SlideShare a Scribd company logo
1 of 93
Download to read offline
Thermodynamic signatures
of topological transitions
in nodal superconductors
arXiv:1302.2161
Bayan Mazidian1,2, Jorge Quintanilla2,3
James F. Annett1, Adrian D. Hillier2
1
University of Bristol
2
ISIS Facility, STFC Rutherford Appleton Laboratory
3
SEPnet and Hubbard Theory Consortium, University of Kent
UK-NL Condensed Matter Meeting, Bristol, UK, 2013
(web version)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 1 / 69
PRELUDE - Symmetry

Photo:EddieHui-Bon-Hoa,www.shiromi.com
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
PRELUDE - Symmetry

Photo:EddieHui-Bon-Hoa,www.shiromi.com
Photo:KennethG.Libbrecht,snowflakes.com


Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
PRELUDE - Symmetry

Photo:EddieHui-Bon-Hoa,www.shiromi.com
Photo:KennethG.Libbrecht,snowflakes.com


Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Photo:commons.wikimedia.org
Unconventional superconductors


Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
PRELUDE - Symmetry

Photo:EddieHui-Bon-Hoa,www.shiromi.com
Photo:KennethG.Libbrecht,snowflakes.com


Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Photo:commons.wikimedia.org
Unconventional superconductors


Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
PRELUDE - Symmetry

Photo:EddieHui-Bon-Hoa,www.shiromi.com
Photo:KennethG.Libbrecht,snowflakes.com


Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Photo:commons.wikimedia.org
Unconventional superconductors


Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
PRELUDE - Topology
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
PRELUDE - Topology
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
PRELUDE - Topology
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
PRELUDE - Topology
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
Anomalous thermodynamic power laws in nodal
superconductors
1 What are they?
2 How to get them
3 An example
4 Take-home message
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 4 / 69
Anomalous thermodynamic power laws in nodal
superconductors
1 What are they?
2 How to get them
3 An example
4 Take-home message
Power laws in nodal superconductors
Low-temperature specific heat of a superconductor gives information on the
spectrum of low-lying excitations:
Fully gapped Point nodes Line nodes
Cv ∼ e−∆/T Cv ∼ T3 Cv ∼ T2
∆
This simple idea has been around for a while.1
Widely used to fit experimental data on unconventional superconductors.2
1Anderson & Morel (1961), Leggett (1975)
2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 6 / 69
Linear nodes
It all comes from the density of states: +
g (E) ∼ En−1
⇒ Cv ∼ Tn
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
Linear nodes
It all comes from the density of states: +
g (E) ∼ En−1
⇒ Cv ∼ Tn
linear
point node line node
∆2
k = I1 kx
||
2
+ ky
||
2
∆2
k = I1kx
||
2
g(E) = E2
2(2π)2I1
√
I2
g(E) = LE
(2π)3
√
I1
√
I2
n = 3 n = 2
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
Linear nodes
It all comes from the density of states: +
g (E) ∼ En−1
⇒ Cv ∼ Tn
linear
point node line node
∆2
k = I1 kx
||
2
+ ky
||
2
∆2
k = I1kx
||
2
g(E) = E2
2(2π)2I1
√
I2
g(E) = LE
(2π)3
√
I1
√
I2
n = 3 n = 2
Key assumption: linear increase of the gap away from the node
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node line node
∆2
k = I1(kx
||
2
+ ky
||
2
)2 ∆2
k = I1kx
||
4
g(E) = E
2(2π)2
√
I1
√
I2
g(E) = L
√
E
(2π)3I
1
4
1
√
I2
n = 2 n = 1.5
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node line node
∆2
k = I1(kx
||
2
+ ky
||
2
)2 ∆2
k = I1kx
||
4
g(E) = E
2(2π)2
√
I1
√
I2
g(E) = L
√
E
(2π)3I
1
4
1
√
I2
n = 2 n = 1.5
Shallow point nodes first discussed (speculatively) by Leggett [1979].
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node line node
∆2
k = I1(kx
||
2
+ ky
||
2
)2 ∆2
k = I1kx
||
4
g(E) = E
2(2π)2
√
I1
√
I2
g(E) = L
√
E
(2π)3I
1
4
1
√
I2
n = 2 n = 1.5
Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node line node
∆2
k = I1(kx
||
2
+ ky
||
2
)2 ∆2
k = I1kx
||
4
g(E) = E
2(2π)2
√
I1
√
I2
g(E) = L
√
E
(2π)3I
1
4
1
√
I2
n = 2 n = 1.5
Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
A shallow line node may result at the boundary between gapless and line node
behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
Shallow nodes
Relax the linear assumption and we also get different exponents:
shallow
point node line node
∆2
k = I1(kx
||
2
+ ky
||
2
)2 ∆2
k = I1kx
||
4
g(E) = E
2(2π)2
√
I1
√
I2
g(E) = L
√
E
(2π)3I
1
4
1
√
I2
n = 2 n = 1.5
Shallow point nodes first discussed (speculatively) by Leggett [1979].
A shallow point node may be required by symmetry e.g. the proposed E2u
pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)].
A shallow line node may result at the boundary between gapless and line node
behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. +
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 9 / 69
Line crossings
A different power law is expected at line crossings
(e.g. d-wave pairing on a spherical Fermi surface):
crossing
of linear line nodes
∆2
k = I1 kx
||
2
− ky
||
2 2
or I1kx
||
2
ky
||
2
g(E) =
E(1+2ln|
L+
√
E/I
1
4
1
√
E/I
1
4
1
|)
(2π)3
√
I1I2
∼ E0.8
n = 1.8 (< 2 !!)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 10 / 69
Crossing of shallow line nodes
When shallow lines cross we get an even lower exponent:
crossing
of shallow line nodes
∆2
k = I1 kx
||
2
− ky
||
2 4
or I1kx
||
4
ky
||
4
g (E) =
√
E(1+2ln|
L+E
1
4 /I
1
8
1
E
1
4 /I
1
8
1
|)
(2π)3I
1
4
1
√
I2
∼ E0.4
n = 1.4 *
* c.f. gapless excitations of a Fermi liquid: g (E) = constant ⇒ n = 1
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 11 / 69
Numerics
1
1.5
2
2.5
3
3.5
4
4.5
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
n
T / Tc
linear point node
shallow point node
linear line node
crossing of linear line nodes
shallow line node
crossing of shallow line nodes
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 12 / 69
Anomalous thermodynamic power laws in nodal
superconductors
1 What are they?
2 How to get them
3 An example
4 Take-home message
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆0
∆1Fermi Sea
∆0
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 14 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 15 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 16 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Linear
nodes
Linear
nodesJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 17 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 18 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 19 / 69
A generic mechanism
We propose that shallow nodes will exist generically at topological phase
transitions in superocnductors with multi-component order parameters:
∆1Fermi Sea
∆0
Shallow
node
Shallow
nodeJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 20 / 69
Anomalous thermodynamic power laws in nodal
superconductors
1 What are they?
2 How to get them
3 An example
4 Take-home message
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Singlet, triplet, or both?

