SlideShare a Scribd company logo
1 of 10
Download to read offline
Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser
Deposition (PLD) And The Effect Of Annealing Temperature On
Structural And Morphological Properties
Sarmad Sabih Al-Obaidi
Ali Ahmed Yousif
Dept.of Physics/ College of Education/University of Al-Mustansiriyah
Received in : 9 October 2012 , Accepted in : 9 December2012
Abstract
In this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD)
technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a
period of 2 hours. Effect of annealing on the structural and morphological were studied. Many
growth parameters have been considered to specify the optimum conditions, namely substrate
temperature (300 °C), oxygen pressure (10-2
Torr), laser fluence energy density (0.4 J/cm2
),
using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate
(1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all
nanostructures tetragonal are polycrystalline. These results show that grain size increase from
19.5 nm to 29.5 with the increase of annealing temperature. The XRD results also reveal that
the deposited thin film, annealed at 400 °C of TiO2 have anatase phase. Thin films annealed at
500 °C and 600 °C have mixed anatase and rutile phases. Full Width at Half Maximum
(FWHM) values of the (101) peaks of these films decrease from 0.450° to 0.301° with the
increase of annealing temperature. Surface morphology of the thin films have been studied by
using atomic force microscopes (AFM). AFM measurements confirmed that the films have
good crystalline and homogeneous surface. The Root Mean Square (RMS) value of thin films
surface roughness are increased with the increase of annealing temperature.
Keywords: Titanium Dioxide, Pulsed Laser Deposition, Structural, Morphology, TiO2 Films
143 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
Introduction
Nanocrystalline titanium dioxide thin films have important applications in the field of
optoelectronic materials. TiO2 is an important photocatalytic material [1], which can be used
in the form of thin films in dye-sensitized solar cells [2] and anti-reflection coatings [3]. It is
known that the TiO2 films have excellent photocatalytic and photoinduced hydrophilic
properties for environmental applications, such as air purification, sterilization, antifogging,
and self-cleaning [4, 5]. Titanium dioxide occurs in three crystalline polymorphs: rutile,
anatase and brookite [6]. Anatase has attracted attention for its prominent photocatalytic
activity [7]. It is a metastable phase of TiO2 and converts to the rutile phase, which is
thermodynamically stable, on high temperature annealing [8]. Anatase and rutile phases
crystallize in tetragonal structure while brookite crystallizes in orthorhombic structure. Many
deposition methods have been used to prepare TiO2 thin films, such as electron-beam
evaporation [9,10], ion-beam assisted deposition [11,12], DC reactive magnetron
sputtering [13], RF reactive magnetron sputtering [14,15], sol-gel dip coating method [16,17],
sol-gel spin coating method [18], chemical vapor deposition [5], plasma enhanced chemical
vapor deposition [19] and pulsed laser deposition (PLD) [20]. The laser ablation technique is
what makes PLD attractive for thin film deposition, because the ablation of the target
preserves its stoichiometry in the thin film. The PLD process is simple and versatile, these
characteristics have made it possible to successfully deposit high quality thin films of various
materials such as oxides, high-temperature superconductors, magnetoelectrics, and
ceramics [21]. Pulsed laser deposition proved to be a favorable technique for the deposition of
titanium dioxide at different technological conditions on different substrates. That supposed to
result in the different structural and micro structural properties, different surface morphology
of the nanostructures to be obtained [22]. For practical applications, deposition parameters
have to be optimized to achieve the desired structure and properties in the films. The pulsed
laser deposition technique can produce adherent and uniform film over wide areas. The
deposit stoichiometry can also be well-controlled. A number of studies on the deposition of
TiO2 films by pulsed laser have appeared in the literature recently [23- 26]. Thin film
properties such as crystallinity, particle size, degree of homogeneity, etc. depend largely on
annealing temperature and substrate topography [27].
In this study, the influence of annealing over the range 400 to 600 °C on the structural
properties measured by XRD technique, and morphological properties measured by AFM
properties of TiO2 thin films was investigated.
Experimental Details
Titanium dioxide from ASDGF Company with a titanium target of 99.99% purity on glass
slides as substrates. The powder was pressed under 5 tons to form a target with 2.5 cm
diameter and 0.4 cm thickness. Glass slides each with area 3 x 2 cm2
were cleaned by alcohol
with ultrasonic waves (Cerry PUL 125 device) for 10 minutes in order to remove the
impurities and residuals from their surfaces. Thin films were deposited by using pulsed laser
deposition in University of Technology by employing a Q switched Nd: YAG laser at
wavelength 532 nm with 0.4 J/cm2
of energy density, pulse width 10 ns and repetition
frequency 6 Hz. Uniform ablation ensured by rotating the target at constant speed. The
focused Nd:YAG Second Harmonic Generation (SHG) Q-switching laser beam incident on
the target surface making an angle of 45° with it. The films were deposited on glass substrate
at temperatures 300 °C. The pulsed laser deposition experiment was carried out inside a
vacuum chamber (10-2
Torr). The substrates deposited at 300 °C with TiO2 annealed at
400 °C, 500 °C and 600 °C in University of Al-Mustansiriyah using an electric furnace for 2 h
in air. The crystallinity of the prepared films was analyzed using X-ray Diffraction (XRD)
measurements (Shimadzu 6000 made in Japan) in Ministry of Science and Technology using
144 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
Cu Kα radiation (λ=1.5406 Å) and operating at an accelerating voltage of 40 kV and an
emission current of 30 mA. Data were acquired over the range of 2θ from 20° to 60°.
The XRD method was used to study the change of crystalline structure. For morphological
investigations, Atomic Force Microscopy (AFM) images were recorded by using nanoscope
scanning probe microscope controller in a tapping mode (made in USA). AFM images were
used to observe the surface roughness and topography of deposited thin films. Measurements
were made AFM at the Ministry of Science and Technology.
Experimental Results
Throughout studying the X-ray diffraction spectrum, we can understand the crystalline
growth nature of TiO2 thin films prepared by pulsed leaser deposition on glass substrates at
300 °C at different annealing temperatures (400, 500, and 600) °C with a fixed annealing time
of 2 h in air. Figure (1) shows X-ray diffraction patterns for TiO2 films. We compared
deposited film at 300 °C with annealed films at 400 °C, 500 °C and 600 °C as shown in
Figure (1). As-deposited TiO2 film at 300 °C is found to be crystalline and possesses anatase
structure as it shows few peaks of anatase (101) and (004), while film annealed at 400 °C
having peaks of anatase (101), (004) and (200), film annealed at 500 °C having peaks of
anatase (101), (004), (200) and rutile (110) and film annealed at 600 °C having peaks of
anatase (101), (004), (200) and rutile (110), (211).
The X-ray spectra show well-defined diffraction peaks showing good crystallinity, it was
found that all the films were polycrystalline with a tetragonal crystal structure and no
amorphous phase is detected. The diffraction peaks are in a good agreement with those given
in JCPD data card for TiO2 anatase and rutile [28]. It was observed that the intensities of the
peaks of few TiO2 planes increased slightly with the increase of annealing temperature. In
addition, the location of the (101) peaks is shifted to lower 2θ angles from 2θ=25.27 °
to
2θ=25.11 °
. For a crystalline phase to develop, the depositing atoms should have sufficient
energy. High substrate temperatures can achieve the sufficient energy to generate crystalline
phases [29]. X-ray diffraction analysis revealed that TiO2 thin films are amorphous if the
temperature substrate is lower than 300 °C [23]. It was found that anatase films were
deposited and crystallized effectively for heated substrate at 300 °C and working pressure of
10-2
Torr. The reason may be that the kinetic energy of the particle is high enough to initiate
crystallization. For the samples annealed at 500 and 600 °C, other characteristic peaks of
anatase and rutile phase. These results are in agreement with other reports on the mixed phase
TiO2 by PLD method [26,30,31].The transformation from anatase to rutile occurs at
temperatures higher than 500 °C under vacuum.
The increase in peak intensity indicates an improvement in the crystallinity of the films.
This leads to decrease in Full Width at Half Maximums (FWHM) of peak and increase in
grain size. The lattice constants and the relative intensity ratio, in the diffraction pattern of
TiO2 films are given in table (1). The lattice constants obtained are found to be in good
agreement with JCPD.
The values of Full Width at Half Maximum (FWHM) of the peaks decreases with
annealing temperature, this goes in agreement with the previous work [32]. The average grain
size (g) in thin films is calculated using Scherer’s formula: [33]
g = (0.94 λ) / [Δ (2 θ) cosθ] ...…....….………..…....………(1)
Where (λ) is the x-ray wavelength (Å), Δ (2θ) FWHM (radian) and (θ) Bragg diffraction angle
of the XRD peak (degree).
The values of average grain size listed in table (2) increase with the increase of annealing
temperature for TiO2 thin films. The average grain size and Full Width at Half Maximum
(FWHM) of the (101) plane as a function of annealing temperature for TiO2 thin films are
shown in figure (3). The micro strain depends directly on the lattice constant (c) and its value
145 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
%100)( ×
−
=
Ο
Ο
c
cc
Strain δ
Ο
Ο−
×
+−
=
c
cc
c
cccc
Ss
13
12113313
2
2
)(2
∑
−
=
)()(
)()(
)(
0
1
0
hklIhklIN
hklIhklI
