SlideShare a Scribd company logo
1 of 111
Download to read offline
Clay amended soilless
substrate: Increasing water and
     nutrient efficiency in
 containerized crop production

            J.S. Owen, Jr.,
      Dept. Horticultural Science
         Dept. Soil Science


      NC STATE UNIVERSITY
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Nursery Industry
¢ 3.97 billion dollars in gross sales




                                         USDA, 2004.
Nursery Industry
¢ 3.97 billion dollars in gross sales
¢ 73% containerized crop inventory
  l Organic substrate




                                     USDA, 2004.
Nursery Industry
¢ 3.97 billion dollars in gross sales
¢ 73% containerized crop inventory
  l Organic substrate
¢ Southeast
  l 41% of 7,742 national operations
  l 34% of 20 billion ft2 in total production




                                          USDA, 2004.
Problem
¢ Low input efficiencies
  l Water                              30% to 80%
  l N and P                            30% to 60%




    Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
Problem
¢ Low input efficiencies
  l Water                              30% to 80%
  l N and P                            30% to 60%
¢ Water availability and use




    Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
Problem
¢ Low input efficiencies
  l Water            30% to 80%
  l N and P          30% to 60%
¢ Water availability and use
¢ USEPA-MCL regulation and criteria
  l Nitrate-N ≤ 10 mg L-1
  l Total P   ≤ 0.05 mg L-1


    Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
¢ Floriculture and nursery
  research initiative
  l Environmental resource management
    systems for nurseries, greenhouses
    and landscapes
    •  Clemson
    •  University of Florida
    •  Horticulture & Breeding Research – USDA
    •  Floral & Nursery Plants Research – USDA
Primary objective
To engineer a pine bark-
 based soilless substrate
 that increased water and
 nutrient efficiency in
 containerized nursery crop
 production
Approach




       Container
Approach




           Yeager et al., 1997
Approach




      EFFICIENT?




                   Yeager et al., 1997
Infrastructure
Approach




       Container
Approach




       Container
Amendment
Amendment
¢ Peat-based substrate
  l Increase available water
  l Decrease effluent phosphorus
  l Increase pH buffering capacity
  l Pre-charged source of nutrient
¢ Pine bark-based substrate
  l Increase available water
  l Increase plant K and P content
                         Williams and Neslon, 2000 and 1997; Warren and
                 Bilderback, 1992; Reed, 1998; Handreck and Black, 2002.
Amendment
¢ Mineral aggregate
  l Chemical absorbent
  l Fertilizer carrier
  l Barrier clays
¢ Industrial
  l Uniform
  l Reproducible


                          Murray, 2000.
Amendment
Raw Clay Selection
& Mining


                                                 Secondary
                        Primary Crusher          Crusher
Rotary
Kiln
(LVM)      ≤ 800
                   °C                                ≈ 120°C
                                                              Dryer
                                Mill                          (RVM)

  Screen




                                       Bag or Bulk
                                                      Oil-Dri Corporation of America
Amendment
Montmorillonite                       Palygorskite




                                      Shulze, D.G., 2002. An introduction to soil mineralogy.
              In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
Amendment
 Montmorillonite               Palygorskite




Surface Area: 98 m2/g	

   Surface Area: 122.5 m2/g	





                                                Oil-Dri Corporation of America
Amendment
            Montmorillonite
 Natural        Heating                                                 Low
Occurring      Dehydration                                             Volatile
                                                                       Material




                                        Shulze, D.G., 2002. An introduction to soil mineralogy.
                In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
Amendment
            Palygorskite
 Natural       Heating                                                 Low
Occurring     Dehydration                                             Volatile
                                                                      Material




                                       Shulze, D.G., 2002. An introduction to soil mineralogy.
               In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Clay Processing
¢ Pine bark-based substrates
  l Industrial Mineral Aggregate
    •  8% Clay (by vol.)
  l Industry Representative Substrate
    •  11% Sand (by vol.)
Clay Type
¢ Industrial Mineral Aggregate
  l Processing
      • Particle Size
       •  0.25 to 0.85 mm
       •  0.85 to 4.75 mm
    • Temperature Pre-treatment
       •  Low volatile material (LVM)
       •  Regular volatile material (RVM)
Clay Processing
¢ 2 x 2 factorial
  l RCBD
  l 3 replications
¢ Cyclic micro-irrigation
  l 1200, 1500, 1800 HR EST
  l 0.2 target LF
¢ Medium rate of CRF
¢ Dolomite addition
Clay Processing
¢ Data collected
  l Dry weight
  l Influent
  l Effluent
  l Effluent N and P content
¢ Use to calculate
  l LF = effluent ÷ influent
  l WUE = water retained ÷ plant dry mass
  l PUE = (plant P ÷ applied P) x 100
Field Plots
Field Plots
Laboratory
¢ Nutrient Analysis
  l NH4 – nitrogen
  l NO3 – nitrogen
  l Dissolved reactive P
¢ North Carolina
  Department of
  Agriculture
¢ USDA-ARS
Analysis
¢ Statistics
  l Particle size
     •  Water
  l Temperature
    pretreatment
     •  Effluent DRP
¢ Control
  l A priori contrast
Clay Processing
                              200
                                           Substrate amendment

   Cumulative water applied (L)
                                               0.25-0.85 mm
                                               0.85-4.75 mm
                              160              Control


                              120


                                  80


                                  40


                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                              200
                                           Substrate amendment

   Cumulative water applied (L)
                                               0.25-0.85 mm
                                               0.85-4.75 mm
                              160              Control                                20 L


                              120


                                  80


                                  40


                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                              200
                                           Substrate amendment

   Cumulative water applied (L)
                                               0.25-0.85 mm
                                               0.85-4.75 mm
                              160              Control                                31 L

                              120


                                  80


                                  40


                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                              200
                                           Substrate amendment

   Cumulative water applied (L)
                                               0.25-0.85 mm
                                               0.85-4.75 mm
                              160              Control                                31 L

                              120


                                  80
                                                                   WUE
                                                                 731 ml g-1
                                  40                                to
                                                                 599 ml g-1

                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                              200
                                           Substrate amendment

   Cumulative water applied (L)
                                               0.25-0.85 mm
                                               0.85-4.75 mm
                              160              Control


                              120          107,000 gallons of water
                                           saved per growing acre
                                  80       while maximizing growth

                                  40


                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                                  70
                                           Substrate amendment

   Cumulative effluent DRP (mg)
                                              LVM
                                  60          RVM
                                              Control
                                  50

                                  40

                                  30

                                  20

                                  10

                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                                  70
                                           Substrate amendment

   Cumulative effluent DRP (mg)
                                              LVM
                                  60          RVM
                                              Control                                 19 mg
                                  50

                                  40

                                  30

                                  20

                                  10

                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                                  70
                                           Substrate amendment

   Cumulative effluent DRP (mg)
                                              LVM
                                  60          RVM
                                              Control
                                  50
                                                                                      29 mg
                                  40