ˆ k 
0 0
0 0






dx  idy dz
dz dx  idy






singlet
[ 0(k) even ]
triplet
[ d(k) odd ]
3Batkova et al. JPCM (2010)
4Zuev et al. PRB (2007)
5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7Bauer et al. PRL (2004)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Singlet, triplet, or both?

ˆ k 
0 0
0 0






dx  idy dz
dz dx  idy






singlet
[ 0(k) even ]
triplet
[ d(k) odd ]
In practice, there is a varied phenomenology:
3Batkova et al. JPCM (2010)
4Zuev et al. PRB (2007)
5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7Bauer et al. PRL (2004)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
Singlet-triplet mixing in noncentrosymmetric
superconductors
Non-centrosymmetric superconductors are the multi-component order
parameter supercondcutors par excellence:
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Singlet, triplet, or both?

ˆ k 
0 0
0 0






dx  idy dz
dz dx  idy






singlet
[ 0(k) even ]
triplet
[ d(k) odd ]
In practice, there is a varied phenomenology:
Some are conventional (singlet) superconductors:
BaPtSi33, Re3W4,...
Others seem to be correlated triplet superconductors:
LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7
3Batkova et al. JPCM (2010)
4Zuev et al. PRB (2007)
5Adrian D. Hillier, JQ and R. Cywinski PRL (2009)
6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012)
7Bauer et al. PRL (2004)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
Li2Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
Li2Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
Li2Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
Experimentally, the series is found to go
from fully-gapped (x = 3) to nodal
behaviour (x = 0):
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
Li2Pdx Pt3−x B:
A superconductor with tunable singlet-triplet mixing
The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable
realisation of this singlet-triplet mixing:
Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K)
Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K)
Experimentally, the series is found to go
from fully-gapped (x = 3) to nodal
behaviour (x = 0):
NMR suggests the nodal state is a
triplet:
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
Li2Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H(k) =
ˆh(k) ˆ∆(k)
ˆ∆†(k) −ˆhT (−k)
ˆh(k) = εkI + γk · σ
ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
Li2Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H(k) =
ˆh(k) ˆ∆(k)
ˆ∆†(k) −ˆhT (−k)
ˆh(k) = εkI + γk · σ
ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix)
Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is
E =



± (εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2
; and
± (εk − µ − |γk|)2 + (∆0 (k) − |d (k)|)2
.
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
Li2Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H(k) =
ˆh(k) ˆ∆(k)
ˆ∆†(k) −ˆhT (−k)
ˆh(k) = εkI + γk · σ
ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix)
Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is
E =



± (εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2
; and
± (εk − µ − |γk|)2 + (∆0 (k) − |d (k)|)2
.
Take most symmetric (A1) irreducible representation: +
∆0 (k) = ∆0
d(k) = ∆0 × {
A (x) (kx , ky , kz ) − B (x) kx k2
y + k2
z , ky k2
z + k2
x , kz k2
x + k2
y }
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
Li2Pdx Pt3−x B: Phase diagram
Treat A and B as in dependent tuning parameters and study quasiparticle
spectrum. We find a very rich phase diagram with topollogically-distinct phases:8
8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,
PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 25 / 69
Li2Pdx Pt3−x B: Phase diagram
We find a very rich phase diagram with topollogically-distinct phases.9
9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al.,
PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161.
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 26 / 69
Li2Pdx Pt3−x B: Phase diagram
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 27 / 69
Li2Pdx Pt3−x B: Phase diagram
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 28 / 69
Li2Pdx Pt3−x B: Phase diagram
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 29 / 69
Li2Pdx Pt3−x B: Phase diagram
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 30 / 69
Detecting the topological transitions
3 734
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 31 / 69
Detecting the topological transitions
3 734
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 32 / 69
Li2Pdx Pt3−x B: predicted specific heat power-laws
334
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 33 / 69
Li2Pdx Pt3−x B: predicted specific heat power-laws
jn = 2
n = 1.8
n = 1.4
n = 2
3
4
5
11
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 34 / 69
Li2Pdx Pt3−x B: predicted specific heat power-laws
3
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 35 / 69
Li2Pdx Pt3−x B: predicted specific heat power-laws
3
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 36 / 69
Li2Pdx Pt3−x B: predicted specific heat power-laws
jn = 2
n = 1.8
n = 1.4
n = 2
3
4
5
11
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 37 / 69
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
Anomalous power laws throughout the phase diagram
Does the observation of these effects require fine-tuning?
Let’s put these curves on a density plot:
The influence of the topological transition extends throughout the phase
diagram (c.f. quantum critical endpoints)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
Anomalous thermodynamic power laws in nodal
superconductors
1 What are they?
2 How to get them
3 An example
4 Take-home message
Topological transitions in nodal superconductors
have clear signatures in bulk thermodynamic properties.
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69
Topological transitions in nodal superconductors
have clear signatures in bulk thermodynamic properties.
THANKS!
www.cond-mat.org
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69
Anomalous thermodynamic power laws in nodal
superconductors
5 Additional details
Power laws in nodal superconductors
Let’s remember where this came from:
Cv = T
dS
dT
=
1
2kBT2 ∑
k