hklT
r
C
related to the shift from the JCPD standard value which could be calculated using the
relation:[34]
……….……………………(2)
Where (c) and (co) are the lattice parameters of the thin film from experimental worked and
TiO2 thin film obtained from JCPDS respectively.
The film annealed at 600 ºC temperature showed the maximum compressive strain
(3.640 ×10-3
), which decreased to nearly zero at 500 ºC, as shown in table (2). The calculation
of the film stress is based on the strain model, which could be calculated by using the
relation:[34] as shown in table (2).
……...……………………..(3)
The values of the elastic constants from single crystalline TiO2 are
used, c11=208.8 GPa, c33=213.8 GPa, c12=119.7 GPa and c13=104.2 GPa [34].
To describe the preferential orientation, the values of texture coefficient (Tc) of the thin
films are listed in table (2). The texture coefficient is calculated by using the relation: [35]
…….………………………(4)
Where (I) is the measured intensity, (Io) is the JCPDS standard
intensity, (Nr) is the reflection number and (hkl) is Miller indices.
For crystal plane (101), the values of texture coefficient decrease with the increase of
annealing temperature as shown in figure (2).This is a usual result because the increase of
annealing temperature causes an increase in the surface roughness.
The surface morphology of all the TiO2 films is presented by AFM images in tapping
mode. The surface morphology reveals the Nano-crystalline TiO2 grains. Figure (3) shows the
three dimensional AFM images of the TiO2 thin films deposited at 300 ºC and annealed at
different temperatures (400, 500 and 600) ºC. The surface morphology of the TiO2 thin films
changed with the different annealing temperatures, as observed from the AFM micrographs
figure (3) proves that the grains are semi uniformly distributed within the scanning area
(10 μm × 10 µm), with individual columnar grains extending upwards.
The values of the root mean square (RMS) and surface roughness of TiO2 films are shown
in the table (3), i.e. the root mean square (RMS) and surface roughness increased with the
increase of annealing temperature, this result is in agreement with the previous work [36].
In general as the annealing temperature increases, the RMS, roughness of the TiO2 films
and the grain size increase. The surface roughness of the TiO2 thin films increases with film
thickness, annealing temperature, and annealing time [37].
Conclusion
XRD results reveal that the deposited thin film and annealed at 400 °C of TiO2 have a
good Nanocrystalline tetragonal anatase phase structure. Thin films annealed at 500 °C and
600 °C have mixed anatase and rutile phase structure. And it is observed that the TiO2 films
exhibit a polycrystalline having (101), (110), (004), (200), (211) planes, the peak intensities,
micro strain (δ), grain size (g) increases and texture coefficient (Tc) decreases with the
increase of annealing temperature.
AFM results showed the slow growth of crystallite sizes for as-grown films and annealed
films at 400 to 600 °C. The values of the root mean square (RMS) and surface roughness of
TiO2 films increased with the increase of annealing temperature.
146 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
References
1. Wang, J.;Yu, J.;Liu, Z.; He Z. and Cai, R. (2005),A Simple New Way to Prepare Anatase
TiO2 Hydrosol with High.Photocatalytic Activity, Semi. Sci. and Technol., 20, 36-39.
2. Sung, Y. and Kim, H. (2006), Sputter Deposition and Surface Treatment of TiO2 Films for
Dye-Sensitized Solar Cells Using Reactive RF Plasma, Thin Sol. Fil, 515, 4996–4999.
3. Okada, M.;Tazawa, M.;Jin, P.;Yamada, Y. and Yoshimura, K.(2006), Fabrication of
Photocatalytic Heat-Mirror with TiO2/TiN/ TiO2 Stacked Layers, Vacuum, 80, 732-735.
4. Fujishima,A.;Rao,T.and Tryk,D.(2000),Titanium Dioxide Photocatalysis, J. of
Photochemistry and Photobi. C: Photoche. Rev.1, 1-21.
5. Sun, H.;Wang ,C.;Pang, S.;Li, X.;Tao,Y.Tang ;H. and Liu, M.(2008), Photocatalytic TiO2
Films Prepared by Chemical Vapor Deposition at Atmosphere Pressure,J. of Non-Cryst. Sol.,
354, 1440- 1443.
6. Karunagara B., Kim K., Mangalaraj D., Yi J. and Velumani S., (2005), Structural, Optical
and Raman Scattering Studies on DC Magnetron Sputtered Titanium Dioxide Thin Films,
Solar Energy Mater.& Cells, 88, 199-208.
7. Sasahara, A.;Droubay ,T.;Chambers, S.;Uetsuka ,H., and Onishi, H.(2005), Topography of
Anatase TiO2 Film Synthesized on LaAlO3 (001), Nanotechnol, 16, 3.
8. Sankar, S. and Gopchandran, K. (2009) Effect of Annealing on the Structural, Electrical
and Optical Properties of Nanostructured TiO2 thin films, Cryst. Res. Technol, 44, 989-994.
9. Habibi, M.; Talebian, N. and Choi, J. (2007)The Effect of Annealing on Photocatalytic
Properties of Nanostructured Titanium Dioxide Thin Films, Dyes and Pigments, 73, 103-110.
10. Jerman, M. and Mergel, D. (2007) Structural Investigation of Thin TiO2 Films Prepared
by Evaporation and Post- Heating, Thin Sol. Fil., 515, 6904–6908.
11. Yang, C.;Fan, H.; Xi, Y.; Chen, J. and Li, Z. (2008)Effects of Depositing Temperatures on
Structure and Optical Properties of TiO2 Film Deposited by Ion Beam Assisted Electron
Beam Evaporation, Appl. Surf. Sci., 254, 2685-2689.
12. Tian, G.;Wu, S.; Shu, K.; Qin, L. and Shao, J. (2007), Influence of Deposition Conditions
on the Microstructure of Oxides Thin Films, Appl. Surf. Sci, 253, 8782–8787.
13. Tavares, C.;Vieira, J.; Rebouta ,L.; Hungerford, G.;Coutinho, P.;Teixeira, V.; Carneiro, J.
and Fernandes ,A.(2007) Reactive Sputtering Deposition of Photocatalytic TiO2 Thin Films
on Glass Substrates, Mater. Sci. Eng., 138, 139-143.
14. Amor, S.;Baud, G.; Jacquet, M. and Pichon, N. (1998), Photoprotective Titania Coatings
on PET Substrates, Surface and Coatings Technology, 102, 1, 63-72.
15. Akl, A.;Kamal, H. and Abdel-Hady, K. (2006)Fabrication and Characterization of
Sputtered Titanium Dioxide Films, Appl. Surf. Sci., 252, 8651–8656.
16. Ghamsari, M. and Bahramian, A., (2008), “High Transparent Sol–Gel Derived
Nanostructured TiO2 Thin Film, Mater. Lett., 62, 361-364.
17. Saini ,K.; Sharma, S.; Chanderkant, Kar M.;Singh, D. and Sharma, C., (2007)Structural
and Optical Properties of TiO2 Thin Films Derived by Sol–Gel Dip Coating Process, J. of
Non-Cryst. Sol., 353, 2469-2473.
18. Wang, Z.;Helmersson, U. and Käll, P., (2002),Optical Properties of Anatase TiO2 Thin
Films Prepared by Aqueous Sol–Gel Process at Low Temperature,Thin Sol. Fil., 405, 50-54.
19. Yang ,W. and Wolden, C. (2006)Plasma-Enhanced Chemical Vapor Deposition of TiO2
Thin Films for Dielectric Applications,” Thin Sol. Fil., 515, 1708-1713.
20. Ming-Che, Y. (2012)Strategies to Improve the Electrochemical Performance of
Electrodes for Li-Ion Batteries,” Ph.D Thesis, University of Florida, 1-189.
21. Garza, E.(2011), Pulsed Laser Deposition of Thin Film Heterostructures, M.Sc. Thesis of
Science in Applied Physics, University of New Orleans Department of Applied Science, 1-68.
22. Yousif, A.(2010)Characterization of ZnO Film Grown on Different Substrates Using
PLD, Ph.D Thesis, University of Technology Department of Applied Science, 2.
147 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
23. Yahya, K. (2010),Characterization of Pure and Dopant TiO2 Thin Films for Gas Sensors
Applications,” Ph.D Thesis, University of Technology Department of Applied Science, 1-147.
24. Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C.;Bassi A.; Bottani, C.;Rudolf, P.; Prince, K.
and Agostino, R. (2011),Surface Electronic and Structural Properties of Nanostructured
Titanium Oxide Grown by Pulsed Laser Deposition, Surf. Sci., 605: 333-340.
25. Sankar, S.;Gopchandran, K.;Kuppusami ,P. and Murugesan, S.(2011),Spontaneously
Ordered TiO2 Nanostructures, Ceramics International, 37, 3307-3315.
26. Koshizaki, N.;Narazaki, A. and Sasaki, T.(2002) Preparation of Nanocrystalline Titania
Films by Pulsed Laser Deposition at Room Temperature,” Appl. Surf. Sci., 197-198, 624-627.
27. Mosaddeq-ur-Rahman, M.;Yu, G.; Soga, T.; Jimbo ,T. and Ebisu, M. Umeno H., (2000),
Refractive Index and Degree of Inhomogeneity of Nanocrystalline TiO2 Thin Films: Effects
of Substrate and Annealing Temperature, J. Appl. Phys., 88(8) 4634-4641.
28. JCPDS, (Joint Committee for Powder Diffraction Standards), (1969), Powder Diffraction
File for Inorganic Materials, 21- 1272 & 21 – 1276.
29. Hasan, M.;Haseeb, A.;Masjuki, H. and Saidur, R. (2010) Influence of Substrate
Temperatures on Structural, Morphological and Optical Properties of RF-Sputtered Anatase
TiO2 Films, The Arabian J. for Sci. and Eng., 35, 147-156.
30. Kitazawa, S.;Choi, Y. and Yamamoto, S. (2004), In Situ Optical Spectroscopy of PLD of
Nano-Structured TiO2, Vacuum, 74, 3-4, 637-642.
31. Yoshida, T.;Fukami, Y.;Okoshi, M. and Inoue, N. (2005), Improvement of Photocatalytic
Efficiency of TiO2 Thin Films Prepared by Pulsed Laser Deposition, Japanese J. of Appl.
Phys., Part 1, 44, 5, 3059-3062.
32. Pawar, S.; Chougule, M.;Godse, P.; Jundale, D.;Pawar, S.; Raut, B. and Patil, V.(2011),
Effect of Annealing on Structure, Morphology, Electrical and Optical Properties of
Nanocrystalline TiO2 Thin Films, J. of Nano- and Electronic Phys., 3, 1,185-192.
33. Cullity, B. and Stock ,S.(2001) Elements of X-ray Diffraction,” 3nd
Edition, Prentice Hall,
New York.
34. Freund, L. and Suresh, S.(2003),Thin Film Materials, Stress, Defect Formation and
Surface Evolution,” 1st
Edition, Massachusetts Institute of Technology.
35. Barred, C. and Massalski, T. (1980), Structure of Metals, Pergamum Press, Oxford, 204.
36. Hassan, M.;Haseeb, A.; Saidur, R. and Masjuki, H.(2008), Effects of Annealing
Treatment on Optical Properties of Anatase TiO2 Thin Films,” World Academy of Sci., Eng.
and Technol. 40, 221-225.
37. Hsu, L. and Luca, D.(2003),Substrate and Annealing Effects on the Pulsed-Laser
Deposited TiO2 Thin Films, J. of Optoelect. & Advanced Mater., 5 (4): 841-847.
148 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
Table No.(1): Lattice constants and interpllanar spacing of TiO2 thin films.
Table No. (2): Structural properties for TiO2 thin films.
Table No.(3): Morphological characteristics from AFM images for TiO2 thin film
Temperature o
C
Roughness average
(nm)
Root Mean Square (RMS)
(nm)
As-deposited at 300 46.5 60.5
400 76.6 95
500 84.3 105
600 88.6 114
Temperature ( o
C)