                                  30

                                  20

                                  10

                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
                                  70
                                           Substrate amendment

   Cumulative effluent DRP (mg)
                                              LVM
                                  60          RVM
                                              Control
                                  50

                                  40

                                  30

                                  20
                                                                PUE
                                  10                       Control 27%
                                                           Clay     36%
                                  0
                                       0      20     40    60     80      100   120
                                                   Day after initiation
Clay Processing
¢ Water
  l Particle size                  24 - 48
     •  0.25 to 0.85 mm
     •  18% (31L) decrease
¢ Nutrient
  l Phosphorus
     •  Temperature pretreatment
         •  Low volatile material
         •  48% (29 mg) decrease
¢ Equivalent growth
¢ 0.25 to 0.85 mm LVM
Clay Processing
¢ Water
  l Particle size                  24 - 48
     •  0.25 to 0.85 mm
     •  18% (31L) decrease
¢ Nutrient
  l Phosphorus
     •  Temperature pretreatment
         •  Low volatile material
         •  48% (29 mg) decrease
¢ Equivalent growth
¢ 0.25 to 0.85 mm LVM
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Physical Properties
¢ Clay rate
  l 0.25 to 0.85 mm LVM
  l 0% to 24% (by vol.)
     •  4% increments
¢ Poromoter
¢ Substrate moisture
  characteristic curve
¢ 15-bar extraction
¢ Particle size distribution
Clay Rate
                100



                 80
                                Porometer
                                 Results
   Volume (%)



                 60



                 40



                 20



                  0
                      0     4     8     12    16    20      24
                          Mineral amendment rate (% vol.)
Clay Rate
                100



                80
   Volume (%)



                60               Container Capacity



                40
                                 Air space

                20



                 0
                      0     4     8      12     16    20    24
                          Mineral amendment rate (% vol.)
Clay Rate
                100



                80
   Volume (%)



                60               Container Capacity



                40



                20               Available water



                 0
                      0     4     8      12        16   20   24
                          Mineral amendment rate (% vol.)
Clay Rate
                100



                80
   Volume (%)



                60



                40               Unavailable water



                20               Available water



                 0
                      0     4     8      12        16   20   24
                          Mineral amendment rate (% vol.)
Clay Rate
                100



                80
   Volume (%)



                60



                40
                                 Air space

                20               Available water



                 0
                      0     4     8      12        16   20   24
                          Mineral amendment rate (% vol.)
Clay Rate
                100


                                             Normal
                80                           Range
   Volume (%)



                60



                40
                                 Air space

                20               Available water



                 0
                      0     4     8      12        16   20   24
                          Mineral amendment rate (% vol.)
Materials & Methods
¢ Clay rate (% vol.)
  l RCBD
  l 0, 8, 12, 16, and 20%
¢ Li-Cor 6400
  l Net photosynthesis
  l Stomatal conductance
¢ Nutrient analysis
¢ Plant growth
Clay Rate
                    300

                    250
 Top dry mass (g)



                    200

                    150

                    100

                     50

                      0
                          0            8    12   16    20
                              Amendment rate (% by vol.)
Clay Rate
                    300

                    250
 Top dry mass (g)



                    200
                                      Max. = 12%
                    150

                    100

                     50

                      0
                          0            8    12   16    20
                              Amendment rate (% by vol.)
Clay Rate
  P (µmol CO m s )   12                                     0.5




                                                                  g (µmol H O m s )
                     10
 -1




                                                                  s
                                                            0.4
 -2




                      8
             2




                                                            0.3
                      6




                                                                  2
                                                            0.2
                      4




                                                                          -2
             n




                                                                          -1
                      2                                     0.1


                      0                                     0
                          0            8    12   16    20
                              Amendment rate (% by vol.)
Clay Rate
  P (µmol CO m s )   12                                     0.5




                                                                  g (µmol H O m s )
                     10
 -1




                                                                  s
                                                            0.4
 -2




                      8
             2




                                                            0.3
                      6




                                                                  2
                                   Max. = 11%               0.2
                      4




                                                                          -2
             n




                                                                          -1
                      2                                     0.1


                      0                                     0
                          0            8    12   16    20
                              Amendment rate (% by vol.)
Clay Rate
                      0.5                                     500




                                                                    Water use efficinecy (ml g )
  g (µmol H O m s )

                      0.4                                     400
 -1
 -2




                      0.3                                     300
              2




                      0.2                                     200
              s




                      0.1                                     100




                                                                                  -1
                       0                                      0
                            0           8     12   16    20
                                Amendment rate (% by vol.)
Clay Rate
                                500


   Total plant P content (mg)   450


                                400


                                350


                                300


                                250
                                      0          8   12    16   20
                                          Amendment rate (% vol.)
Clay Rate
                                500


   Total plant P content (mg)   450


                                400
                                                PUE = 46%
                                350


                                300


                                250
                                      0          8   12    16   20
                                          Amendment rate (% vol.)
Clay Rate
                                     60       Amendment

   Cumulative effluent DRP (mg L )
   -1
                                              rate (% vol.)
                                     50            0
                                                   12
                                                   20
                                     40

                                     30

                                     20

                                     10

                                     0
                                          0      20     40    60    80   100   120
                                                      Day after initiaiton
Clay Rate
                                     60       Amendment

   Cumulative effluent DRP (mg L )
   -1
                                              rate (% vol.)
                                     50            0
                                                   12
                                                   20
                                     40                                              33 mg

                                     30

                                     20

                                     10

                                     0
                                          0      20     40    60    80   100   120
                                                      Day after initiaiton
Clay Rate
                                     60       Amendment

   Cumulative effluent DRP (mg L )
   -1
                                              rate (% vol.)
                                     50            0
                                                   12
                                                   20
                                     40                                              33 mg

                                     30

                                     20

                                     10

                                     0
                                          0      20     40    60    80   100   120
                                                      Day after initiaiton
Clay Rate
Clay Rate
Clay Rate
Phosphorus Speciation
¢ X-ray absorption
  near edge surface
  (XANES)
  spectroscopy
¢ Linear combination
  fitting
  l Athena Software
Phosphorus Speciation
Phosphorus Speciation
¢ Linear combination fitting
  l Low volatile material
    • 75 mol% hydroxyapatite
    • 25 mol% metal adsorbed P
Phosphorus Speciation
  ¢ Linear combination fitting
     l Low volatile material
         • 75 mol% hydroxyapatite
         • 25 mol% metal adsorbed P


Ca5 (PO 4 )3 OH(s) + 7H+ (aq) ←⎯→ 5Ca 2 + + 3H2PO-
                                       (aq)       4(aq) + H2O(aq)
Phosphorus Speciation
  ¢ Linear combination fitting
     l Low volatile material
         • 75 mol% hydroxyapatite
         • 25 mol% metal adsorbed P