Ek − T
dEk
dT
≈0



 Ek sech2 Ek
2kBT
≈4e−Ek /KBT
∼ T−2
dEg (E) E2
e−E/kBT
at low T
g (E) ∼ En−1
⇒ Cv ∼ Tn
d 2+n−1
e−
a number
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 42 / 69
Power laws in nodal superconductors
Ek = 2
k + ∆2
k
≈ I2k2
⊥ + ∆ kx
||
, ky
||
2
on the Fermi surface
k||
x
k||
y
k|_ ∆(k||
x
,k||
y
)
Compute density of states:
g(E) = δ(Ek − E)dkx dky dkz
back
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 43 / 69
Shallow line nodes in pnictides
back
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 44 / 69
Li2Pdx Pt3−x B: Phase diagram
Bogoliubov Hamiltonian with Rashba spin-orbit coupling:
H(k) =
h(k) ∆(k)
∆†(k) −hT (−k)
h(k) = εkI + γk · σ
Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is
E =



± (εk − µ + |γk |)2 + (∆0 + |d(k)|)2
; and
± (εk − µ − |γk |)2 + (∆0 − |d(k)|)2
.
Take the most symmetric (A1) irreducible representation
d(k)/∆0 = A (X, Y , Z) − B X Y 2
+ Z2
, Y Z2
+ X2
, Z X2
+ Y 2
back
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 45 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
The role of spin-orbit coupling (SOC)
• Simplest noncentrosymmetric system: a surface.
• Rashba term in the Hamiltonian:
• In general, form & strength of SOC depend on details of electronic structure.
• Split Fermi surface:
 
 
 





spinfor
spinfor
kk
kk
k



Gor'kov & Rashba,
PRL, 87, 037004 (2001)
• There’s a zoo of phenomenologies for noncentrosymmetric superconductors:
•Triplet: CePt3Si [1]
•Singlet (conventional): Li2Pd3B [2], BaPtSi3 [3], Re3W [4]
•Singlet-triplet admixture: Li2Pt3B [2]
[1] Bauer et al. PRL (2004); [2] Yuan et al PRL (2006); [3] Batkova et al. JPCM (2010); [4] Zuev et al. PRB (‘07)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 46 / 69
LaNiC2 – a weakly-correlated, paramagnetic
superconductor?
Tc=2.7 K
W. H. Lee et al., Physica C 266, 138 (1996)
V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)
ΔC/TC=1.26
(BCS: 1.43)
specific heat susceptibility
 0 = 6.5 mJ/mol K2
c 0 = 22.2 10-6 emu/mol
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 47 / 69
ISIS
muSR
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 48 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Zero field muon spin relaxation
e
_

e
backward
detector
forward
detector
sample
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 49 / 69
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments
Moment
size
~ 0.1G
(~ 0.01μB)
(longitudinal)
Timescale:
> 10-4s~
e
_

e
backward
detector
forward
detector
sample
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 50 / 69
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Relaxation due to electronic moments
Moment
size
~ 0.1G
(~ 0.01μB)
Spontaneous, quasi-static fields appearing at Tc
⇒ superconducting state breaks time-reversal symmetry
[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]
(longitudinal)
Timescale:
> 10-4s~
e
_

e
backward
detector
forward
detector
sample
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 51 / 69
LaNiC2 is a non-ceontrsymmetric superconductor
Neutron diffraction
30 40 50 60 70 80
0
5000
10000
15000
20000
25000
30000
35000
Intensity(arbunits)
2 
o