degree)
(hkl)
Interplanar
spacing, d Å
Lattice constant Å
a c
c/a
As-deposited at 300
25.27 A(101) 3.15 3.3439 /
2.842
37.83 A(004) 2.37 / 9.5050
400
25.2 A(101) 3.53 3.8 /
3.50237.81 A(004) 2.37 / 9.5098
48.1 A(200) 1.89 3.7803 /
500
25.17 A(101) 3.53 3.8 /
3.50337.79 A(004) 2.38 / 9.5147
48.12 A(200) 1.89 3.7788 /
27.47 R(110) 3.24 4.5881 / /
600
25.11 A(101) 3.54 3.8170 /
2.49737.72 A(004) 2.38 / 9.5317
48 A(200) 1.89 3.7877 /
27.41 R(110) 3.25 4.5979 /
0.641
54.35 R(211) 1.68 / 2.9484
Temperature
( o
C)

degree)
(hkl)
Stress
Ss
(GPa)
Strain
δ
10-3
)(
FWHM°
Average
Grain
Size(nm)
Texture
(Tc)
As-deposited at
300
25.27 A(101)
0.218 0.9354
0.450
19.5 1.813
37.83 A(004) 0.440
400
25.2 A(101)
0.098 0.4225
0.421
21 1.12637.81 A(004) 0.412
48.1 A(200) 0.410
500
25.17 A(101)
-0.019 0.084
0.352
24
1.154
37.79 A(004) 0.400
48.12 A(200) 0.349
27.47 R(110) 0.334 25.6
600
25.11 A(101)
-0.435 1.8709
0.301
28.5
0.952
37.72 A(004) 0.288
48 A(200) 0.338
27.41 R(110)
0.849 3.640
0.315
29.5
54.35 R(211) 0.293
149 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
Fig. (1): XRD patterns of TiO2 films deposited at 300 °C temperature and annealed at
400 °C, 500 °C and 600 °C
Figure No. (2): Variation of texture coefficient versus Temperature
Figure No .(3): AFM images of TiO2 films deposited at 300 °C temperature and
annealed at different temperatures: (a) As-deposited, (b) 400 °C, (c) 500 °C and (d) 600
°C.
(a) (b)
(d)(c)
‫أﻏﺸﯿﺔ‬ ‫ﺗﺼﻨﯿﻊ‬TiO2‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬ ‫ﺑﺘﻘﻨﯿﺔ‬ ‫اﻟﻨﺎﻧﻮي‬ ‫اﻟﺘﺮﻛﯿﺐ‬ ‫ذي‬ ‫اﻟﺮﻗﯿﻘﺔ‬
(PLD)‫وطﺒﻮﻏﺮاﻓﯿﺔ‬ ‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ‫اﻟﺨﺼﺎﺋﺺ‬ ‫ﻓﻲ‬ ‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬ ‫وﺗﺄﺛﯿﺮ‬
‫اﻟﺴﻄﺢ‬
‫اﻟﻌﺒﯿﺪي‬ ‫ﺻﺒﯿﺢ‬ ‫ﺳﺮﻣﺪ‬
‫ﯾﻮﺳﻒ‬ ‫أﺣﻤﺪ‬ ‫ﻋﻠﻲ‬
‫اﻟﻤﺴﺘﻨﺼﺮﯾﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬ /‫اﻟﺘﺮﺑﯿﺔ‬ ‫ﻛﻠﯿﺔ‬ /‫اﻟﻔﯿﺰﯾﺎء‬ ‫ﻗﺴﻢ‬
: ‫ﻓﻲ‬ ‫اﻟﺒﺤﺚ‬ ‫اﺳﺘﻠﻢ‬9‫اﻻول‬ ‫ﺗﺸﺮﯾﻦ‬2012:‫ﻓﻲ‬ ‫اﻟﺒﺤﺚ‬ ‫ﻗﺒﻞ‬ ،9‫اﻻول‬ ‫ﻛﺎﻧﻮن‬2012
‫اﻟﺨﻼﺻﺔ‬
،‫اﻟﺒﺤﺚ‬ ‫ھﺬا‬ ‫ﻓﻲ‬‫اﻧﻤﺎء‬ ‫ﺗﻢ‬) ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫أﻏﺸﯿﺔ‬(TiO2‫اﻟﻨﺎﻧﻮﯾﺔ‬‫ﺗﻘﻨﯿﺔ‬ ‫ﺑﻮﺳﺎطﺔ‬‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬(PLD)‫ﻋﻠﻰ‬
‫أﻏﺸﯿﺔ‬ ‫ﻟﺪﻧﺖ‬ ‫ﺛﻢ‬ ‫وﻣﻦ‬ .‫زﺟﺎﺟﯿﺔ‬ ‫ﻗﻮاﻋﺪ‬TiO2‫ﻣﻦ‬ ‫اﻟﺮﻗﯿﻘﺔ‬400‫اﻟﻰ‬600‫ﺗﺄﺛﯿﺮ‬ ‫ودرس‬ . ‫ﺳﺎﻋﺘﯿﻦ‬ ‫ﻣﺪة‬ ‫اﻟﮭﻮاء‬ ‫ﻓﻲ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬
‫ﻣﺜﻞ‬ ‫اﻟﻤﺜﻠﻰ‬ ‫اﻟﺤﺎﻟﺔ‬ ‫ﻟﺘﺤﺪﯾﺪ‬ ‫اﻻﻋﺘﺒﺎر‬ ‫ﺑﻨﻈﺮ‬ ‫اﺧﺬت‬ ‫اﻷﻏﺸﯿﺔ‬ ‫ﻷﻧﻤﺎء‬ ‫ﻋﺪﯾﺪة‬ ‫ﻋﻮاﻣﻞ‬ .‫واﻟﻄﺒﻮﻏﺮاﻓﯿﺔ‬ ‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ‫اﻟﺨﺼﺎﺋﺺ‬ ‫ﻓﻲ‬ ‫اﻟﺘﻠﺪﯾﻦ‬
) ‫اﻟﻘﺎﻋﺪة‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬300 ºC) ‫اﻷوﻛﺴﺠﯿﻦ‬ ‫،ﺿﻐﻂ‬ ((10-2
Torr‫اﻟﻠﯿﺰري‬ ‫اﻟﻔﯿﺾ‬ ‫طﺎﻗﺔ‬ ‫،ﻛﺜﺎﻓﺔ‬J/cm2
)0.4(‫ﺑﺎ‬‫ﺳﺘﺨﺪام‬
‫اﻟﻨﯿﺪﯾﻤﯿﻮم‬ ‫ﻟﻠﯿﺰر‬ ‫اﻟﻤﻀﺎﻋﻒ‬ ‫اﻟﺘﺮدد‬-‫اﻟﻤﻮﺟﻲ‬ ‫اﻟﻄﻮل‬ ‫ﻋﻨﺪ‬ ‫اﻟﻨﻮﻋﯿﺔ‬ ‫ﻋﺎﻣﻞ‬ ‫ﺑﺘﻘﻨﯿﺔ‬ ‫ﯾﻌﻤﻞ‬ ‫اﻟﺬي‬ ‫ﯾﺎك‬532nm‫ﺗﻜﺮارﯾﺔ‬ ‫ﺑﻤﻌﺪل‬1 -
6)‫ﻧﺒﻀﺔ‬ ‫واﻣﺪ‬ (‫ھﺮﺗﺰ‬10.‫ﻧﺎﻧﻮﺛﺎﻧﯿﺔ‬‫ﻈﮭﺮ‬ُ‫ﺗ‬‫ﻧﺘﺎﺋﺞ‬‫ﻓﺤﻮﺻﺎت‬‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻷﺷﻌﺔ‬‫أن‬‫ﺟﻤﯿﻊ‬‫اﻟﺘﺮاﻛﯿﺐ‬‫رﺑﺎﻋﯿﺔ‬ ‫اﻟﻨﺎﻧﻮﯾﺔ‬‫ﻣﺘﻌﺪدة‬
‫ﺗﻈﮭﺮ‬ ‫اﻟﻨﺘﺎﺋﺞ‬ ‫ھﺬه‬ ‫وان‬ .‫اﻟﺘﺒﻠﻮر‬‫زﯾﺎد‬‫ة‬‫ﻓﻲ‬‫ﺣﺠﻢ‬‫اﻟﺤﺒﯿﺒﺎت‬‫ﻣﻦ‬19.5‫اﻟﻰ‬ ‫ﻧﺎﻧﻮﻣﺘﺮ‬29.5‫ﻧﺎﻧﻮﻣﺘﺮﻣﻊ‬‫زﯾﺎدة‬.‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬
‫ﻓﻲ‬ ‫واﻟﻤﻠﺪن‬ ‫اﻟﻤﺮﺳﺐ‬ ‫اﻟﻐﺸﺎء‬ ‫ان‬ ‫اﯾﻀﺎ‬ ‫اظﮭﺮت‬ ‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻷﺷﻌﺔ‬ ‫ﻧﺘﺎﺋﺞ‬400‫طﻮر‬ ‫ذي‬ ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫ﻟﺜﻨﺎﺋﻲ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬
‫ﻋﻨﺪ‬ ‫اﻟﻤﻠﺪﻧﺔ‬ ‫اﻷﻏﺸﯿﺔ‬ ‫اﻣﺎ‬ .‫اﻷﻧﺎﺗﺎس‬500‫و‬600‫ﻗﯿﻢ‬ ‫ان‬ .‫واﻟﺮوﺗﯿﻞ‬ ‫اﻷﻧﺎﺗﺎس‬ ‫طﻮري‬ ‫ﻣﻦ‬ ً‫ﺎ‬‫ﺧﻠﯿﻄ‬ ‫ﻓﺘﻤﺘﻠﻚ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬‫ﻋﺮض‬
‫ﻷﻧﻤﺎط‬ ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫ﺛﻨﺎﺋﻲ‬ ‫ﻷﻏﺸﯿﺔ‬ ‫اﻟﻘﻤﺔ‬ ‫ﻣﻨﺘﺼﻒ‬ ‫ﻋﻨﺪ‬ ‫اﻟﻤﻨﺤﻨﻲ‬(101)‫ﻣﻦ‬ ‫ﺻﻐﺮ‬ ‫ﻗﺪ‬°0.450‫اﻟﻰ‬°0.301‫ﺑﺰﯾﺎدة‬
‫اﻟﺬرﯾﺔ‬ ‫اﻟﻘﻮى‬ ‫ﻣﺠﮭﺮ‬ ‫ﺑﺎﺳﺘﺨﺪام‬ ‫اﻟﺮﻗﯿﻘﺔ‬ ‫ﻟﻸﻏﺸﯿﺔ‬ ‫اﻟﺴﻄﺢ‬ ‫طﺒﻮﻏﺮاﻓﯿﺔ‬ ‫ودرﺳﺖ‬ .‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬(AFM)‫ان‬ ‫اﺛﺒﺖ‬ ‫اﻟﺬي‬
‫اﻟﻄﺮﯾﻘﺔ‬ ‫ﺑﮭﺬه‬ ‫اﻟﻤﻨﻤﺎت‬ ‫اﻻﻏﺸﯿﺔ‬‫ﺟﯿﺪ‬ ‫ﺗﺒﻠﻮر‬ ‫ﻟﮭﺎ‬‫اﻟﻤﺘﻮﺳﻂ‬ ‫اﻟﺠﺬر‬ ‫ﻣﺮﺑﻊ‬ ‫ﻗﯿﻢ‬ ‫وان‬ .‫ﻣﺘﺠﺎﻧﺲ‬ ‫ﺳﻄﺢ‬ ‫وذو‬RMS‫اﻟﺮﻗﯿﻘﺔ‬ ‫ﻟﻸﻏﺸﯿﺔ‬
‫ﻣﻊ‬ ‫ﺗﺰداد‬ ‫اﻟﺴﻄﺢ‬ ‫وﺧﺸﻮﻧﺔ‬‫زﯾﺎدة‬‫اﻟﺤﺮارة‬ ‫درﺟﺔ‬.‫اﻟﺘﻠﺪﯾﻦ‬
‫اﻟﻜﻠﻤﺎت‬‫اﻟﻤﻔﺘﺎﺣﯿﺔ‬:‫ﺛﻨﺎﺋﻲ‬‫اوﻛﺴﯿﺪ‬،‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ،‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬‫اﻏﺸﯿﺔ‬ ،‫اﻟﺴﻄﺢ‬ ‫طﺒﻮﻏﺮاﻓﯿﺔ‬ ،TiO2.
152 | Physics
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013
Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013