                               ⎯→ 5Ca 2 + + 3H2PO-
Ca5 (PO 4 )3 OH(s) + 7H+ (aq) ⎯       (aq)       4(aq) + H2O(aq)
Clay Rate
¢  Clay rate (% vol.)
  l 10% to 12%
    •  Plant growth
    •  Net photosynthesis
    •  Stomatal conductance
    •  Use efficiency
       •  Water
       •  Phosphorus
  l Plant mineral content
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Input Efficiency
¢ RCBD with 4 replications
  l Cyclic irrigation
    •  0100, 0300, 0500 HR EST
¢ Main effects
  l Amendment (11% by vol.)
    •  0.25 to 0.85 mm LVM
    •  Washed, builders sand
  l Leaching fraction
    •  0.2 or 0.1
  l P rate
    •  1.0x or 0.5x
Input Efficiency
                             300
                                 P rate
                                    0.5
                             250    1.0
  Total plant dry mass (g)


                             200

                             150

                             100

                              50

                               0
                                          Sand               Clay
                                                 Amendment
Input Efficiency
                             300
                                 P rate
                                    0.5
                             250
  Total plant dry mass (g)
                                    1.0

                             200
                                   31 g          A
                             150     B

                             100

                              50

                               0
                                          Sand               Clay
                                                 Amendment
Input Efficiency
                             300
                                 P rate
                                    0.5
                             250
  Total plant dry mass (g)
                                    1.0

                             200                          Not
                                                       Significant
                             150

                             100

                              50

                               0
                                          Sand               Clay
                                                 Amendment
Input Efficiency
                             300
                                           Amendment
                                             Sand
                             250             Clay
  Total plant dry mass (g)


                             200

                             150

                             100

                             50

                              0
                                   0.5           1.0
                                    Phosphorus rate
Input Efficiency
                             300
                                                    Amendment
                                                      Sand
                             250                      Clay
  Total plant dry mass (g)

                                                A
                             200   77 g

                             150     B

                             100

                             50

                              0
                                          0.5             1.0
                                           Phosphorus rate
Input Efficiency
                             300
                                           Amendment
                                             Sand
                             250             Clay
  Total plant dry mass (g)


                                            31 g         A
                             200
                                               B
                             150

                             100

                             50

                              0
                                   0.5             1.0
                                    Phosphorus rate
Input Efficiency
                                   2.5
  Plant top nutrient content (g)                            Amendment
                                                                Sand
                                   2.0                          Clay


                                   1.5


                                   1.0


                                   0.5


                                   0.0
                                         N   P    K    Ca    Mg   S
                                             Elemental nutrient
Input Efficiency
                                   2.5
  Plant top nutrient content (g)                                Amendment
                                                    38%             Sand
                                   2.0                              Clay
                                                          48%
                                   1.5


                                   1.0

                                                                54%
                                   0.5
                                             108%
                                                                      21%
                                   0.0
                                         N    P      K    Ca     Mg    S
                                              Elemental nutrient
Input Efficiency
                         100
                            Amendment
                              Sand
                         80   Clay
  P use efficiency (%)



                         60                   B


                         40


                         20


                          0
                                 1.0              0.5
                                   Phosphorus rate
Input Efficiency
                         100
                            Amendment
                              Sand
                         80   Clay
  P use efficiency (%)



                         60


                         40
                               11%         A

                         20
                                 B
                          0
                                     1.0           0.5
                                      Phosphorus rate
Input Efficiency
                         100
                            Amendment
                              Sand                      A
                         80   Clay
  P use efficiency (%)



                                        64% B
                         60


                         40

                                              B
                         20


                          0
                                 1.0              0.5
                                   Phosphorus rate
Input Efficiency
                             120
                                            Treatment
                                               Clay 0.10 LF
                             100               Clay 0.20 LF
   Cumulative influent (L)

                             80

                             60

                             40

                             20

                              0
                                   0   20      40    60       80   100   120
                                            Day after initiation
Input Efficiency
                             120
                                            Treatment
                                               Clay 0.10 LF
                             100               Clay 0.20 LF
   Cumulative influent (L)

                                                                               26 L
                             80

                             60

                             40

                             20

                              0
                                   0   20      40    60       80   100   120
                                            Day after initiation
Input Efficiency
                             120
                                            Treatment
                                               Clay 0.10 LF
                             100               Clay 0.20 LF
   Cumulative influent (L)
                                               Sand 0.10 LF
                             80                Sand 0.20 LF


                             60

                             40

                             20

                              0
                                   0   20     40    60     80      100   120
                                            Day after initiation
Input Efficiency
                             120
                                             Treatment
                                                Clay 0.10 LF
                             100                Clay 0.20 LF
   Cumulative influent (L)
                                                Sand 0.10 LF
                             80                 Sand 0.20 LF
                                       90,000 gallons of water
                             60        saved per growing acre
                                          while maintaining
                             40                 growth
                             20

                              0
                                   0    20     40    60     80      100   120
                                             Day after initiation
Input Efficiency
                             25            Treatment
                                               Clay 0.1 LF
                                               Clay 0.2 LF
   Cumulative effluent (L)
                             20


                             15


                             10


                             5


                             0
                                  0   20      40    60       80   100   120
                                           Day after initiation
Input Efficiency
                             25            Treatment
                                               Clay 0.1 LF
                                               Clay 0.2 LF
   Cumulative effluent (L)
                             20


                             15                                               16 L

                             10


                             5


                             0
                                  0   20      40    60       80   100   120
                                           Day after initiation
Input Efficiency
                             25            Treatment
                                               Clay 0.1 LF
                                               Clay 0.2 LF
   Cumulative effluent (L)
                             20                Sand 0.1 LF
                                               Sand 0.2 LF

                             15


                             10


                             5


                             0
                                  0   20      40    60       80   100   120
                                           Day after initiation
Input Efficiency
                             25            Treatment
                                               Clay 0.1 LF
                                               Clay 0.2 LF
   Cumulative effluent (L)
                             20                Sand 0.1 LF
                                               Sand 0.2 LF

                             15       55,000 gallons per
                                         growing acre
                             10


                             5


                             0
                                  0   20      40    60       80   100   120
                                           Day after initiation
Input Efficiency
                                  25
                                           Treatment
   Cumulative effluent DRP (mg)            Clay 0.1 LF
                                  20       Clay 0.2 LF
                                           Sand 0.1 LF
                                           Sand 0.2 LF
                                  15


                                  10


                                  5


                                  0
                                       0   20     40     60   80       100   120
                                                Day after initiation
Input Efficiency
                                  25
                                           Treatment
   Cumulative effluent DRP (mg)            Clay 0.1 LF
                                  20       Clay 0.2 LF
                                           Sand 0.1 LF
                                           Sand 0.2 LF
                                  15
                                                                                   14 mg

                                  10


                                  5


                                  0
                                       0   20     40     60   80       100   120
                                                Day after initiation
Input Efficiency
                                  25
                                           Treatment
   Cumulative effluent DRP (mg)            Clay 0.1 LF
                                  20       Clay 0.2 LF
                                           Sand 0.1 LF
                                           Sand 0.2 LF
                                  15


