Thermal conversion of biomass as a source of fuel for electricity generation  Tomasz Golec,   Janina Ilmurzy ń ska , Krzys...
Co-combustion Gasification Gasification Power boiler Power boiler Power boiler Power boiler Gas burner POWER HEAT Mixing c...
Gasification potentials <ul><li>Co-combustion – difficult in small power plants equipped in grate boilers </li></ul><ul><l...
IEN co-combustion gasifier prototype  Two-stage fixed bed gasifier  150 kW capacity Performed tests: <ul><li>Agriculture b...
Burner test instalation Fuel tank and feeder Gas pipe Burner Laboratory gasifier, 150 kW Laboratory instalation for testin...
Burners research realisation  Initial research carried out in order to assess the reference state – flameless burner FLOX ...
Burner test methodology <ul><li>Achieve Steady-State conditions for the system (gas-generator and burner) </li></ul><ul><l...
Burner test results unstable stable unstable stable unstable stable unstable unstable stable stable unstable unstable unst...
Burner tests summary <ul><li>IEn-design burner gives stable flame for a broader range of working conditions (two times bro...
Power generation by co-combustion of the LCV gas  IEN gasifier Capacity 800 kW Coupled to the grate boiler Fixed bed, two-...
Intermediate fuel tank with weight registration  Feeders Gasifier Heat exchanger Gasifier fan Gas burner Burner fan IEN ga...
Summary Power generation from biomass by co-combustion  is efficient in the large scale > 10 MW Control system
Micro-scale power generation from biomass by gasification Gasifier coupled to the gas engine Downdraft gasifier 10 – 30 kW...
Gasification results Raw gas composition: H 2  1 5 - 18  % vol. CO 17  - 19  % vol. CH 4   1 – 3  % vol. CO 2  1 2 - 15  %...
Purity requirements for the gas  Aplication Boiler Engine Parameter Co-combustion Autonomic Acceptable Preferable LHV, MJ/...
Gas analysis <ul><li>Gas – H 2 , CO, CO 2 , CH 4 , O 2 , N 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 </li></ul><ul><ul><li>On-line g...
Tar analysis train Impingers filled with isopropanol Identyfication of compounds by GC/MS Tars analysis by GC Gas analysers
Gas cleaning line Gasifier Cyclone Cooler Filters system Engine biomass air dust water Raw gas Cleaned gas
Gas cleaning line  Plasma reactor tests Gasifier Cyclone Cooler Filters  system Engine biomass air dust water Raw gas Clea...
Tar composition
Tar concentration in the gas
Water impurities
Support                                      Program Strategiczny NCBiR Zaawansowane technologie pozyskiwania energii Zada...
Thank you
Upcoming SlideShare
Loading in …5
×

4.17 - "Thermal conversion of biomass as a source of fuel for electricity generation" - Tomasz Golec, Janina Ilmurzynska, Krzysztof Remiszewski, Karol Bialoblocki, Beata Kowalska [EN]

614
-1

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
614
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

4.17 - "Thermal conversion of biomass as a source of fuel for electricity generation" - Tomasz Golec, Janina Ilmurzynska, Krzysztof Remiszewski, Karol Bialoblocki, Beata Kowalska [EN]