More Related Content

What's hot

Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Science Padayatchi
 
Low Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO NanoparticlesLow Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO Nanoparticles
curtistaylor80
 
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
IKHIOYA IMOSOBOMEH LUCKY
 

What's hot (19)

Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
Preparation, Structure, and Characterization of Nd2mo2o9 fast Oxide Ion Condu...
 
Od3424682473
Od3424682473Od3424682473
Od3424682473
 
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
Maiyalagan, Fabrication and characterization of uniform ti o2 nanotube arrays...
 
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
Fabrication and characterization of uniform ti o2 nanotube arrays by sol gel ...
 
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...Influence of Doping and Annealing on Structural, Optical and Electrical prope...
Influence of Doping and Annealing on Structural, Optical and Electrical prope...
 
Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ionsSpectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
Spectroscopic properties of lithium borate glass containing Sm3+ and Nd3+ ions
 
Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...Influence of concentration on the structural, optical and electrical properti...
Influence of concentration on the structural, optical and electrical properti...
 
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
Effect of Sn Doping on Structural and Electrical Properties of ZnO Thin Films...
 
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
Structural and Optical Properties of Electron Beam Evaporated ITO and Ni: ITO...
 
Zinc oxide thin film
Zinc oxide thin filmZinc oxide thin film
Zinc oxide thin film
 
Dye Sensitized Solar Cells Incorporated with Tio2 -ZnO Nanoparticles
Dye Sensitized Solar Cells Incorporated  with Tio2 -ZnO NanoparticlesDye Sensitized Solar Cells Incorporated  with Tio2 -ZnO Nanoparticles
Dye Sensitized Solar Cells Incorporated with Tio2 -ZnO Nanoparticles
 
10.1117@12.622198
10.1117@12.62219810.1117@12.622198
10.1117@12.622198
 
Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...
 
IRJET- Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Fer...
IRJET- Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Fer...IRJET- Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Fer...
IRJET- Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Fer...
 
Low Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO NanoparticlesLow Temperature Synthesis of ZnO Nanoparticles
Low Temperature Synthesis of ZnO Nanoparticles
 
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRESEFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
EFFECT OF ULTRAVIOLET RADIATION ON STRUCTURAL PROPERTIES OF NANOWIRES
 
An Investigation of SILAR Grown Cobalt Selenide Thin Films
An Investigation of SILAR Grown Cobalt Selenide Thin Films  An Investigation of SILAR Grown Cobalt Selenide Thin Films
An Investigation of SILAR Grown Cobalt Selenide Thin Films
 
AZO Thesis_Mohammad Shakil Khan
AZO Thesis_Mohammad Shakil KhanAZO Thesis_Mohammad Shakil Khan
AZO Thesis_Mohammad Shakil Khan
 
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
ELECTRICAL AND STRUCTURAL PROPERTIES OF ZnSe THIN FILMS BY ELECTRODEPOSITION ...
 

Viewers also liked

Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Nanomedicine Journal (NMJ)
 
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
nasrollah najibi ilkhchy
 
DAAD Research Overview TiO2
DAAD Research Overview TiO2DAAD Research Overview TiO2
DAAD Research Overview TiO2
Anna Dorfi
 
Sol gel chemistry
Sol gel chemistrySol gel chemistry
Sol gel chemistry
ron181295
 

Viewers also liked (20)

Haider master's thesis
Haider master's thesisHaider master's thesis
Haider master's thesis
 
Thesis_AZO
Thesis_AZOThesis_AZO
Thesis_AZO
 
DSSC
DSSC DSSC
DSSC
 
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical ch...
 
Structure and band gap energies of nano titanium dioxide doped with the fifth...
Structure and band gap energies of nano titanium dioxide doped with the fifth...Structure and band gap energies of nano titanium dioxide doped with the fifth...
Structure and band gap energies of nano titanium dioxide doped with the fifth...
 
Mrs 2008 Fall Walker
Mrs 2008 Fall Walker Mrs 2008 Fall Walker
Mrs 2008 Fall Walker
 
XRD Proposal
XRD ProposalXRD Proposal
XRD Proposal
 
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
final accept-Optical and structural properties of TiO2 nanopowders with Co-Ce...
 
Preparation of Mixed Phase (Anatase/Rutile) TiO2 Nanopowder by Simple Sol Gel...
Preparation of Mixed Phase (Anatase/Rutile) TiO2 Nanopowder by Simple Sol Gel...Preparation of Mixed Phase (Anatase/Rutile) TiO2 Nanopowder by Simple Sol Gel...
Preparation of Mixed Phase (Anatase/Rutile) TiO2 Nanopowder by Simple Sol Gel...
 
SmartCoat Nano tio2 Presentation
SmartCoat Nano tio2 PresentationSmartCoat Nano tio2 Presentation
SmartCoat Nano tio2 Presentation
 
Selection of Suitable Titanium Dioxide Grades for Paints and Coatings, Plasti...
Selection of Suitable Titanium Dioxide Grades for Paints and Coatings, Plasti...Selection of Suitable Titanium Dioxide Grades for Paints and Coatings, Plasti...
Selection of Suitable Titanium Dioxide Grades for Paints and Coatings, Plasti...
 
Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anod...
Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anod...Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anod...
Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anod...
 