                                  10
                                                                                   7 mg
                                  5


                                  0
                                       0   20     40     60   80       100   120
                                                Day after initiation
Input Efficiency
¢ Water buffering capacity
  l Real-time monitoring
    •  Weight
       •  Water loss
       •  Container capacity
00:00
                                                        18:00
                                                                Aug 28
                   Amendment




                                                        12:00
                      Sand
                      Clay




                                                        06:00
                                                        00:00
                                                        18:00
                                                                Aug 27



                                                        12:00
                                                        06:00
                                                        00:00
                                                        18:00   Aug 26
                                                                         Time and date
                                                        12:00
                                                        06:00
                                                        00:00
Input Efficiency




                                                        18:00




                                                                Aug 25
                                                        12:00
                                                        06:00
                                                        00:00
                                                        18:00




                                                                Aug 24
                                                        12:00
                                                        06:00
                                                        00:00
                                                        18:00




                                                                Aug 23
                                                        12:00
                                                        06:00
                                                        00:00

                    100

                          95

                               90

                                    85

                                         80

                                              75

                                                   70
                   Container capacity (%)
Input Efficiency
                        0                                         Amendment
                                                                              Clay
                                                                              Sand
                      -500
   Water loss (ml)




                     -1000



                     -1500



                     -2000                    daylight hours
                                                              15:30
                                                      13:30




                                                                               19:30
                                                                      17:30
                                              11:30




                                                                                       21:30
                         5:30



                                       9:30
                                7:30




                                              Time (Sept.)
Input Efficiency
                        0                                         Amendment
                                                                              Clay
                                                                              Sand
                      -500
   Water loss (ml)




                     -1000



                     -1500



                     -2000                    daylight hours
                                                              15:30
                                                      13:30




                                                                               19:30
                                                                      17:30
                                              11:30




                                                                                       21:30
                         5:30



                                       9:30
                                7:30




                                              Time (Sept.)
Input Efficiency
                        0                                         Amendment
                                                                              Clay
                                                                              Sand
                      -500
   Water loss (ml)




                     -1000



                     -1500
                                                                                               334 mL

                     -2000                    daylight hours
                                              11:30

                                                      13:30



                                                                      17:30

                                                                               19:30

                                                                                       21:30
                                                              15:30
                         5:30

                                7:30

                                       9:30




                                              Time (Sept.)
Input Efficiency
                        0                                          Amendment
                                                                               Clay
                                                                               Sand
                      -500
   Water loss (ml)



                                   4% increase in
                     -1000
                                available water which
                                 equates into 500 ml
                     -1500



                     -2000                     daylight hours
                                               11:30




                                                                       17:30
                                                       13:30




                                                                                19:30
                                                               15:30




                                                                                        21:30
                         5:30



                                        9:30
                                 7:30




                                               Time (Sept.)
Input Efficiency
¢ Phosphorus use efficiency
  l ≤64% increase
¢ Water use efficiency
  l ≤15% increase (43 mL g-1)
¢ Maximum growth
  l ≤46% increase
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Conclusion
¢ Maximum growth
 l 0.25 to 0.85 mm
 l Low volatile material
 l 11% amendment
 l 50% reduction of inputs
   •  Phosphorus
   •  Water
 l Water buffering capacity
Overview
¢ Introduction
¢ Experiments
   l Clay processing
   l Clay rate
   l Input efficiency
¢ Conclusion
¢ Future
Future Research
¢ Species screen
¢ Nutrient addition
  of clay
  l Phosphorus
  l Potassium
¢ Water
  Management
Financial Support




  NC STATE UNIVERSITY
                        FNRI
Thank you…..
William Reece        Mary Lorscheider    Kim Hutchison
Beth Harden          Dr. Fonteno         Dr. Northup
Dr. Beauchemin       Mike Jett           Dr. Swallow
Sandy Donaghy        Bradley Holland     Tim Ketchie
Anthony LeBude       Michelle McGinnis   Cindy Proctor
Carroll Williamson   Kristen Walton      Brian Jackson
Daniel Norden        Greta Bjorkquist    Dr. Hunt

      Committee:
          Dr. Warren             Dr. Bilderback
          Dr. Cassel             Dr. Hesterberg

            Horticulture & Soil Science Faculty
                  & Graduate Students
                         My family
Thank you…..
William Reece        Mary Lorscheider Kim Hutchison
Beth Harden          Dr. Fonteno        Dr. Northup
Dr. Beauchemin       Mike Jett          Dr. Swallow
Sandy Donaghy        Bradley Holland    Tim Ketchie
Anthony LeBude       Michelle McGinnis Cindy Proctor
Carroll Williamson Kristen Walton       Brian Jackson
              Daniel Norden       Greta Bjorkquist

      Committee:
          Dr. Warren             Dr. Bilderback
          Dr. Cassel             Dr. Hesterberg

            Horticulture & Soil Science Faculty
                  & Graduate Students
                        My family

More Related Content

Similar to Clay amended soilless substrate: Increasing water and nutrient efficiency in containerized crop production

Owen 2 ashs 07
Owen 2 ashs 07Owen 2 ashs 07
Owen 2 ashs 07tairish
 
Modern Shale Gas Development
Modern Shale Gas DevelopmentModern Shale Gas Development
Modern Shale Gas DevelopmentDan Arthur
 
South America EOR workshop.Final.ppt
South America EOR workshop.Final.pptSouth America EOR workshop.Final.ppt
South America EOR workshop.Final.pptHysysGuy
 
Ef coop meetingpres_11102011
Ef coop meetingpres_11102011Ef coop meetingpres_11102011
Ef coop meetingpres_11102011hrlubbers
 
Ef coop meetingpres_11102011
Ef coop meetingpres_11102011Ef coop meetingpres_11102011
Ef coop meetingpres_11102011hrlubbers
 
Producing more food with less water: a global challenge - Eric Ober (Broom's ...
Producing more food with less water: a global challenge - Eric Ober (Broom's ...Producing more food with less water: a global challenge - Eric Ober (Broom's ...
Producing more food with less water: a global challenge - Eric Ober (Broom's ...Farming Futures
 
Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?APPGOPO
 
Agricultural water management in the context of climate change
Agricultural water management in the context of climate changeAgricultural water management in the context of climate change
Agricultural water management in the context of climate changeILRI
 
Energy as Motor of Seawater Reverse Osmosis Desalination Development
Energy as Motor of Seawater Reverse Osmosis Desalination DevelopmentEnergy as Motor of Seawater Reverse Osmosis Desalination Development
Energy as Motor of Seawater Reverse Osmosis Desalination DevelopmentDegrémont
 
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity Classic
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity ClassicGenuity(r) DroughtGard(tm) Hybrids-2013 Commodity Classic
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity ClassicMatt Anselm
 