Orthorhombic Amm2 C2v
a=3.96 Å
b=4.58 Å
c=6.20 Å
Data from
D1B @ ILL
Note no inversion centre.
C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ...
(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 52 / 69
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 53 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 54 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 55 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 56 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
180o
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 57 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
C2v
Symmetries and
their characters
Sample basis
functions
Irreducible
representation
E C2 v ’v Even Odd
A1 1 1 1 1 1 Z
A2 1 1 -1 -1 XY XYZ
B1 1 -1 1 -1 XZ X
B2 1 -1 -1 1 YZ Y
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 58 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
C2v
Symmetries and
their characters
Sample basis
functions
Irreducible
representation
E C2 v ’v Even Odd
A1 1 1 1 1 1 Z
A2 1 1 -1 -1 XY XYZ
B1 1 -1 1 -1 XZ X
B2 1 -1 -1 1 YZ Y
Character table
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
These must be combined with the singlet and triplet
representations of SO(3).
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 59 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1A1 (k)=1 -
1A2 (k)=kxkY -
1B1 (k)=kXkZ -
1B2 (k)=kYkZ -
3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 60 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1A1 (k)=1 -
1A2 (k)=kxkY -
1B1 (k)=kXkZ -
1B2 (k)=kYkZ -
3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 61 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1A1 (k)=1 -
1A2 (k)=kxkY -
1B1 (k)=kXkZ -
1B2 (k)=kYkZ -
3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 62 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1A1 (k)=1 -
1A2 (k)=kxkY -
1B1 (k)=kXkZ -
1B2 (k)=kYkZ -
3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Non-unitary
d x d* ≠ 0
Possible order parameters
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 63 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
SO(3)xC2v Gap function
(unitary)
Gap function
(non-unitary)
1A1 (k)=1 -
1A2 (k)=kxkY -
1B1 (k)=kXkZ -
1B2 (k)=kYkZ -
3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ
3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ
3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX
3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY
Non-unitary
d x d* ≠ 0
breaks only SO(3) x U(1) x T
Possible order parameters
* C.f. Li2Pd3B & Li2Pt3B,
H. Q. Yuan et al. PRL’06
*
Hillier, Quintanilla & Cywinski,
PRL 102 117007 (2009)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 64 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Spin-up superfluid
coexisting with spin-
down Fermi liquid.
The A1 phase of
liquid 3He.
Non-unitary pairing















0
00
or
00
0ˆ
C.f.
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 65 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
C2v,Jno t Gap function,
singlet component
Gap function,
triplet component
A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)
A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz)
B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)
B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)
The role of spin-orbit coupling (SOC)
Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 66 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
C2v,Jno t Gap function,
singlet component
Gap function,
triplet component
A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz)
A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz)
B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky)
B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx)
The role of spin-orbit coupling (SOC)
None of these break time-reversal symmetry!
Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 67 / 69
Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations
Relativistic and non-relativistic
instabilities: a complex relationship
singlet
Pairing
instabilities
non-unitary
triplet
pairing
instabilities
unitary
triplet
pairing
instabilities
A1 B1
3B1(b)
3B2(b)
1A1
1A2
3A1(a) 3A2(a)
A2 B2
1B1
1B2
3B1(a) 3B2(a)
3A1(b)
3A2(b)
Quintanilla, Hillier, Annett and Cywinski,
PRB 82, 174511 (2010)
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 68 / 69
Li2Pdx Pt3−x B:
order parameter
back
Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 69 / 69

More Related Content

Similar to Thermodynamic signatures of topological transitions in nodal superconductors

Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solidsClaudio Attaccalite
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsClaudio Attaccalite
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phaseClaudio Attaccalite
 
Educell Physics Sample
Educell Physics SampleEducell Physics Sample
Educell Physics Samplesracy.com
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровAlexander Dubynin
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal designUniversity of Glasgow
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsJorge Quintanilla
 
Transport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsTransport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsDaisuke Satow
 
N6 kph 2010_part_2b
N6 kph 2010_part_2bN6 kph 2010_part_2b
N6 kph 2010_part_2bPublicLeaker
 
Intro to EPR spectroscopy
Intro to EPR spectroscopyIntro to EPR spectroscopy
Intro to EPR spectroscopyRagavG4
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overviewClaudio Attaccalite
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptxnage8
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxRohitNukte
 

Similar to Thermodynamic signatures of topological transitions in nodal superconductors (20)

Non linear electron dynamics in solids
Non linear electron dynamics in solidsNon linear electron dynamics in solids
Non linear electron dynamics in solids
 
Ab-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear opticsAb-initio real-time spectroscopy: application to non-linear optics
Ab-initio real-time spectroscopy: application to non-linear optics
 
Non-linear optics by means of dynamical Berry phase
Non-linear optics  by means of  dynamical Berry phaseNon-linear optics  by means of  dynamical Berry phase
Non-linear optics by means of dynamical Berry phase
 
Educell Physics Sample
Educell Physics SampleEducell Physics Sample
Educell Physics Sample
 
Ветровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир ЗахаровВетровое волнение океана и волны-убийцы. Владимир Захаров
Ветровое волнение океана и волны-убийцы. Владимир Захаров
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
2011.08.31-ECE656-L05.pdf
2011.08.31-ECE656-L05.pdf2011.08.31-ECE656-L05.pdf
2011.08.31-ECE656-L05.pdf
 
Elecnem
ElecnemElecnem
Elecnem
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2Puzzling pairing in thenon-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal design
 
Band theory
Band theoryBand theory
Band theory
 
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet SuperconductorsBroken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
Broken Time-Reversal Symmetry and Topological Order in Triplet Superconductors
 
Transport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fieldsTransport coefficients of QGP in strong magnetic fields
Transport coefficients of QGP in strong magnetic fields
 
N6 kph 2010_part_2b
N6 kph 2010_part_2bN6 kph 2010_part_2b
N6 kph 2010_part_2b
 
Intro to EPR spectroscopy
Intro to EPR spectroscopyIntro to EPR spectroscopy
Intro to EPR spectroscopy
 
Aes
AesAes
Aes
 
Electron-phonon coupling a Yambo overview
Electron-phonon coupling  a Yambo overviewElectron-phonon coupling  a Yambo overview
Electron-phonon coupling a Yambo overview
 
lecture33.pptx
lecture33.pptxlecture33.pptx
lecture33.pptx
 
Daresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptxDaresbury_2010_-_SC_-_Physics.pptx
Daresbury_2010_-_SC_-_Physics.pptx
 

More from Jorge Quintanilla

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Jorge Quintanilla
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Jorge Quintanilla
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Jorge Quintanilla
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webJorge Quintanilla
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011Jorge Quintanilla
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...Jorge Quintanilla
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Jorge Quintanilla
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsJorge Quintanilla
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla LoughboroughJorge Quintanilla
 

More from Jorge Quintanilla (12)

Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
Principal Component Analysis of Quantum Materials Data: a Study in Augmented ...
 