DAAD Research Overview TiO2
DAAD Research Overview TiO2DAAD Research Overview TiO2
DAAD Research Overview TiO2
 
TiO2
TiO2TiO2
TiO2
 
TZMI Oct 09 TiO2 Presentation Singapore
TZMI Oct 09 TiO2 Presentation SingaporeTZMI Oct 09 TiO2 Presentation Singapore
TZMI Oct 09 TiO2 Presentation Singapore
 
Synthesis of Titaniumdioxide (TIO2) Nano Particles
Synthesis of Titaniumdioxide (TIO2) Nano ParticlesSynthesis of Titaniumdioxide (TIO2) Nano Particles
Synthesis of Titaniumdioxide (TIO2) Nano Particles
 
Photocatalytic activity of TiO2
Photocatalytic activity of TiO2Photocatalytic activity of TiO2
Photocatalytic activity of TiO2
 
Preparation of nano particles
Preparation of nano particlesPreparation of nano particles
Preparation of nano particles
 
Sol gel chemistry
Sol gel chemistrySol gel chemistry
Sol gel chemistry
 
Sol-Gel Method
Sol-Gel MethodSol-Gel Method
Sol-Gel Method
 

Similar to Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) And The Effect Of Annealing Temperature On Structural And Morphological Properties

Paper id 21201475
Paper id 21201475Paper id 21201475
Paper id 21201475
IJRAT
 
Preparation and Properties of Nanocrystalline Zinc Oxide Thin Films
Preparation and Properties of Nanocrystalline Zinc Oxide Thin FilmsPreparation and Properties of Nanocrystalline Zinc Oxide Thin Films
Preparation and Properties of Nanocrystalline Zinc Oxide Thin Films
ijtsrd
 
Ultra smooth and lattice relaxed zn o thin films [eid]
Ultra smooth and lattice relaxed zn o thin films [eid]Ultra smooth and lattice relaxed zn o thin films [eid]
Ultra smooth and lattice relaxed zn o thin films [eid]
Eid Elsayed
 
Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...
Phaccebookq Nizar
 

Similar to Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) And The Effect Of Annealing Temperature On Structural And Morphological Properties (20)

Paper id 21201475
Paper id 21201475Paper id 21201475
Paper id 21201475
 
Optical Properties of Nanostructured Cerium Oxide Thin Films by Pulsed Laser ...
Optical Properties of Nanostructured Cerium Oxide Thin Films by Pulsed Laser ...Optical Properties of Nanostructured Cerium Oxide Thin Films by Pulsed Laser ...
Optical Properties of Nanostructured Cerium Oxide Thin Films by Pulsed Laser ...
 
Effect of Post Annealing on Structural and Optical Propertie of Sno2 Thin Fil...
Effect of Post Annealing on Structural and Optical Propertie of Sno2 Thin Fil...Effect of Post Annealing on Structural and Optical Propertie of Sno2 Thin Fil...
Effect of Post Annealing on Structural and Optical Propertie of Sno2 Thin Fil...
 
Annealing effect on the structural and optical properties of
Annealing effect on the structural and optical properties ofAnnealing effect on the structural and optical properties of
Annealing effect on the structural and optical properties of
 
203
203203
203
 
Growth of Nano Scale and Optical Properties of Indium Oxide Thin Films
Growth of Nano Scale and Optical Properties of Indium Oxide Thin FilmsGrowth of Nano Scale and Optical Properties of Indium Oxide Thin Films
Growth of Nano Scale and Optical Properties of Indium Oxide Thin Films
 
Do25681686
Do25681686Do25681686
Do25681686
 
Evaluation of piezoresistivity properties of sputtered ZnO thin films
Evaluation of piezoresistivity properties of sputtered ZnO thin filmsEvaluation of piezoresistivity properties of sputtered ZnO thin films
Evaluation of piezoresistivity properties of sputtered ZnO thin films
 
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
Annealing and Microstructural Characterization of Tin-Oxide Based Thick Film ...
 
Preparation and Properties of Nanocrystalline Zinc Oxide Thin Films
Preparation and Properties of Nanocrystalline Zinc Oxide Thin FilmsPreparation and Properties of Nanocrystalline Zinc Oxide Thin Films
Preparation and Properties of Nanocrystalline Zinc Oxide Thin Films
 
Structural, Dielectric and Optical properties of Sputtered TiO2 nano-films
Structural, Dielectric and Optical properties of Sputtered TiO2 nano-filmsStructural, Dielectric and Optical properties of Sputtered TiO2 nano-films
Structural, Dielectric and Optical properties of Sputtered TiO2 nano-films
 
Ultra smooth and lattice relaxed zn o thin films [eid]
Ultra smooth and lattice relaxed zn o thin films [eid]Ultra smooth and lattice relaxed zn o thin films [eid]
Ultra smooth and lattice relaxed zn o thin films [eid]
 
Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...Joam (preparation and characterization of zn o thin films deposited by sol ge...
Joam (preparation and characterization of zn o thin films deposited by sol ge...
 
Pulse Energy Effect on the Optical Properties of Pulse Laser Deposited SiO2 T...
Pulse Energy Effect on the Optical Properties of Pulse Laser Deposited SiO2 T...Pulse Energy Effect on the Optical Properties of Pulse Laser Deposited SiO2 T...
Pulse Energy Effect on the Optical Properties of Pulse Laser Deposited SiO2 T...
 
Effect of zinc on structural and some optical properties of cd s thin films
Effect of zinc on structural and some optical properties of cd s thin filmsEffect of zinc on structural and some optical properties of cd s thin films
Effect of zinc on structural and some optical properties of cd s thin films
 
Significance of substrate temperatures on the deposition of ZnGa2Se4 thin fil...
Significance of substrate temperatures on the deposition of ZnGa2Se4 thin fil...Significance of substrate temperatures on the deposition of ZnGa2Se4 thin fil...
Significance of substrate temperatures on the deposition of ZnGa2Se4 thin fil...
 
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
Influence of Thickness on Electrical and Structural Properties of Zinc Oxide ...
 
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin filmsDetecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
 
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin filmsDetecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
Detecting of NH3, CO2 polluted gases by using ZnO- In2O3 thin films
 
C42032023
C42032023C42032023
C42032023
 

Recently uploaded

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
vu2urc
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Developing An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of BrazilDeveloping An App To Navigate The Roads of Brazil
Developing An App To Navigate The Roads of Brazil
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
GenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdfGenAI Risks & Security Meetup 01052024.pdf
GenAI Risks & Security Meetup 01052024.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) And The Effect Of Annealing Temperature On Structural And Morphological Properties