Water resources and biofuels water quality april 2012
Water resources and biofuels water quality   april 2012Water resources and biofuels water quality   april 2012
Water resources and biofuels water quality april 2012Sharon Lezberg
 
Groundwater Update and Remedial Optimization Process Overview
Groundwater Update and Remedial Optimization Process OverviewGroundwater Update and Remedial Optimization Process Overview
Groundwater Update and Remedial Optimization Process OverviewSteve Williams
 
Remote sensing and isotopic analysis to determine the contribution of snow- a...
Remote sensing and isotopic analysis to determine the contribution of snow- a...Remote sensing and isotopic analysis to determine the contribution of snow- a...
Remote sensing and isotopic analysis to determine the contribution of snow- a...University of the Highlands and Islands
 
M warren tropical wetlands
M warren tropical wetlandsM warren tropical wetlands
M warren tropical wetlandstheREDDdesk
 
ZLD.ppt-Aquatech. Delhi 2015
ZLD.ppt-Aquatech. Delhi 2015ZLD.ppt-Aquatech. Delhi 2015
ZLD.ppt-Aquatech. Delhi 2015satish bhatt
 

Similar to Clay amended soilless substrate: Increasing water and nutrient efficiency in containerized crop production (20)

Owen 2 ashs 07
Owen 2 ashs 07Owen 2 ashs 07
Owen 2 ashs 07
 
Modern Shale Gas Development
Modern Shale Gas DevelopmentModern Shale Gas Development
Modern Shale Gas Development
 
South America EOR workshop.Final.ppt
South America EOR workshop.Final.pptSouth America EOR workshop.Final.ppt
South America EOR workshop.Final.ppt
 
Ef coop meetingpres_11102011
Ef coop meetingpres_11102011Ef coop meetingpres_11102011
Ef coop meetingpres_11102011
 
Ef coop meetingpres_11102011
Ef coop meetingpres_11102011Ef coop meetingpres_11102011
Ef coop meetingpres_11102011
 
Producing more food with less water: a global challenge - Eric Ober (Broom's ...
Producing more food with less water: a global challenge - Eric Ober (Broom's ...Producing more food with less water: a global challenge - Eric Ober (Broom's ...
Producing more food with less water: a global challenge - Eric Ober (Broom's ...
 
Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?Shale Oil: A new age of abundance?
Shale Oil: A new age of abundance?
 
Ron McMullin - AIPA
Ron McMullin - AIPARon McMullin - AIPA
Ron McMullin - AIPA
 
Agricultural water management in the context of climate change
Agricultural water management in the context of climate changeAgricultural water management in the context of climate change
Agricultural water management in the context of climate change
 
Energy as Motor of Seawater Reverse Osmosis Desalination Development
Energy as Motor of Seawater Reverse Osmosis Desalination DevelopmentEnergy as Motor of Seawater Reverse Osmosis Desalination Development
Energy as Motor of Seawater Reverse Osmosis Desalination Development
 
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity Classic
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity ClassicGenuity(r) DroughtGard(tm) Hybrids-2013 Commodity Classic
Genuity(r) DroughtGard(tm) Hybrids-2013 Commodity Classic
 
Water resources and biofuels water quality april 2012
Water resources and biofuels water quality   april 2012Water resources and biofuels water quality   april 2012
Water resources and biofuels water quality april 2012
 
Ppt assgn 1
Ppt assgn  1Ppt assgn  1
Ppt assgn 1
 
The Australian Nitrous Oxide Research Program - Peter Grace
The Australian Nitrous Oxide Research Program - Peter GraceThe Australian Nitrous Oxide Research Program - Peter Grace
The Australian Nitrous Oxide Research Program - Peter Grace
 
Oil Base Muds
Oil Base MudsOil Base Muds
Oil Base Muds
 
Groundwater Update and Remedial Optimization Process Overview
Groundwater Update and Remedial Optimization Process OverviewGroundwater Update and Remedial Optimization Process Overview
Groundwater Update and Remedial Optimization Process Overview
 
Session 15 ic2011 wei
Session 15 ic2011 weiSession 15 ic2011 wei
Session 15 ic2011 wei
 
Remote sensing and isotopic analysis to determine the contribution of snow- a...
Remote sensing and isotopic analysis to determine the contribution of snow- a...Remote sensing and isotopic analysis to determine the contribution of snow- a...
Remote sensing and isotopic analysis to determine the contribution of snow- a...
 
M warren tropical wetlands
M warren tropical wetlandsM warren tropical wetlands
M warren tropical wetlands
 
ZLD.ppt-Aquatech. Delhi 2015
ZLD.ppt-Aquatech. Delhi 2015ZLD.ppt-Aquatech. Delhi 2015
ZLD.ppt-Aquatech. Delhi 2015
 

More from A_Irish

Christmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlChristmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlA_Irish
 
Christmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlChristmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlA_Irish
 
Fert foliar for austria
Fert  foliar for austriaFert  foliar for austria
Fert foliar for austriaA_Irish
 
Best sources ts 2011
Best sources ts 2011Best sources ts 2011
Best sources ts 2011A_Irish
 
Sna 2006 taxa grown in clay
Sna 2006 taxa grown in claySna 2006 taxa grown in clay
Sna 2006 taxa grown in clayA_Irish
 
Octoberpest 06 mineral nutrient defeciencies
Octoberpest 06 mineral nutrient defecienciesOctoberpest 06 mineral nutrient defeciencies
Octoberpest 06 mineral nutrient defecienciesA_Irish
 
Nwrec container workshop iii 2006 irrigation
Nwrec container workshop iii 2006 irrigationNwrec container workshop iii 2006 irrigation
Nwrec container workshop iii 2006 irrigationA_Irish
 
Nwrec container workshop ii 2006 phosphorus
Nwrec container workshop ii 2006 phosphorusNwrec container workshop ii 2006 phosphorus
Nwrec container workshop ii 2006 phosphorusA_Irish
 
Nwrec container workshop i 2006
Nwrec container workshop i 2006Nwrec container workshop i 2006
Nwrec container workshop i 2006A_Irish
 
Wise Water Use for Container Production
Wise Water Use for Container ProductionWise Water Use for Container Production
Wise Water Use for Container ProductionA_Irish
 
Clay research summary
Clay research summaryClay research summary
Clay research summaryA_Irish
 
Clay research summary
Clay research summaryClay research summary
Clay research summaryA_Irish
 

More from A_Irish (12)

Christmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlChristmas Tree Weed Identification and Control
Christmas Tree Weed Identification and Control
 
Christmas Tree Weed Identification and Control
Christmas Tree Weed Identification and ControlChristmas Tree Weed Identification and Control
Christmas Tree Weed Identification and Control
 
Fert foliar for austria
Fert  foliar for austriaFert  foliar for austria
Fert foliar for austria
 
Best sources ts 2011
Best sources ts 2011Best sources ts 2011
Best sources ts 2011
 