  1. 1. Thermal conversion of biomass as a source of fuel for electricity generation Tomasz Golec, Janina Ilmurzy ń ska , Krzysztof Remiszewski, Karol Białobłocki, Beata Kowalska Institute of Power Engineerin g Poland
  2. 2. Co-combustion Gasification Gasification Power boiler Power boiler Power boiler Power boiler Gas burner POWER HEAT Mixing coal biomass POWER HEAT Coal burner biomassburner coal biomass coal biomass gas coal Hot flue gas gas POWER POWER HEAT HEAT biomass
  3. 3. Gasification potentials <ul><li>Co-combustion – difficult in small power plants equipped in grate boilers </li></ul><ul><li>Future limitation for the forest biomass: </li></ul><ul><ul><li>agriculture crops and biomass waste frequently difficult to combust in existing installation </li></ul></ul><ul><li>Poor economy for small scale combustion </li></ul><ul><li>Coupling a gasifier with an engine – possible economy improvement </li></ul><ul><li>Utilization of local variety of biomass resources – „niches” </li></ul>
  4. 4. IEN co-combustion gasifier prototype Two-stage fixed bed gasifier 150 kW capacity Performed tests: <ul><li>Agriculture biomass </li></ul><ul><li>Fuel grinding and drying </li></ul><ul><li>Gasification agents: air, O 2 ,CO 2 , steam </li></ul><ul><li>Gasification agent temperature up to 700 o C </li></ul><ul><li>-Gas burner control </li></ul><ul><li>-Gas cleaning for SOFC </li></ul>
  5. 5. Burner test instalation Fuel tank and feeder Gas pipe Burner Laboratory gasifier, 150 kW Laboratory instalation for testing models of burners from 50 to 500 kW
  6. 6. Burners research realisation Initial research carried out in order to assess the reference state – flameless burner FLOX ( WS Warmmerprocesstechnik GMBh ) Diffusion burner ( IEn ) <ul><li>Research goals: </li></ul><ul><li>Verification of concept design –elimination of FLOX burners drawbacks </li></ul><ul><li>Provide input data for validation of mathematical models </li></ul><ul><li>Drawbacks of the burner design: </li></ul><ul><li>Narrow stability range; need for frequent usage of supporting burner </li></ul><ul><li>Relatively high pressure drop which causes extensive positive preasure of air flow in gas-generator </li></ul>
  7. 7. Burner test methodology <ul><li>Achieve Steady-State conditions for the system (gas-generator and burner) </li></ul><ul><li>– stable flame without supporting burners </li></ul><ul><li>Destabilise gas-flame by: </li></ul><ul><li> – increase volumetric flow of the secondary air (tendency to lift the </li></ul><ul><li>flame and cooling of the radiant tube, which stabilises the flame) </li></ul><ul><li> – decrease volumetric flow of the fuel gas – decrease burner power </li></ul>
  8. 8. Burner test results unstable stable unstable stable unstable stable unstable unstable stable stable unstable unstable unstable stable stable unstable
  9. 9. Burner tests summary <ul><li>IEn-design burner gives stable flame for a broader range of working conditions (two times broader than the presented FLOX design). Thus it is possible to achieve stable-flame burnig gas of LHV < 3,5 MJ/m 3 </li></ul><ul><li>Use of IEn-design burner eliminates the need for supporting burners </li></ul><ul><li>It’s possible for the burner to work without radiant tube stabilising the flame  simpler design </li></ul><ul><li>The burner has relatively low pressure loss </li></ul>
  10. 10. Power generation by co-combustion of the LCV gas IEN gasifier Capacity 800 kW Coupled to the grate boiler Fixed bed, two- stage, partly up draft - down draft Producer gas combusted in the dedicated burner for LCV gas 4 – 5 MJ/kg Fuels: wood chips, willow, agriculture wastes up to 50 % of moisture Aplications: – Research – Heat and power production – special equipment for „green” power certificates
  11. 11. Intermediate fuel tank with weight registration Feeders Gasifier Heat exchanger Gasifier fan Gas burner Burner fan IEN gasifier 800 kW gasifier
  12. 12. Summary Power generation from biomass by co-combustion is efficient in the large scale > 10 MW Control system
  13. 13. Micro-scale power generation from biomass by gasification Gasifier coupled to the gas engine Downdraft gasifier 10 – 30 kW Gasifying agent – air Fuel – wood pellets 16,6 MJ/kg Internal combustion engine ( Modified petrol engine) with electric generator
  14. 14. Gasification results Raw gas composition: H 2 1 5 - 18 % vol. CO 17 - 19 % vol. CH 4 1 – 3 % vol. CO 2 1 2 - 15 % vol. N 2 47 - 52 % vol. LHV 4 – 5,5 MJ/Nm 3 Tars 500 - 4,000 mg/Nm 3 Cold gas efficiency 60-65% Electric efficiency 20 – 25%
  15. 15. Purity requirements for the gas Aplication Boiler Engine Parameter Co-combustion Autonomic Acceptable Preferable LHV, MJ/Nm 3 no > 4 > 2,5 > 4,2 Particulates, mg/Nm 3 no no < 50 < 5 Tars, mg/Nm 3 no no <100 < 50 Alkali metals, ppm no no < 2 < 1
  16. 16. Gas analysis <ul><li>Gas – H 2 , CO, CO 2 , CH 4 , O 2 , N 2 , C 2 H 4 , C 2 H 6 , C 3 H 8 </li></ul><ul><ul><li>On-line gas analysers (Ultramat 23, Colomat 6 Siemens) </li></ul></ul><ul><ul><li>GC (Varian CP-4900) </li></ul></ul><ul><li>H 2 O </li></ul><ul><ul><li>Fisher’s method </li></ul></ul><ul><li>Tars and other byproducts </li></ul><ul><ul><li>GC (Agilent 6890+) </li></ul></ul><ul><ul><li>GC-MS (HP5890+) </li></ul></ul>[1] T.A. Milne, R.J. Evans, N. Abatzoglou, “Biomass gasifier “tars”: their nature, formation, and conversion”, NREL, US DoE, Report no. NREL/TP-570-25357, 1998. [ 2 ] D.J. Stevens, „Hot gas conditioning: recent progress with larger-scale biomass gasification systems update and summary of recent progress”, NREL, US DoE, Report no. NREL/SR-510-29952, 2001. [ 3 ] L. Devi, K.J. Ptasinski, F.J.J.G. Janssen, Biomass Bioenergy , 2003, 24 , 125-140. [4] C. Li, K. Suzuki, Renew. Sustain. Energy Rev ., 2009, 13 , 594-604. [5] „Biomass gasification – Tar and particles in product gases – Sampling and analysis”, PKN-CEN/TS 15439, Warszawa, 2007 . Tars definitions Tars Protocol All organic compound with a molecular weight larger than benzene (excluding soot and char) [1-4]. PKN-CEN/TS 15439:2007 Generic (unspecific) term for entity of all organic compounds present in the gasification products gas excluding gaseus hydrocarbons (C1 through C6)
  17. 17. Tar analysis train Impingers filled with isopropanol Identyfication of compounds by GC/MS Tars analysis by GC Gas analysers
  18. 18. Gas cleaning line Gasifier Cyclone Cooler Filters system Engine biomass air dust water Raw gas Cleaned gas
  19. 19. Gas cleaning line Plasma reactor tests Gasifier Cyclone Cooler Filters system Engine biomass air dust water Raw gas Cleaned gas Plasma reactor Oxygen or air
  20. 20. Tar composition
  21. 21. Tar concentration in the gas
  22. 22. Water impurities
  23. 23. Support                                    Program Strategiczny NCBiR Zaawansowane technologie pozyskiwania energii Zadanie 4. Opracowanie Zintegrowanych Technologii Wytwarzania Paliw i Energii z Biomasy , Odpadów Rolniczych i Innych                                                             Projekt Kluczowy nr POIG.01.01.02-00-016/08 Modelowe kompleksy agroenergetyczne jako przykład kogeneracji rozproszonej opartej na lokalnych i odnawialnych źródłach energii
  24. 24. Thank you

×