  • 1. Synthesis Of Nanostructured TiO2 Thin Films By Pulsed Laser Deposition (PLD) And The Effect Of Annealing Temperature On Structural And Morphological Properties Sarmad Sabih Al-Obaidi Ali Ahmed Yousif Dept.of Physics/ College of Education/University of Al-Mustansiriyah Received in : 9 October 2012 , Accepted in : 9 December2012 Abstract In this work, nanostructured TiO2 thin films were grown by pulsed laser deposition (PLD) technique on glass substrates. TiO2 thin films then were annealed at 400-600 °C in air for a period of 2 hours. Effect of annealing on the structural and morphological were studied. Many growth parameters have been considered to specify the optimum conditions, namely substrate temperature (300 °C), oxygen pressure (10-2 Torr), laser fluence energy density (0.4 J/cm2 ), using double frequency Q-switching Nd:YAG laser beam (wavelength 532nm), repetition rate (1-6 Hz) and the pulse duration of 10 ns. The results of the X-ray test show that all nanostructures tetragonal are polycrystalline. These results show that grain size increase from 19.5 nm to 29.5 with the increase of annealing temperature. The XRD results also reveal that the deposited thin film, annealed at 400 °C of TiO2 have anatase phase. Thin films annealed at 500 °C and 600 °C have mixed anatase and rutile phases. Full Width at Half Maximum (FWHM) values of the (101) peaks of these films decrease from 0.450° to 0.301° with the increase of annealing temperature. Surface morphology of the thin films have been studied by using atomic force microscopes (AFM). AFM measurements confirmed that the films have good crystalline and homogeneous surface. The Root Mean Square (RMS) value of thin films surface roughness are increased with the increase of annealing temperature. Keywords: Titanium Dioxide, Pulsed Laser Deposition, Structural, Morphology, TiO2 Films 143 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 2. Introduction Nanocrystalline titanium dioxide thin films have important applications in the field of optoelectronic materials. TiO2 is an important photocatalytic material [1], which can be used in the form of thin films in dye-sensitized solar cells [2] and anti-reflection coatings [3]. It is known that the TiO2 films have excellent photocatalytic and photoinduced hydrophilic properties for environmental applications, such as air purification, sterilization, antifogging, and self-cleaning [4, 5]. Titanium dioxide occurs in three crystalline polymorphs: rutile, anatase and brookite [6]. Anatase has attracted attention for its prominent photocatalytic activity [7]. It is a metastable phase of TiO2 and converts to the rutile phase, which is thermodynamically stable, on high temperature annealing [8]. Anatase and rutile phases crystallize in tetragonal structure while brookite crystallizes in orthorhombic structure. Many deposition methods have been used to prepare TiO2 thin films, such as electron-beam evaporation [9,10], ion-beam assisted deposition [11,12], DC reactive magnetron sputtering [13], RF reactive magnetron sputtering [14,15], sol-gel dip coating method [16,17], sol-gel spin coating method [18], chemical vapor deposition [5], plasma enhanced chemical vapor deposition [19] and pulsed laser deposition (PLD) [20]. The laser ablation technique is what makes PLD attractive for thin film deposition, because the ablation of the target preserves its stoichiometry in the thin film. The PLD process is simple and versatile, these characteristics have made it possible to successfully deposit high quality thin films of various materials such as oxides, high-temperature superconductors, magnetoelectrics, and ceramics [21]. Pulsed laser deposition proved to be a favorable technique for the deposition of titanium dioxide at different technological conditions on different substrates. That supposed to result in the different structural and micro structural properties, different surface morphology of the nanostructures to be obtained [22]. For practical applications, deposition parameters have to be optimized to achieve the desired structure and properties in the films. The pulsed laser deposition technique can produce adherent and uniform film over wide areas. The deposit stoichiometry can also be well-controlled. A number of studies on the deposition of TiO2 films by pulsed laser have appeared in the literature recently [23- 26]. Thin film properties such as crystallinity, particle size, degree of homogeneity, etc. depend largely on annealing temperature and substrate topography [27]. In this study, the influence of annealing over the range 400 to 600 °C on the structural properties measured by XRD technique, and morphological properties measured by AFM properties of TiO2 thin films was investigated. Experimental Details Titanium dioxide from ASDGF Company with a titanium target of 99.99% purity on glass slides as substrates. The powder was pressed under 5 tons to form a target with 2.5 cm diameter and 0.4 cm thickness. Glass slides each with area 3 x 2 cm2 were cleaned by alcohol with ultrasonic waves (Cerry PUL 125 device) for 10 minutes in order to remove the impurities and residuals from their surfaces. Thin films were deposited by using pulsed laser deposition in University of Technology by employing a Q switched Nd: YAG laser at wavelength 532 nm with 0.4 J/cm2 of energy density, pulse width 10 ns and repetition frequency 6 Hz. Uniform ablation ensured by rotating the target at constant speed. The focused Nd:YAG Second Harmonic Generation (SHG) Q-switching laser beam incident on the target surface making an angle of 45° with it. The films were deposited on glass substrate at temperatures 300 °C. The pulsed laser deposition experiment was carried out inside a vacuum chamber (10-2 Torr). The substrates deposited at 300 °C with TiO2 annealed at 400 °C, 500 °C and 600 °C in University of Al-Mustansiriyah using an electric furnace for 2 h in air. The crystallinity of the prepared films was analyzed using X-ray Diffraction (XRD) measurements (Shimadzu 6000 made in Japan) in Ministry of Science and Technology using 144 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 3. Cu Kα radiation (λ=1.5406 Å) and operating at an accelerating voltage of 40 kV and an emission current of 30 mA. Data were acquired over the range of 2θ from 20° to 60°. The XRD method was used to study the change of crystalline structure. For morphological investigations, Atomic Force Microscopy (AFM) images were recorded by using nanoscope scanning probe microscope controller in a tapping mode (made in USA). AFM images were used to observe the surface roughness and topography of deposited thin films. Measurements were made AFM at the Ministry of Science and Technology. Experimental Results Throughout studying the X-ray diffraction spectrum, we can understand the crystalline growth nature of TiO2 thin films prepared by pulsed leaser deposition on glass substrates at 300 °C at different annealing temperatures (400, 500, and 600) °C with a fixed annealing time of 2 h in air. Figure (1) shows X-ray diffraction patterns for TiO2 films. We compared deposited film at 300 °C with annealed films at 400 °C, 500 °C and 600 °C as shown in Figure (1). As-deposited TiO2 film at 300 °C is found to be crystalline and possesses anatase structure as it shows few peaks of anatase (101) and (004), while film annealed at 400 °C having peaks of anatase (101), (004) and (200), film annealed at 500 °C having peaks of anatase (101), (004), (200) and rutile (110) and film annealed at 600 °C having peaks of anatase (101), (004), (200) and rutile (110), (211). The X-ray spectra show well-defined diffraction peaks showing good crystallinity, it was found that all the films were polycrystalline with a tetragonal crystal structure and no amorphous phase is detected. The diffraction peaks are in a good agreement with those given in JCPD data card for TiO2 anatase and rutile [28]. It was observed that the intensities of the peaks of few TiO2 planes increased slightly with the increase of annealing temperature. In addition, the location of the (101) peaks is shifted to lower 2θ angles from 2θ=25.27 ° to 2θ=25.11 ° . For a crystalline phase to develop, the depositing atoms should have sufficient energy. High substrate temperatures can achieve the