M.Sc. Thesis (in Portuguese), Univ. Porto, FEUP, 2004. 34. Flamand, O., and Grillaud, G., “Identification Modale du Viaduc de Millau,” Technical Report EN-CAPE 05.007 C-V0, CSTB, France, 2005. 35. Rodrigues, J., and Campos Costa, A., “Dynamic Tests of the Struc- ture for Extension of the Madeira Island Airport,” Proc. 20th Int. Modal Analysis Conference, Los Angeles, CA, 2002. 36. Magalhães, F., Caetano, E., and Cunha, A., “Experimental Identifi- cation of Modal Damping Coefficients of the New Braga Stadium Cable-Roof,” Technical Report (in Portuguese), Univ. Porto, FEUP/ VIBEST, 2004. 37. Cunha, A., and Calçada, R., “Ambient Vibration Test of a Steel Trussed Arch Bridge,” Proc. of the 18th Int. Modal Analysis Con- ference, San Antonio, TX, 2000. 38. Caetano, E., and Cunha, A., “Ambient Vibration Test and Finite Element Correlation of the New Hintze Ribeiro Bridge,” Proc. Int. Modal Analysis Conf., Kissimmee, FL, 2003. 39. Magalhães, F., Caetano, E., and Cunha, A., “Ambient Vibration Test of Pinhão Bridge,” Technical Report (in Portuguese), Univ. Porto, FEUP/VIBEST, 2004. 40. Caetano, E., and Cunha, A., “Experimental and Numerical Assess- ment of the Dynamic Behaviour of a Stress-Ribbon Bridge,” Struc- tural Concrete, Journal of FIB, Vol. 5, No. 1, pp. 29-38, 2004. 41. Teughels, A., “Inverse Modelling of Civil Engineering Structures based on Operational Modal Data,” Ph.D. Thesis, K. U. Leuven, Belgium, 2003. 42. Brincker, R., and Andersen, P., “A way of getting Scaled Mode Shapes in Output Only Modal Testing,” Proc. 21st Int. Modal Analy- sis Conference, Kissimmee, FL, 2003. The author may be contacted at: acunha@fe.up.pt.