Sna 2006 taxa grown in clay
Sna 2006 taxa grown in claySna 2006 taxa grown in clay
Sna 2006 taxa grown in clay
 
Octoberpest 06 mineral nutrient defeciencies
Octoberpest 06 mineral nutrient defecienciesOctoberpest 06 mineral nutrient defeciencies
Octoberpest 06 mineral nutrient defeciencies
 
Nwrec container workshop iii 2006 irrigation
Nwrec container workshop iii 2006 irrigationNwrec container workshop iii 2006 irrigation
Nwrec container workshop iii 2006 irrigation
 
Nwrec container workshop ii 2006 phosphorus
Nwrec container workshop ii 2006 phosphorusNwrec container workshop ii 2006 phosphorus
Nwrec container workshop ii 2006 phosphorus
 
Nwrec container workshop i 2006
Nwrec container workshop i 2006Nwrec container workshop i 2006
Nwrec container workshop i 2006
 
Wise Water Use for Container Production
Wise Water Use for Container ProductionWise Water Use for Container Production
Wise Water Use for Container Production
 
Clay research summary
Clay research summaryClay research summary
Clay research summary
 
Clay research summary
Clay research summaryClay research summary
Clay research summary
 

Recently uploaded

Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Orbitshub
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesrafiqahmad00786416
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusZilliz
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...apidays
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsNanddeep Nachan
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Angeliki Cooney
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MIND CTI
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfOrbitshub
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...DianaGray10
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...apidays
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfOverkill Security
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Jeffrey Haguewood
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...Zilliz
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProduct Anonymous
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 

Recently uploaded (20)

Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
Navigating the Deluge_ Dubai Floods and the Resilience of Dubai International...
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
MS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectorsMS Copilot expands with MS Graph connectors
MS Copilot expands with MS Graph connectors
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Ransomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdfRansomware_Q4_2023. The report. [EN].pdf
Ransomware_Q4_2023. The report. [EN].pdf
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemkeProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
ProductAnonymous-April2024-WinProductDiscovery-MelissaKlemke
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 

Clay amended soilless substrate: Increasing water and nutrient efficiency in containerized crop production