sufficient energy to generate crystalline phases [29]. X-ray diffraction analysis revealed that TiO2 thin films are amorphous if the temperature substrate is lower than 300 °C [23]. It was found that anatase films were deposited and crystallized effectively for heated substrate at 300 °C and working pressure of 10-2 Torr. The reason may be that the kinetic energy of the particle is high enough to initiate crystallization. For the samples annealed at 500 and 600 °C, other characteristic peaks of anatase and rutile phase. These results are in agreement with other reports on the mixed phase TiO2 by PLD method [26,30,31].The transformation from anatase to rutile occurs at temperatures higher than 500 °C under vacuum. The increase in peak intensity indicates an improvement in the crystallinity of the films. This leads to decrease in Full Width at Half Maximums (FWHM) of peak and increase in grain size. The lattice constants and the relative intensity ratio, in the diffraction pattern of TiO2 films are given in table (1). The lattice constants obtained are found to be in good agreement with JCPD. The values of Full Width at Half Maximum (FWHM) of the peaks decreases with annealing temperature, this goes in agreement with the previous work [32]. The average grain size (g) in thin films is calculated using Scherer’s formula: [33] g = (0.94 λ) / [Δ (2 θ) cosθ] ...…....….………..…....………(1) Where (λ) is the x-ray wavelength (Å), Δ (2θ) FWHM (radian) and (θ) Bragg diffraction angle of the XRD peak (degree). The values of average grain size listed in table (2) increase with the increase of annealing temperature for TiO2 thin films. The average grain size and Full Width at Half Maximum (FWHM) of the (101) plane as a function of annealing temperature for TiO2 thin films are shown in figure (3). The micro strain depends directly on the lattice constant (c) and its value 145 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 4. %100)( × − = Ο Ο c cc Strain δ Ο Ο− × +− = c cc c cccc Ss 13 12113313 2 2 )(2 ∑ − = )()( )()( )( 0 1 0 hklIhklIN hklIhklI hklT r C related to the shift from the JCPD standard value which could be calculated using the relation:[34] ……….……………………(2) Where (c) and (co) are the lattice parameters of the thin film from experimental worked and TiO2 thin film obtained from JCPDS respectively. The film annealed at 600 ºC temperature showed the maximum compressive strain (3.640 ×10-3 ), which decreased to nearly zero at 500 ºC, as shown in table (2). The calculation of the film stress is based on the strain model, which could be calculated by using the relation:[34] as shown in table (2). ……...……………………..(3) The values of the elastic constants from single crystalline TiO2 are used, c11=208.8 GPa, c33=213.8 GPa, c12=119.7 GPa and c13=104.2 GPa [34]. To describe the preferential orientation, the values of texture coefficient (Tc) of the thin films are listed in table (2). The texture coefficient is calculated by using the relation: [35] …….………………………(4) Where (I) is the measured intensity, (Io) is the JCPDS standard intensity, (Nr) is the reflection number and (hkl) is Miller indices. For crystal plane (101), the values of texture coefficient decrease with the increase of annealing temperature as shown in figure (2).This is a usual result because the increase of annealing temperature causes an increase in the surface roughness. The surface morphology of all the TiO2 films is presented by AFM images in tapping mode. The surface morphology reveals the Nano-crystalline TiO2 grains. Figure (3) shows the three dimensional AFM images of the TiO2 thin films deposited at 300 ºC and annealed at different temperatures (400, 500 and 600) ºC. The surface morphology of the TiO2 thin films changed with the different annealing temperatures, as observed from the AFM micrographs figure (3) proves that the grains are semi uniformly distributed within the scanning area (10 μm × 10 µm), with individual columnar grains extending upwards. The values of the root mean square (RMS) and surface roughness of TiO2 films are shown in the table (3), i.e. the root mean square (RMS) and surface roughness increased with the increase of annealing temperature, this result is in agreement with the previous work [36]. In general as the annealing temperature increases, the RMS, roughness of the TiO2 films and the grain size increase. The surface roughness of the TiO2 thin films increases with film thickness, annealing temperature, and annealing time [37]. Conclusion XRD results reveal that the deposited thin film and annealed at 400 °C of TiO2 have a good Nanocrystalline tetragonal anatase phase structure. Thin films annealed at 500 °C and 600 °C have mixed anatase and rutile phase structure. And it is observed that the TiO2 films exhibit a polycrystalline having (101), (110), (004), (200), (211) planes, the peak intensities, micro strain (δ), grain size (g) increases and texture coefficient (Tc) decreases with the increase of annealing temperature. AFM results showed the slow growth of crystallite sizes for as-grown films and annealed films at 400 to 600 °C. The values of the root mean square (RMS) and surface roughness of TiO2 films increased with the increase of annealing temperature. 146 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 5. References 1. Wang, J.;Yu, J.;Liu, Z.; He Z. and Cai, R. (2005),A Simple New Way to Prepare Anatase TiO2 Hydrosol with High.Photocatalytic Activity, Semi. Sci. and Technol., 20, 36-39. 2. Sung, Y. and Kim, H. (2006), Sputter Deposition and Surface Treatment of TiO2 Films for Dye-Sensitized Solar Cells Using Reactive RF Plasma, Thin Sol. Fil, 515, 4996–4999. 3. Okada, M.;Tazawa, M.;Jin, P.;Yamada, Y. and Yoshimura, K.(2006), Fabrication of Photocatalytic Heat-Mirror with TiO2/TiN/ TiO2 Stacked Layers, Vacuum, 80, 732-735. 4. Fujishima,A.;Rao,T.and Tryk,D.(2000),Titanium Dioxide Photocatalysis, J. of Photochemistry and Photobi. C: Photoche. Rev.1, 1-21. 5. Sun, H.;Wang ,C.;Pang, S.;Li, X.;Tao,Y.Tang ;H. and Liu, M.(2008), Photocatalytic TiO2 Films Prepared by Chemical Vapor Deposition at Atmosphere Pressure,J. of Non-Cryst. Sol., 354, 1440- 1443. 6. Karunagara B., Kim K., Mangalaraj D., Yi J. and Velumani S., (2005), Structural, Optical and Raman Scattering Studies on DC Magnetron Sputtered Titanium Dioxide Thin Films, Solar Energy Mater.& Cells, 88, 199-208. 7. Sasahara, A.;Droubay ,T.;Chambers, S.;Uetsuka ,H., and Onishi, H.(2005), Topography of Anatase TiO2 Film Synthesized on LaAlO3 (001), Nanotechnol, 16, 3. 8. Sankar, S. and Gopchandran, K. (2009) Effect of Annealing on the Structural, Electrical and Optical Properties of Nanostructured TiO2 thin films, Cryst. Res. Technol, 44, 989-994. 9. Habibi, M.; Talebian, N. and Choi, J. (2007)The Effect of Annealing on Photocatalytic Properties of Nanostructured Titanium Dioxide Thin Films, Dyes and Pigments, 73, 103-110. 10. Jerman, M. and Mergel, D. (2007) Structural Investigation of Thin TiO2 Films Prepared by Evaporation and Post- Heating, Thin Sol. Fil., 515, 6904–6908. 11. Yang, C.;Fan, H.; Xi, Y.; Chen, J. and Li, Z. (2008)Effects of Depositing Temperatures on Structure and Optical Properties of TiO2 Film Deposited by Ion Beam Assisted Electron Beam Evaporation, Appl. Surf. Sci., 254, 2685-2689. 12. Tian, G.;Wu, S.; Shu, K.; Qin, L. and Shao, J. (2007), Influence of Deposition Conditions on the Microstructure of Oxides Thin Films, Appl. Surf. Sci, 253, 8782–8787. 13. Tavares, C.;Vieira, J.; Rebouta ,L.; Hungerford, G.;Coutinho, P.;Teixeira, V.; Carneiro, J. and Fernandes ,A.(2007) Reactive Sputtering Deposition of Photocatalytic TiO2 Thin Films on Glass Substrates, Mater. Sci. Eng., 138, 139-143. 14. Amor, S.;Baud, G.; Jacquet, M. and Pichon, N. (1998), Photoprotective Titania Coatings on PET Substrates, Surface and Coatings Technology, 102, 1, 63-72. 15. Akl, A.;Kamal, H. and Abdel-Hady, K. (2006)Fabrication and Characterization of Sputtered Titanium Dioxide Films, Appl. Surf. Sci., 252, 8651–8656. 16. Ghamsari, M. and Bahramian, A., (2008), “High Transparent Sol–Gel Derived Nanostructured TiO2 Thin Film, Mater. Lett., 62, 361-364. 17. Saini ,K.; Sharma, S.; Chanderkant, Kar M.;Singh, D. and Sharma, C., (2007)Structural and Optical Properties of TiO2 Thin Films Derived by Sol–Gel Dip Coating Process, J. of Non-Cryst. Sol., 353, 2469-2473. 