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
Time-reversal symmetry breaking in superconductors through loop Josephson-cur...
 
Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...Experimental implications of the entanglement transition in clustered quantum...
Experimental implications of the entanglement transition in clustered quantum...
 
Talk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_webTalk kent symposium_2013_v01_for_web
Talk kent symposium_2013_v01_for_web
 
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Double Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
Doulbe Occupancy as a Probe of the Mott Transition for Fermions in One-dimens...
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011SEPnet Atomic and Condensed Matter research theme, 27 June 2011
SEPnet Atomic and Condensed Matter research theme, 27 June 2011
 
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...Turning data into a puzzle:  non-unitary triplet pairing in the non-centrosym...
Turning data into a puzzle: non-unitary triplet pairing in the non-centrosym...
 
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
Puzzling pairing in the non-centrosymmetric superconductor LaNiC2
 
New Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar FermionsNew Vistas on Quantum Matter Opened by Dipolar Fermions
New Vistas on Quantum Matter Opened by Dipolar Fermions
 
2010 Quintanilla Loughborough
2010 Quintanilla Loughborough2010 Quintanilla Loughborough
2010 Quintanilla Loughborough
 

Recently uploaded

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Allon Mureinik
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 

Recently uploaded (20)

GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)Injustice - Developers Among Us (SciFiDevCon 2024)
Injustice - Developers Among Us (SciFiDevCon 2024)
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 