  • 1. Clay amended soilless substrate: Increasing water and nutrient efficiency in containerized crop production J.S. Owen, Jr., Dept. Horticultural Science Dept. Soil Science NC STATE UNIVERSITY
  • 2. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 3. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 4. Nursery Industry ¢ 3.97 billion dollars in gross sales USDA, 2004.
  • 5. Nursery Industry ¢ 3.97 billion dollars in gross sales ¢ 73% containerized crop inventory l Organic substrate USDA, 2004.
  • 6. Nursery Industry ¢ 3.97 billion dollars in gross sales ¢ 73% containerized crop inventory l Organic substrate ¢ Southeast l 41% of 7,742 national operations l 34% of 20 billion ft2 in total production USDA, 2004.
  • 7. Problem ¢ Low input efficiencies l Water 30% to 80% l N and P 30% to 60% Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
  • 8. Problem ¢ Low input efficiencies l Water 30% to 80% l N and P 30% to 60% ¢ Water availability and use Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
  • 9. Problem ¢ Low input efficiencies l Water 30% to 80% l N and P 30% to 60% ¢ Water availability and use ¢ USEPA-MCL regulation and criteria l Nitrate-N ≤ 10 mg L-1 l Total P ≤ 0.05 mg L-1 Tyler et al., 1996, Lea-Cox and Ristvey, 2003; Warren and Bilderback, 2005
  • 10. ¢ Floriculture and nursery research initiative l Environmental resource management systems for nurseries, greenhouses and landscapes •  Clemson •  University of Florida •  Horticulture & Breeding Research – USDA •  Floral & Nursery Plants Research – USDA
  • 11. Primary objective To engineer a pine bark- based soilless substrate that increased water and nutrient efficiency in containerized nursery crop production
  • 12. Approach Container
  • 13. Approach Yeager et al., 1997
  • 14. Approach EFFICIENT? Yeager et al., 1997
  • 16. Approach Container
  • 17. Approach Container
  • 19. Amendment ¢ Peat-based substrate l Increase available water l Decrease effluent phosphorus l Increase pH buffering capacity l Pre-charged source of nutrient ¢ Pine bark-based substrate l Increase available water l Increase plant K and P content Williams and Neslon, 2000 and 1997; Warren and Bilderback, 1992; Reed, 1998; Handreck and Black, 2002.
  • 20. Amendment ¢ Mineral aggregate l Chemical absorbent l Fertilizer carrier l Barrier clays ¢ Industrial l Uniform l Reproducible Murray, 2000.
  • 21. Amendment Raw Clay Selection & Mining Secondary Primary Crusher Crusher Rotary Kiln (LVM) ≤ 800 °C ≈ 120°C Dryer Mill (RVM) Screen Bag or Bulk Oil-Dri Corporation of America
  • 22. Amendment Montmorillonite Palygorskite Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
  • 23. Amendment Montmorillonite Palygorskite Surface Area: 98 m2/g Surface Area: 122.5 m2/g Oil-Dri Corporation of America
  • 24. Amendment Montmorillonite Natural Heating Low Occurring Dehydration Volatile Material Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
  • 25. Amendment Palygorskite Natural Heating Low Occurring Dehydration Volatile Material Shulze, D.G., 2002. An introduction to soil mineralogy. In: Soil Mineralogy with Environmental Applications SSSA Book Series no. 7.
  • 26. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 27. Clay Processing ¢ Pine bark-based substrates l Industrial Mineral Aggregate •  8% Clay (by vol.) l Industry Representative Substrate •  11% Sand (by vol.)
  • 28. Clay Type ¢ Industrial Mineral Aggregate l Processing • Particle Size •  0.25 to 0.85 mm •  0.85 to 4.75 mm • Temperature Pre-treatment •  Low volatile material (LVM) •  Regular volatile material (RVM)
  • 29. Clay Processing ¢ 2 x 2 factorial l RCBD l 3 replications ¢ Cyclic micro-irrigation l 1200, 1500, 1800 HR EST l 0.2 target LF ¢ Medium rate of CRF ¢ Dolomite addition
  • 30. Clay Processing ¢ Data collected l Dry weight l Influent l Effluent l Effluent N and P content ¢ Use to calculate l LF = effluent ÷ influent l WUE = water retained ÷ plant dry mass l PUE = (plant P ÷ applied P) x 100
  • 33. Laboratory ¢ Nutrient Analysis l NH4 – nitrogen l NO3 – nitrogen l Dissolved reactive P ¢ North Carolina Department of Agriculture ¢ USDA-ARS
  • 34. Analysis ¢ Statistics l Particle size •  Water l Temperature pretreatment •  Effluent DRP ¢ Control l A priori contrast
  • 35. Clay Processing 200 Substrate amendment Cumulative water applied (L) 0.25-0.85 mm 0.85-4.75 mm 160 Control 120 80 40 0 0 20 40 60 80 100 120 Day after initiation
  • 36. Clay Processing 200 Substrate amendment Cumulative water applied (L) 0.25-0.85 mm 0.85-4.75 mm 160 Control 20 L 120 80 40 0 0 20 40 60 80 100 120 Day after initiation
  • 37. Clay Processing 200 Substrate amendment Cumulative water applied (L) 0.25-0.85 mm 0.85-4.75 mm 160 Control 31 L 120 80 40 0 0 20 40 60 80 100 120 Day after initiation
  • 38. Clay Processing 200 Substrate amendment Cumulative water applied (L) 0.25-0.85 mm 0.85-4.75 mm 160 Control 31 L 120 80 WUE 731 ml g-1 40 to 599 ml g-1 0 0 20 40 60 80 100 120 Day after initiation
  • 39. Clay Processing 200 Substrate amendment Cumulative water applied (L) 0.25-0.85 mm 0.85-4.75 mm 160 Control 120 107,000 gallons of water saved per growing acre 80 while maximizing growth 40 0 0 20 40 60 80 100 120 Day after initiation
  • 40. Clay Processing 70 Substrate amendment Cumulative effluent DRP (mg) LVM 60 RVM Control 50 40 30 20 10 0 0 20 40 60 80 100 120 Day after initiation
  • 41. Clay Processing 70 Substrate amendment Cumulative effluent DRP (mg) LVM 60 RVM Control 19 mg 50 40 30 20 10 0 0 20 40 60 80 100 120 Day after initiation
  • 42. Clay Processing 70 Substrate amendment Cumulative effluent DRP (mg) LVM 60 RVM Control 50 29 mg 40 30 20 10 0 0 20 40 60 80 100 120 Day after initiation
  • 43. Clay Processing 70 Substrate amendment Cumulative effluent DRP (mg) LVM 60 RVM Control 50 40 30 20 PUE 10 Control 27% Clay 36% 0 0 20 40 60 80 100 120 Day after initiation
  • 44. Clay Processing ¢ Water l Particle size 24 - 48 •  0.25 to 0.85 mm •  18% (31L) decrease ¢ Nutrient l Phosphorus •  Temperature pretreatment •  Low volatile material •  48% (29 mg) decrease ¢ Equivalent growth ¢ 0.25 to 0.85 mm LVM
  • 45. Clay Processing ¢ Water l Particle size 24 - 48 •  0.25 to 0.85 mm •  18% (31L) decrease ¢ Nutrient l Phosphorus •  Temperature pretreatment •  Low volatile material •  48% (29 mg) decrease ¢ Equivalent growth ¢ 0.25 to 0.85 mm LVM
  • 46. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 47. Physical Properties ¢ Clay rate l 0.25 to 0.85 mm LVM l 0% to 24% (by vol.) •  4% increments ¢ Poromoter ¢ Substrate moisture characteristic curve ¢ 15-bar extraction ¢ Particle size distribution
  • 48. Clay Rate 100 80 Porometer Results Volume (%) 60 40 20 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 49. Clay Rate 100 80 Volume (%) 60 Container Capacity 40 Air space 20 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 50. Clay Rate 100 80 Volume (%) 60 Container Capacity 40 20 Available water 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 51. Clay Rate 100 80 Volume (%) 60 40 Unavailable water 20 Available water 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 52. Clay Rate 100 80 Volume (%) 60 40 Air space 20 Available water 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 53. Clay Rate 100 Normal 80 Range Volume (%) 60 40 Air space 20 Available water 0 0 4 8 12 16 20 24 Mineral amendment rate (% vol.)