18. Wang, Z.;Helmersson, U. and Käll, P., (2002),Optical Properties of Anatase TiO2 Thin Films Prepared by Aqueous Sol–Gel Process at Low Temperature,Thin Sol. Fil., 405, 50-54. 19. Yang ,W. and Wolden, C. (2006)Plasma-Enhanced Chemical Vapor Deposition of TiO2 Thin Films for Dielectric Applications,” Thin Sol. Fil., 515, 1708-1713. 20. Ming-Che, Y. (2012)Strategies to Improve the Electrochemical Performance of Electrodes for Li-Ion Batteries,” Ph.D Thesis, University of Florida, 1-189. 21. Garza, E.(2011), Pulsed Laser Deposition of Thin Film Heterostructures, M.Sc. Thesis of Science in Applied Physics, University of New Orleans Department of Applied Science, 1-68. 22. Yousif, A.(2010)Characterization of ZnO Film Grown on Different Substrates Using PLD, Ph.D Thesis, University of Technology Department of Applied Science, 2. 147 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 6. 23. Yahya, K. (2010),Characterization of Pure and Dopant TiO2 Thin Films for Gas Sensors Applications,” Ph.D Thesis, University of Technology Department of Applied Science, 1-147. 24. Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C.;Bassi A.; Bottani, C.;Rudolf, P.; Prince, K. and Agostino, R. (2011),Surface Electronic and Structural Properties of Nanostructured Titanium Oxide Grown by Pulsed Laser Deposition, Surf. Sci., 605: 333-340. 25. Sankar, S.;Gopchandran, K.;Kuppusami ,P. and Murugesan, S.(2011),Spontaneously Ordered TiO2 Nanostructures, Ceramics International, 37, 3307-3315. 26. Koshizaki, N.;Narazaki, A. and Sasaki, T.(2002) Preparation of Nanocrystalline Titania Films by Pulsed Laser Deposition at Room Temperature,” Appl. Surf. Sci., 197-198, 624-627. 27. Mosaddeq-ur-Rahman, M.;Yu, G.; Soga, T.; Jimbo ,T. and Ebisu, M. Umeno H., (2000), Refractive Index and Degree of Inhomogeneity of Nanocrystalline TiO2 Thin Films: Effects of Substrate and Annealing Temperature, J. Appl. Phys., 88(8) 4634-4641. 28. JCPDS, (Joint Committee for Powder Diffraction Standards), (1969), Powder Diffraction File for Inorganic Materials, 21- 1272 & 21 – 1276. 29. Hasan, M.;Haseeb, A.;Masjuki, H. and Saidur, R. (2010) Influence of Substrate Temperatures on Structural, Morphological and Optical Properties of RF-Sputtered Anatase TiO2 Films, The Arabian J. for Sci. and Eng., 35, 147-156. 30. Kitazawa, S.;Choi, Y. and Yamamoto, S. (2004), In Situ Optical Spectroscopy of PLD of Nano-Structured TiO2, Vacuum, 74, 3-4, 637-642. 31. Yoshida, T.;Fukami, Y.;Okoshi, M. and Inoue, N. (2005), Improvement of Photocatalytic Efficiency of TiO2 Thin Films Prepared by Pulsed Laser Deposition, Japanese J. of Appl. Phys., Part 1, 44, 5, 3059-3062. 32. Pawar, S.; Chougule, M.;Godse, P.; Jundale, D.;Pawar, S.; Raut, B. and Patil, V.(2011), Effect of Annealing on Structure, Morphology, Electrical and Optical Properties of Nanocrystalline TiO2 Thin Films, J. of Nano- and Electronic Phys., 3, 1,185-192. 33. Cullity, B. and Stock ,S.(2001) Elements of X-ray Diffraction,” 3nd Edition, Prentice Hall, New York. 34. Freund, L. and Suresh, S.(2003),Thin Film Materials, Stress, Defect Formation and Surface Evolution,” 1st Edition, Massachusetts Institute of Technology. 35. Barred, C. and Massalski, T. (1980), Structure of Metals, Pergamum Press, Oxford, 204. 36. Hassan, M.;Haseeb, A.; Saidur, R. and Masjuki, H.(2008), Effects of Annealing Treatment on Optical Properties of Anatase TiO2 Thin Films,” World Academy of Sci., Eng. and Technol. 40, 221-225. 37. Hsu, L. and Luca, D.(2003),Substrate and Annealing Effects on the Pulsed-Laser Deposited TiO2 Thin Films, J. of Optoelect. & Advanced Mater., 5 (4): 841-847. 148 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 7. Table No.(1): Lattice constants and interpllanar spacing of TiO2 thin films. Table No. (2): Structural properties for TiO2 thin films. Table No.(3): Morphological characteristics from AFM images for TiO2 thin film Temperature o C Roughness average (nm) Root Mean Square (RMS) (nm) As-deposited at 300 46.5 60.5 400 76.6 95 500 84.3 105 600 88.6 114 Temperature ( o C)  degree) (hkl) Interplanar spacing, d Å Lattice constant Å a c c/a As-deposited at 300 25.27 A(101) 3.15 3.3439 / 2.842 37.83 A(004) 2.37 / 9.5050 400 25.2 A(101) 3.53 3.8 / 3.50237.81 A(004) 2.37 / 9.5098 48.1 A(200) 1.89 3.7803 / 500 25.17 A(101) 3.53 3.8 / 3.50337.79 A(004) 2.38 / 9.5147 48.12 A(200) 1.89 3.7788 / 27.47 R(110) 3.24 4.5881 / / 600 25.11 A(101) 3.54 3.8170 / 2.49737.72 A(004) 2.38 / 9.5317 48 A(200) 1.89 3.7877 / 27.41 R(110) 3.25 4.5979 / 0.641 54.35 R(211) 1.68 / 2.9484 Temperature ( o C)  degree) (hkl) Stress Ss (GPa) Strain δ 10-3 )( FWHM° Average Grain Size(nm) Texture (Tc) As-deposited at 300 25.27 A(101) 0.218 0.9354 0.450 19.5 1.813 37.83 A(004) 0.440 400 25.2 A(101) 0.098 0.4225 0.421 21 1.12637.81 A(004) 0.412 48.1 A(200) 0.410 500 25.17 A(101) -0.019 0.084 0.352 24 1.154 37.79 A(004) 0.400 48.12 A(200) 0.349 27.47 R(110) 0.334 25.6 600 25.11 A(101) -0.435 1.8709 0.301 28.5 0.952 37.72 A(004) 0.288 48 A(200) 0.338 27.41 R(110) 0.849 3.640 0.315 29.5 54.35 R(211) 0.293 149 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013
  • 8. Fig. (1): XRD patterns of TiO2 films deposited at 300 °C temperature and annealed at 400 °C, 500 °C and 600 °C Figure No. (2): Variation of texture coefficient versus Temperature
  • 9. Figure No .(3): AFM images of TiO2 films deposited at 300 °C temperature and annealed at different temperatures: (a) As-deposited, (b) 400 °C, (c) 500 °C and (d) 600 °C. (a) (b) (d)(c)
  • 10. ‫أﻏﺸﯿﺔ‬ ‫ﺗﺼﻨﯿﻊ‬TiO2‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬ ‫ﺑﺘﻘﻨﯿﺔ‬ ‫اﻟﻨﺎﻧﻮي‬ ‫اﻟﺘﺮﻛﯿﺐ‬ ‫ذي‬ ‫اﻟﺮﻗﯿﻘﺔ‬ (PLD)‫وطﺒﻮﻏﺮاﻓﯿﺔ‬ ‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ‫اﻟﺨﺼﺎﺋﺺ‬ ‫ﻓﻲ‬ ‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬ ‫وﺗﺄﺛﯿﺮ‬ ‫اﻟﺴﻄﺢ‬ ‫اﻟﻌﺒﯿﺪي‬ ‫ﺻﺒﯿﺢ‬ ‫ﺳﺮﻣﺪ‬ ‫ﯾﻮﺳﻒ‬ ‫أﺣﻤﺪ‬ ‫ﻋﻠﻲ‬ ‫اﻟﻤﺴﺘﻨﺼﺮﯾﺔ‬ ‫اﻟﺠﺎﻣﻌﺔ‬ /‫اﻟﺘﺮﺑﯿﺔ‬ ‫ﻛﻠﯿﺔ‬ /‫اﻟﻔﯿﺰﯾﺎء‬ ‫ﻗﺴﻢ‬ : ‫ﻓﻲ‬ ‫اﻟﺒﺤﺚ‬ ‫اﺳﺘﻠﻢ‬9‫اﻻول‬ ‫ﺗﺸﺮﯾﻦ‬2012:‫ﻓﻲ‬ ‫اﻟﺒﺤﺚ‬ ‫ﻗﺒﻞ‬ ،9‫اﻻول‬ ‫ﻛﺎﻧﻮن‬2012 ‫اﻟﺨﻼﺻﺔ‬ ،‫اﻟﺒﺤﺚ‬ ‫ھﺬا‬ ‫ﻓﻲ‬‫اﻧﻤﺎء‬ ‫ﺗﻢ‬) ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫أﻏﺸﯿﺔ‬(TiO2‫اﻟﻨﺎﻧﻮﯾﺔ‬‫ﺗﻘﻨﯿﺔ‬ ‫ﺑﻮﺳﺎطﺔ‬‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬(PLD)‫ﻋﻠﻰ‬ ‫أﻏﺸﯿﺔ‬ ‫ﻟﺪﻧﺖ‬ ‫ﺛﻢ‬ ‫وﻣﻦ‬ .‫زﺟﺎﺟﯿﺔ‬ ‫ﻗﻮاﻋﺪ‬TiO2‫ﻣﻦ‬ ‫اﻟﺮﻗﯿﻘﺔ‬400‫اﻟﻰ‬600‫ﺗﺄﺛﯿﺮ‬ ‫ودرس‬ . ‫ﺳﺎﻋﺘﯿﻦ‬ ‫ﻣﺪة‬ ‫اﻟﮭﻮاء‬ ‫ﻓﻲ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬ ‫ﻣﺜﻞ‬ ‫اﻟﻤﺜﻠﻰ‬ ‫اﻟﺤﺎﻟﺔ‬ ‫ﻟﺘﺤﺪﯾﺪ‬ ‫اﻻﻋﺘﺒﺎر‬ ‫ﺑﻨﻈﺮ‬ ‫اﺧﺬت‬ ‫اﻷﻏﺸﯿﺔ‬ ‫ﻷﻧﻤﺎء‬ ‫ﻋﺪﯾﺪة‬ ‫ﻋﻮاﻣﻞ‬ .‫واﻟﻄﺒﻮﻏﺮاﻓﯿﺔ‬ ‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ‫اﻟﺨﺼﺎﺋﺺ‬ ‫ﻓﻲ‬ ‫اﻟﺘﻠﺪﯾﻦ‬ ) ‫اﻟﻘﺎﻋﺪة‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬300 ºC) ‫اﻷوﻛﺴﺠﯿﻦ‬ ‫،ﺿﻐﻂ‬ ((10-2 Torr‫اﻟﻠﯿﺰري‬ ‫اﻟﻔﯿﺾ‬ ‫طﺎﻗﺔ‬ ‫،ﻛﺜﺎﻓﺔ‬J/cm2 )0.4(‫ﺑﺎ‬‫ﺳﺘﺨﺪام‬ ‫اﻟﻨﯿﺪﯾﻤﯿﻮم‬ ‫ﻟﻠﯿﺰر‬ ‫اﻟﻤﻀﺎﻋﻒ‬ ‫اﻟﺘﺮدد‬-‫اﻟﻤﻮﺟﻲ‬ ‫اﻟﻄﻮل‬ ‫ﻋﻨﺪ‬ ‫اﻟﻨﻮﻋﯿﺔ‬ ‫ﻋﺎﻣﻞ‬ ‫ﺑﺘﻘﻨﯿﺔ‬ ‫ﯾﻌﻤﻞ‬ ‫اﻟﺬي‬ ‫ﯾﺎك‬532nm‫ﺗﻜﺮارﯾﺔ‬ ‫ﺑﻤﻌﺪل‬1 - 6)‫ﻧﺒﻀﺔ‬ ‫واﻣﺪ‬ (‫ھﺮﺗﺰ‬10.‫ﻧﺎﻧﻮﺛﺎﻧﯿﺔ‬‫ﻈﮭﺮ‬ُ‫ﺗ‬‫ﻧﺘﺎﺋﺞ‬‫ﻓﺤﻮﺻﺎت‬‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻷﺷﻌﺔ‬‫أن‬‫ﺟﻤﯿﻊ‬‫اﻟﺘﺮاﻛﯿﺐ‬‫رﺑﺎﻋﯿﺔ‬ ‫اﻟﻨﺎﻧﻮﯾﺔ‬‫ﻣﺘﻌﺪدة‬ ‫ﺗﻈﮭﺮ‬ ‫اﻟﻨﺘﺎﺋﺞ‬ ‫ھﺬه‬ ‫وان‬ .‫اﻟﺘﺒﻠﻮر‬‫زﯾﺎد‬‫ة‬‫ﻓﻲ‬‫ﺣﺠﻢ‬‫اﻟﺤﺒﯿﺒﺎت‬‫ﻣﻦ‬19.5‫اﻟﻰ‬ ‫ﻧﺎﻧﻮﻣﺘﺮ‬29.5‫ﻧﺎﻧﻮﻣﺘﺮﻣﻊ‬‫زﯾﺎدة‬.‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬ ‫ﻓﻲ‬ ‫واﻟﻤﻠﺪن‬ ‫اﻟﻤﺮﺳﺐ‬ ‫اﻟﻐﺸﺎء‬ ‫ان‬ ‫اﯾﻀﺎ‬ ‫اظﮭﺮت‬ ‫اﻟﺴﯿﻨﯿﺔ‬ ‫اﻷﺷﻌﺔ‬ ‫ﻧﺘﺎﺋﺞ‬400‫طﻮر‬ ‫ذي‬ ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫ﻟﺜﻨﺎﺋﻲ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬ ‫ﻋﻨﺪ‬ ‫اﻟﻤﻠﺪﻧﺔ‬ ‫اﻷﻏﺸﯿﺔ‬ ‫اﻣﺎ‬ .‫اﻷﻧﺎﺗﺎس‬500‫و‬600‫ﻗﯿﻢ‬ ‫ان‬ .‫واﻟﺮوﺗﯿﻞ‬ ‫اﻷﻧﺎﺗﺎس‬ ‫طﻮري‬ ‫ﻣﻦ‬ ً‫ﺎ‬‫ﺧﻠﯿﻄ‬ ‫ﻓﺘﻤﺘﻠﻚ‬ ‫ﻣﺌﻮﯾﺔ‬ ‫درﺟﺔ‬‫ﻋﺮض‬ ‫ﻷﻧﻤﺎط‬ ‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬ ‫اوﻛﺴﯿﺪ‬ ‫ﺛﻨﺎﺋﻲ‬ ‫ﻷﻏﺸﯿﺔ‬ ‫اﻟﻘﻤﺔ‬ ‫ﻣﻨﺘﺼﻒ‬ ‫ﻋﻨﺪ‬ ‫اﻟﻤﻨﺤﻨﻲ‬(101)‫ﻣﻦ‬ ‫ﺻﻐﺮ‬ ‫ﻗﺪ‬°0.450‫اﻟﻰ‬°0.301‫ﺑﺰﯾﺎدة‬ ‫اﻟﺬرﯾﺔ‬ ‫اﻟﻘﻮى‬ ‫ﻣﺠﮭﺮ‬ ‫ﺑﺎﺳﺘﺨﺪام‬ ‫اﻟﺮﻗﯿﻘﺔ‬ ‫ﻟﻸﻏﺸﯿﺔ‬ ‫اﻟﺴﻄﺢ‬ ‫طﺒﻮﻏﺮاﻓﯿﺔ‬ ‫ودرﺳﺖ‬ .‫اﻟﺘﻠﺪﯾﻦ‬ ‫ﺣﺮارة‬ ‫درﺟﺔ‬(AFM)‫ان‬ ‫اﺛﺒﺖ‬ ‫اﻟﺬي‬ ‫اﻟﻄﺮﯾﻘﺔ‬ ‫ﺑﮭﺬه‬ ‫اﻟﻤﻨﻤﺎت‬ ‫اﻻﻏﺸﯿﺔ‬‫ﺟﯿﺪ‬ ‫ﺗﺒﻠﻮر‬ ‫ﻟﮭﺎ‬‫اﻟﻤﺘﻮﺳﻂ‬ ‫اﻟﺠﺬر‬ ‫ﻣﺮﺑﻊ‬ ‫ﻗﯿﻢ‬ ‫وان‬ .‫ﻣﺘﺠﺎﻧﺲ‬ ‫ﺳﻄﺢ‬ ‫وذو‬RMS‫اﻟﺮﻗﯿﻘﺔ‬ ‫ﻟﻸﻏﺸﯿﺔ‬ ‫ﻣﻊ‬ ‫ﺗﺰداد‬ ‫اﻟﺴﻄﺢ‬ ‫وﺧﺸﻮﻧﺔ‬‫زﯾﺎدة‬‫اﻟﺤﺮارة‬ ‫درﺟﺔ‬.‫اﻟﺘﻠﺪﯾﻦ‬ ‫اﻟﻜﻠﻤﺎت‬‫اﻟﻤﻔﺘﺎﺣﯿﺔ‬:‫ﺛﻨﺎﺋﻲ‬‫اوﻛﺴﯿﺪ‬،‫اﻟﺘﯿﺘﺎﻧﯿﻮم‬‫اﻟﺘﺮﻛﯿﺒﯿﺔ‬ ،‫اﻟﻨﺒﻀﻲ‬ ‫اﻟﻠﯿﺰر‬ ‫ﺗﺮﺳﯿﺐ‬‫اﻏﺸﯿﺔ‬ ،‫اﻟﺴﻄﺢ‬ ‫طﺒﻮﻏﺮاﻓﯿﺔ‬ ،TiO2. 152 | Physics @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ÚÓ‘Ój�n€a@Î@Úœäñ€a@‚Ï‹»‹€@·rÓ:a@Âig@Ú‹©@Ü‹1a26@@ÖÜ»€a@I3@‚b«@H2013 Ibn Al-Haitham Jour. for Pure & Appl. Sci. Vol. 26 (3) 2013