Thermodynamic signatures of topological transitions in nodal superconductors

  • 1. Thermodynamic signatures of topological transitions in nodal superconductors arXiv:1302.2161 Bayan Mazidian1,2, Jorge Quintanilla2,3 James F. Annett1, Adrian D. Hillier2 1 University of Bristol 2 ISIS Facility, STFC Rutherford Appleton Laboratory 3 SEPnet and Hubbard Theory Consortium, University of Kent UK-NL Condensed Matter Meeting, Bristol, UK, 2013 (web version) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 1 / 69
  • 2. PRELUDE - Symmetry  Photo:EddieHui-Bon-Hoa,www.shiromi.com Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
  • 4. PRELUDE - Symmetry  Photo:EddieHui-Bon-Hoa,www.shiromi.com Photo:KennethG.Libbrecht,snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo:commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
  • 5. PRELUDE - Symmetry  Photo:EddieHui-Bon-Hoa,www.shiromi.com Photo:KennethG.Libbrecht,snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo:commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
  • 6. PRELUDE - Symmetry  Photo:EddieHui-Bon-Hoa,www.shiromi.com Photo:KennethG.Libbrecht,snowflakes.com   Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Photo:commons.wikimedia.org Unconventional superconductors   Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 2 / 69
  • 7. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
  • 8. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
  • 9. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
  • 10. PRELUDE - Topology Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 3 / 69
  • 11. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 4 / 69
  • 12. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 13. Power laws in nodal superconductors Low-temperature specific heat of a superconductor gives information on the spectrum of low-lying excitations: Fully gapped Point nodes Line nodes Cv ∼ e−∆/T Cv ∼ T3 Cv ∼ T2 ∆ This simple idea has been around for a while.1 Widely used to fit experimental data on unconventional superconductors.2 1Anderson & Morel (1961), Leggett (1975) 2Sigrist, Ueda (’89), Annett (’90), MacKenzie & Maeno (’03) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 6 / 69
  • 14. Linear nodes It all comes from the density of states: + g (E) ∼ En−1 ⇒ Cv ∼ Tn Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
  • 15. Linear nodes It all comes from the density of states: + g (E) ∼ En−1 ⇒ Cv ∼ Tn linear point node line node ∆2 k = I1 kx || 2 + ky || 2 ∆2 k = I1kx || 2 g(E) = E2 2(2π)2I1 √ I2 g(E) = LE (2π)3 √ I1 √ I2 n = 3 n = 2 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
  • 16. Linear nodes It all comes from the density of states: + g (E) ∼ En−1 ⇒ Cv ∼ Tn linear point node line node ∆2 k = I1 kx || 2 + ky || 2 ∆2 k = I1kx || 2 g(E) = E2 2(2π)2I1 √ I2 g(E) = LE (2π)3 √ I1 √ I2 n = 3 n = 2 Key assumption: linear increase of the gap away from the node Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 7 / 69
  • 17. Shallow nodes Relax the linear assumption and we also get different exponents: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
  • 18. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node ∆2 k = I1(kx || 2 + ky || 2 )2 ∆2 k = I1kx || 4 g(E) = E 2(2π)2 √ I1 √ I2 g(E) = L √ E (2π)3I 1 4 1 √ I2 n = 2 n = 1.5 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
  • 19. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node ∆2 k = I1(kx || 2 + ky || 2 )2 ∆2 k = I1kx || 4 g(E) = E 2(2π)2 √ I1 √ I2 g(E) = L √ E (2π)3I 1 4 1 √ I2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
  • 20. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node ∆2 k = I1(kx || 2 + ky || 2 )2 ∆2 k = I1kx || 4 g(E) = E 2(2π)2 √ I1 √ I2 g(E) = L √ E (2π)3I 1 4 1 √ I2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
  • 21. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node ∆2 k = I1(kx || 2 + ky || 2 )2 ∆2 k = I1kx || 4 g(E) = E 2(2π)2 √ I1 √ I2 g(E) = L √ E (2π)3I 1 4 1 √ I2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 8 / 69
  • 22. Shallow nodes Relax the linear assumption and we also get different exponents: shallow point node line node ∆2 k = I1(kx || 2 + ky || 2 )2 ∆2 k = I1kx || 4 g(E) = E 2(2π)2 √ I1 √ I2 g(E) = L √ E (2π)3I 1 4 1 √ I2 n = 2 n = 1.5 Shallow point nodes first discussed (speculatively) by Leggett [1979]. A shallow point node may be required by symmetry e.g. the proposed E2u pairing state in UPt3 [see J.A. Sauls, Adv. Phys. 43, 113-141 (1994)]. A shallow line node may result at the boundary between gapless and line node behaviour in pnictides [Fernandes and Schmalian, PRB 84, 012505 (’11)]. + Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 9 / 69
  • 23. Line crossings A different power law is expected at line crossings (e.g. d-wave pairing on a spherical Fermi surface): crossing of linear line nodes ∆2 k = I1 kx || 2 − ky || 2 2 or I1kx || 2 ky || 2 g(E) = E(1+2ln| L+ √ E/I 1 4 1 √ E/I 1 4 1 |) (2π)3 √ I1I2 ∼ E0.8 n = 1.8 (< 2 !!) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 10 / 69
  • 24. Crossing of shallow line nodes When shallow lines cross we get an even lower exponent: crossing of shallow line nodes ∆2 k = I1 kx || 2 − ky || 2 4 or I1kx || 4 ky || 4 g (E) = √ E(1+2ln| L+E 1 4 /I 1 8 1 E 1 4 /I 1 8 1 |) (2π)3I 1 4 1 √ I2 ∼ E0.4 n = 1.4 * * c.f. gapless excitations of a Fermi liquid: g (E) = constant ⇒ n = 1 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 11 / 69
  • 25. Numerics 1 1.5 2 2.5 3 3.5 4 4.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 n T / Tc linear point node shallow point node linear line node crossing of linear line nodes shallow line node crossing of shallow line nodes Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 12 / 69
  • 26. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 27. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆0 ∆1Fermi Sea ∆0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 14 / 69
  • 28. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 15 / 69
  • 29. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 16 / 69
  • 30. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Linear nodes Linear nodesJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 17 / 69
  • 31. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 18 / 69
  • 32. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 19 / 69
  • 33. A generic mechanism We propose that shallow nodes will exist generically at topological phase transitions in superocnductors with multi-component order parameters: ∆1Fermi Sea ∆0 Shallow node Shallow nodeJorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 20 / 69
  • 34. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 35. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence: Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both?  ˆ k  0 0 0 0       dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] 3Batkova et al. JPCM (2010) 4Zuev et al. PRB (2007) 5Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
  • 36. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence: Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both?  ˆ k  0 0 0 0       dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] In practice, there is a varied phenomenology: 3Batkova et al. JPCM (2010) 4Zuev et al. PRB (2007) 5Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
  • 37. Singlet-triplet mixing in noncentrosymmetric superconductors Non-centrosymmetric superconductors are the multi-component order parameter supercondcutors par excellence: Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Singlet, triplet, or both?  ˆ k  0 0 0 0       dx  idy dz dz dx  idy       singlet [ 0(k) even ] triplet [ d(k) odd ] In practice, there is a varied phenomenology: Some are conventional (singlet) superconductors: BaPtSi33, Re3W4,... Others seem to be correlated triplet superconductors: LaNiC25 (c.f. centrosymmetric LaNiGa26), CePtr3Si (?) 7 3Batkova et al. JPCM (2010) 4Zuev et al. PRB (2007) 5Adrian D. Hillier, JQ and R. Cywinski PRL (2009) 6Adrian D. Hillier, JQ, B. Mazidian, J. F. Annett, R. Cywinski PRL (2012) 7Bauer et al. PRL (2004) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 22 / 69
  • 38. Li2Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
  • 39. Li2Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
  • 40. Li2Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Experimentally, the series is found to go from fully-gapped (x = 3) to nodal behaviour (x = 0): Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
  • 41. Li2Pdx Pt3−x B: A superconductor with tunable singlet-triplet mixing The Li2Pdx Pt3−x B family (0 ≤ x ≤ 3; cubic point group O) provides a tunable realisation of this singlet-triplet mixing: Pd is a lighter element with weak spin-orbit coupling (Tc ∼ 7K) Pt is a heavier element with strong spin orbit coupling (Tc ∼ 2.7K) Experimentally, the series is found to go from fully-gapped (x = 3) to nodal behaviour (x = 0): NMR suggests the nodal state is a triplet: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 23 / 69
  • 42. Li2Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆ∆(k) ˆ∆†(k) −ˆhT (−k) ˆh(k) = εkI + γk · σ ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
  • 43. Li2Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆ∆(k) ˆ∆†(k) −ˆhT (−k) ˆh(k) = εkI + γk · σ ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix) Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is E =    ± (εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2 ; and ± (εk − µ − |γk|)2 + (∆0 (k) − |d (k)|)2 . Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
  • 44. Li2Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = ˆh(k) ˆ∆(k) ˆ∆†(k) −ˆhT (−k) ˆh(k) = εkI + γk · σ ˆ∆ (k) = [∆0 (k) + d (k) · ˆσ] i ˆσy (most general gap matrix) Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is E =    ± (εk − µ + |γk|)2 + (∆0 (k) + |d (k)|)2 ; and ± (εk − µ − |γk|)2 + (∆0 (k) − |d (k)|)2 . Take most symmetric (A1) irreducible representation: + ∆0 (k) = ∆0 d(k) = ∆0 × { A (x) (kx , ky , kz ) − B (x) kx k2 y + k2 z , ky k2 z + k2 x , kz k2 x + k2 y } Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 24 / 69
  • 45. Li2Pdx Pt3−x B: Phase diagram Treat A and B as in dependent tuning parameters and study quasiparticle spectrum. We find a very rich phase diagram with topollogically-distinct phases:8 8C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 25 / 69
  • 46. Li2Pdx Pt3−x B: Phase diagram We find a very rich phase diagram with topollogically-distinct phases.9 9C. Beri, PRB (2010); A. Schnyder, S. Ryu, PRB(R) (2011); A. Schnyder et al., PRB (2012); B. Mazidian, JQ, A.D. Hillier, J.F. Annett, arXiv:1302.2161. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 26 / 69
  • 47. Li2Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 27 / 69
  • 48. Li2Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 28 / 69
  • 49. Li2Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 29 / 69
  • 50. Li2Pdx Pt3−x B: Phase diagram Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 30 / 69
  • 51. Detecting the topological transitions 3 734 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 31 / 69
  • 52. Detecting the topological transitions 3 734 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 32 / 69
  • 53. Li2Pdx Pt3−x B: predicted specific heat power-laws 334 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 33 / 69
  • 54. Li2Pdx Pt3−x B: predicted specific heat power-laws jn = 2 n = 1.8 n = 1.4 n = 2 3 4 5 11 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 34 / 69
  • 55. Li2Pdx Pt3−x B: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 35 / 69
  • 56. Li2Pdx Pt3−x B: predicted specific heat power-laws 3 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 36 / 69
  • 57. Li2Pdx Pt3−x B: predicted specific heat power-laws jn = 2 n = 1.8 n = 1.4 n = 2 3 4 5 11 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 37 / 69
  • 58. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
  • 59. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
  • 60. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
  • 61. Anomalous power laws throughout the phase diagram Does the observation of these effects require fine-tuning? Let’s put these curves on a density plot: The influence of the topological transition extends throughout the phase diagram (c.f. quantum critical endpoints) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 38 / 69
  • 62. Anomalous thermodynamic power laws in nodal superconductors 1 What are they? 2 How to get them 3 An example 4 Take-home message
  • 63. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69
  • 64. Topological transitions in nodal superconductors have clear signatures in bulk thermodynamic properties. THANKS! www.cond-mat.org Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 40 / 69
  • 65. Anomalous thermodynamic power laws in nodal superconductors 5 Additional details
  • 66. Power laws in nodal superconductors Let’s remember where this came from: Cv = T dS dT = 1 2kBT2 ∑ k    Ek − T dEk dT ≈0     Ek sech2 Ek 2kBT ≈4e−Ek /KBT ∼ T−2 dEg (E) E2 e−E/kBT at low T g (E) ∼ En−1 ⇒ Cv ∼ Tn d 2+n−1 e− a number Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 42 / 69
  • 67. Power laws in nodal superconductors Ek = 2 k + ∆2 k ≈ I2k2 ⊥ + ∆ kx || , ky || 2 on the Fermi surface k|| x k|| y k|_ ∆(k|| x ,k|| y ) Compute density of states: g(E) = δ(Ek − E)dkx dky dkz back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 43 / 69
  • 68. Shallow line nodes in pnictides back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 44 / 69
  • 69. Li2Pdx Pt3−x B: Phase diagram Bogoliubov Hamiltonian with Rashba spin-orbit coupling: H(k) = h(k) ∆(k) ∆†(k) −hT (−k) h(k) = εkI + γk · σ Assuming |εk| |γk| |d (k)| the quasi-particle spectrum is E =    ± (εk − µ + |γk |)2 + (∆0 + |d(k)|)2 ; and ± (εk − µ − |γk |)2 + (∆0 − |d(k)|)2 . Take the most symmetric (A1) irreducible representation d(k)/∆0 = A (X, Y , Z) − B X Y 2 + Z2 , Y Z2 + X2 , Z X2 + Y 2 back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 45 / 69
  • 70. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations The role of spin-orbit coupling (SOC) • Simplest noncentrosymmetric system: a surface. • Rashba term in the Hamiltonian: • In general, form & strength of SOC depend on details of electronic structure. • Split Fermi surface:            spinfor spinfor kk kk k    Gor'kov & Rashba, PRL, 87, 037004 (2001) • There’s a zoo of phenomenologies for noncentrosymmetric superconductors: •Triplet: CePt3Si [1] •Singlet (conventional): Li2Pd3B [2], BaPtSi3 [3], Re3W [4] •Singlet-triplet admixture: Li2Pt3B [2] [1] Bauer et al. PRL (2004); [2] Yuan et al PRL (2006); [3] Batkova et al. JPCM (2010); [4] Zuev et al. PRB (‘07) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 46 / 69
  • 71. LaNiC2 – a weakly-correlated, paramagnetic superconductor? Tc=2.7 K W. H. Lee et al., Physica C 266, 138 (1996) V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998) ΔC/TC=1.26 (BCS: 1.43) specific heat susceptibility  0 = 6.5 mJ/mol K2 c 0 = 22.2 10-6 emu/mol Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 47 / 69
  • 72. ISIS muSR Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 48 / 69
  • 73. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Zero field muon spin relaxation e _  e backward detector forward detector sample Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 49 / 69
  • 74. Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Relaxation due to electronic moments Moment size ~ 0.1G (~ 0.01μB) (longitudinal) Timescale: > 10-4s~ e _  e backward detector forward detector sample Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 50 / 69
  • 75. Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Relaxation due to electronic moments Moment size ~ 0.1G (~ 0.01μB) Spontaneous, quasi-static fields appearing at Tc ⇒ superconducting state breaks time-reversal symmetry [ c.f. Sr2RuO4 - Luke et al., Nature (1998) ] (longitudinal) Timescale: > 10-4s~ e _  e backward detector forward detector sample Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 51 / 69
  • 76. LaNiC2 is a non-ceontrsymmetric superconductor Neutron diffraction 30 40 50 60 70 80 0 5000 10000 15000 20000 25000 30000 35000 Intensity(arbunits) 2  o  Orthorhombic Amm2 C2v a=3.96 Å b=4.58 Å c=6.20 Å Data from D1B @ ILL Note no inversion centre. C.f. CePt3Si (1), Li2Pt3B & Li2Pd3B (2), ... (1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06 Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 52 / 69
  • 77. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 53 / 69
  • 78. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 54 / 69
  • 79. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 55 / 69
  • 80. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 56 / 69
  • 81. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) 180o Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 57 / 69
  • 82. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations C2v Symmetries and their characters Sample basis functions Irreducible representation E C2 v ’v Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 58 / 69
  • 83. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations C2v Symmetries and their characters Sample basis functions Irreducible representation E C2 v ’v Even Odd A1 1 1 1 1 1 Z A2 1 1 -1 -1 XY XYZ B1 1 -1 1 -1 XZ X B2 1 -1 -1 1 YZ Y Character table Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) These must be combined with the singlet and triplet representations of SO(3). Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 59 / 69
  • 84. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1A1 (k)=1 - 1A2 (k)=kxkY - 1B1 (k)=kXkZ - 1B2 (k)=kYkZ - 3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 60 / 69
  • 85. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1A1 (k)=1 - 1A2 (k)=kxkY - 1B1 (k)=kXkZ - 1B2 (k)=kYkZ - 3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 61 / 69
  • 86. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1A1 (k)=1 - 1A2 (k)=kxkY - 1B1 (k)=kXkZ - 1B2 (k)=kYkZ - 3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 62 / 69
  • 87. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1A1 (k)=1 - 1A2 (k)=kxkY - 1B1 (k)=kXkZ - 1B2 (k)=kYkZ - 3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Non-unitary d x d* ≠ 0 Possible order parameters Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 63 / 69
  • 88. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations SO(3)xC2v Gap function (unitary) Gap function (non-unitary) 1A1 (k)=1 - 1A2 (k)=kxkY - 1B1 (k)=kXkZ - 1B2 (k)=kYkZ - 3A1 d(k)=(0,0,1)kZ d(k)=(1,i,0)kZ 3A2 d(k)=(0,0,1)kXkYkZ d(k)=(1,i,0)kXkYkZ 3B1 d(k)=(0,0,1)kX d(k)=(1,i,0)kX 3B2 d(k)=(0,0,1)kY d(k)=(1,i,0)kY Non-unitary d x d* ≠ 0 breaks only SO(3) x U(1) x T Possible order parameters * C.f. Li2Pd3B & Li2Pt3B, H. Q. Yuan et al. PRL’06 * Hillier, Quintanilla & Cywinski, PRL 102 117007 (2009) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 64 / 69
  • 89. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Spin-up superfluid coexisting with spin- down Fermi liquid. The A1 phase of liquid 3He. Non-unitary pairing                0 00 or 00 0ˆ C.f. Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 65 / 69
  • 90. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations C2v,Jno t Gap function, singlet component Gap function, triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) The role of spin-orbit coupling (SOC) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 66 / 69
  • 91. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations C2v,Jno t Gap function, singlet component Gap function, triplet component A1 (k) = A d(k) = (Bky,Ckx,Dkxkykz) A2  (k) = AkxkY d(k) = (Bkx,Cky,Dkz) B1  (k) = AkXkZ d(k) = (Bkxkykz,Ckz,Dky) B2  (k) = AkYkZ d(k) = (Bkz, Ckxkykz,Dkx) The role of spin-orbit coupling (SOC) None of these break time-reversal symmetry! Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 67 / 69
  • 92. Virginia Tech, 18 March 2011 blogs.kent.ac.uk/strongcorrelations Relativistic and non-relativistic instabilities: a complex relationship singlet Pairing instabilities non-unitary triplet pairing instabilities unitary triplet pairing instabilities A1 B1 3B1(b) 3B2(b) 1A1 1A2 3A1(a) 3A2(a) A2 B2 1B1 1B2 3B1(a) 3B2(a) 3A1(b) 3A2(b) Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010) Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 68 / 69
  • 93. Li2Pdx Pt3−x B: order parameter back Jorge Quintanilla (Kent and ISIS) arXiv:1302.2161 Bristol 2013 69 / 69