  • 54. Materials & Methods ¢ Clay rate (% vol.) l RCBD l 0, 8, 12, 16, and 20% ¢ Li-Cor 6400 l Net photosynthesis l Stomatal conductance ¢ Nutrient analysis ¢ Plant growth
  • 55. Clay Rate 300 250 Top dry mass (g) 200 150 100 50 0 0 8 12 16 20 Amendment rate (% by vol.)
  • 56. Clay Rate 300 250 Top dry mass (g) 200 Max. = 12% 150 100 50 0 0 8 12 16 20 Amendment rate (% by vol.)
  • 57. Clay Rate P (µmol CO m s ) 12 0.5 g (µmol H O m s ) 10 -1 s 0.4 -2 8 2 0.3 6 2 0.2 4 -2 n -1 2 0.1 0 0 0 8 12 16 20 Amendment rate (% by vol.)
  • 58. Clay Rate P (µmol CO m s ) 12 0.5 g (µmol H O m s ) 10 -1 s 0.4 -2 8 2 0.3 6 2 Max. = 11% 0.2 4 -2 n -1 2 0.1 0 0 0 8 12 16 20 Amendment rate (% by vol.)
  • 59. Clay Rate 0.5 500 Water use efficinecy (ml g ) g (µmol H O m s ) 0.4 400 -1 -2 0.3 300 2 0.2 200 s 0.1 100 -1 0 0 0 8 12 16 20 Amendment rate (% by vol.)
  • 60. Clay Rate 500 Total plant P content (mg) 450 400 350 300 250 0 8 12 16 20 Amendment rate (% vol.)
  • 61. Clay Rate 500 Total plant P content (mg) 450 400 PUE = 46% 350 300 250 0 8 12 16 20 Amendment rate (% vol.)
  • 62. Clay Rate 60 Amendment Cumulative effluent DRP (mg L ) -1 rate (% vol.) 50 0 12 20 40 30 20 10 0 0 20 40 60 80 100 120 Day after initiaiton
  • 63. Clay Rate 60 Amendment Cumulative effluent DRP (mg L ) -1 rate (% vol.) 50 0 12 20 40 33 mg 30 20 10 0 0 20 40 60 80 100 120 Day after initiaiton
  • 64. Clay Rate 60 Amendment Cumulative effluent DRP (mg L ) -1 rate (% vol.) 50 0 12 20 40 33 mg 30 20 10 0 0 20 40 60 80 100 120 Day after initiaiton
  • 68. Phosphorus Speciation ¢ X-ray absorption near edge surface (XANES) spectroscopy ¢ Linear combination fitting l Athena Software
  • 70. Phosphorus Speciation ¢ Linear combination fitting l Low volatile material • 75 mol% hydroxyapatite • 25 mol% metal adsorbed P
  • 71. Phosphorus Speciation ¢ Linear combination fitting l Low volatile material • 75 mol% hydroxyapatite • 25 mol% metal adsorbed P Ca5 (PO 4 )3 OH(s) + 7H+ (aq) ←⎯→ 5Ca 2 + + 3H2PO- (aq) 4(aq) + H2O(aq)
  • 72. Phosphorus Speciation ¢ Linear combination fitting l Low volatile material • 75 mol% hydroxyapatite • 25 mol% metal adsorbed P ⎯→ 5Ca 2 + + 3H2PO- Ca5 (PO 4 )3 OH(s) + 7H+ (aq) ⎯ (aq) 4(aq) + H2O(aq)
  • 73. Clay Rate ¢  Clay rate (% vol.) l 10% to 12% •  Plant growth •  Net photosynthesis •  Stomatal conductance •  Use efficiency •  Water •  Phosphorus l Plant mineral content
  • 74. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 75. Input Efficiency ¢ RCBD with 4 replications l Cyclic irrigation •  0100, 0300, 0500 HR EST ¢ Main effects l Amendment (11% by vol.) •  0.25 to 0.85 mm LVM •  Washed, builders sand l Leaching fraction •  0.2 or 0.1 l P rate •  1.0x or 0.5x
  • 76. Input Efficiency 300 P rate 0.5 250 1.0 Total plant dry mass (g) 200 150 100 50 0 Sand Clay Amendment
  • 77. Input Efficiency 300 P rate 0.5 250 Total plant dry mass (g) 1.0 200 31 g A 150 B 100 50 0 Sand Clay Amendment
  • 78. Input Efficiency 300 P rate 0.5 250 Total plant dry mass (g) 1.0 200 Not Significant 150 100 50 0 Sand Clay Amendment
  • 79. Input Efficiency 300 Amendment Sand 250 Clay Total plant dry mass (g) 200 150 100 50 0 0.5 1.0 Phosphorus rate
  • 80. Input Efficiency 300 Amendment Sand 250 Clay Total plant dry mass (g) A 200 77 g 150 B 100 50 0 0.5 1.0 Phosphorus rate
  • 81. Input Efficiency 300 Amendment Sand 250 Clay Total plant dry mass (g) 31 g A 200 B 150 100 50 0 0.5 1.0 Phosphorus rate
  • 82. Input Efficiency 2.5 Plant top nutrient content (g) Amendment Sand 2.0 Clay 1.5 1.0 0.5 0.0 N P K Ca Mg S Elemental nutrient
  • 83. Input Efficiency 2.5 Plant top nutrient content (g) Amendment 38% Sand 2.0 Clay 48% 1.5 1.0 54% 0.5 108% 21% 0.0 N P K Ca Mg S Elemental nutrient
  • 84. Input Efficiency 100 Amendment Sand 80 Clay P use efficiency (%) 60 B 40 20 0 1.0 0.5 Phosphorus rate
  • 85. Input Efficiency 100 Amendment Sand 80 Clay P use efficiency (%) 60 40 11% A 20 B 0 1.0 0.5 Phosphorus rate
  • 86. Input Efficiency 100 Amendment Sand A 80 Clay P use efficiency (%) 64% B 60 40 B 20 0 1.0 0.5 Phosphorus rate
  • 87. Input Efficiency 120 Treatment Clay 0.10 LF 100 Clay 0.20 LF Cumulative influent (L) 80 60 40 20 0 0 20 40 60 80 100 120 Day after initiation
  • 88. Input Efficiency 120 Treatment Clay 0.10 LF 100 Clay 0.20 LF Cumulative influent (L) 26 L 80 60 40 20 0 0 20 40 60 80 100 120 Day after initiation
  • 89. Input Efficiency 120 Treatment Clay 0.10 LF 100 Clay 0.20 LF Cumulative influent (L) Sand 0.10 LF 80 Sand 0.20 LF 60 40 20 0 0 20 40 60 80 100 120 Day after initiation
  • 90. Input Efficiency 120 Treatment Clay 0.10 LF 100 Clay 0.20 LF Cumulative influent (L) Sand 0.10 LF 80 Sand 0.20 LF 90,000 gallons of water 60 saved per growing acre while maintaining 40 growth 20 0 0 20 40 60 80 100 120 Day after initiation
  • 91. Input Efficiency 25 Treatment Clay 0.1 LF Clay 0.2 LF Cumulative effluent (L) 20 15 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 92. Input Efficiency 25 Treatment Clay 0.1 LF Clay 0.2 LF Cumulative effluent (L) 20 15 16 L 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 93. Input Efficiency 25 Treatment Clay 0.1 LF Clay 0.2 LF Cumulative effluent (L) 20 Sand 0.1 LF Sand 0.2 LF 15 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 94. Input Efficiency 25 Treatment Clay 0.1 LF Clay 0.2 LF Cumulative effluent (L) 20 Sand 0.1 LF Sand 0.2 LF 15 55,000 gallons per growing acre 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 95. Input Efficiency 25 Treatment Cumulative effluent DRP (mg) Clay 0.1 LF 20 Clay 0.2 LF Sand 0.1 LF Sand 0.2 LF 15 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 96. Input Efficiency 25 Treatment Cumulative effluent DRP (mg) Clay 0.1 LF 20 Clay 0.2 LF Sand 0.1 LF Sand 0.2 LF 15 14 mg 10 5 0 0 20 40 60 80 100 120 Day after initiation
  • 97. Input Efficiency 25 Treatment Cumulative effluent DRP (mg) Clay 0.1 LF 20 Clay 0.2 LF Sand 0.1 LF Sand 0.2 LF 15 10 7 mg 5 0 0 20 40 60 80 100 120 Day after initiation
  • 98. Input Efficiency ¢ Water buffering capacity l Real-time monitoring •  Weight •  Water loss •  Container capacity
  • 99. 00:00 18:00 Aug 28 Amendment 12:00 Sand Clay 06:00 00:00 18:00 Aug 27 12:00 06:00 00:00 18:00 Aug 26 Time and date 12:00 06:00 00:00 Input Efficiency 18:00 Aug 25 12:00 06:00 00:00 18:00 Aug 24 12:00 06:00 00:00 18:00 Aug 23 12:00 06:00 00:00 100 95 90 85 80 75 70 Container capacity (%)
  • 100. Input Efficiency 0 Amendment Clay Sand -500 Water loss (ml) -1000 -1500 -2000 daylight hours 15:30 13:30 19:30 17:30 11:30 21:30 5:30 9:30 7:30 Time (Sept.)
  • 101. Input Efficiency 0 Amendment Clay Sand -500 Water loss (ml) -1000 -1500 -2000 daylight hours 15:30 13:30 19:30 17:30 11:30 21:30 5:30 9:30 7:30 Time (Sept.)
  • 102. Input Efficiency 0 Amendment Clay Sand -500 Water loss (ml) -1000 -1500 334 mL -2000 daylight hours 11:30 13:30 17:30 19:30 21:30 15:30 5:30 7:30 9:30 Time (Sept.)
  • 103. Input Efficiency 0 Amendment Clay Sand -500 Water loss (ml) 4% increase in -1000 available water which equates into 500 ml -1500 -2000 daylight hours 11:30 17:30 13:30 19:30 15:30 21:30 5:30 9:30 7:30 Time (Sept.)
  • 104. Input Efficiency ¢ Phosphorus use efficiency l ≤64% increase ¢ Water use efficiency l ≤15% increase (43 mL g-1) ¢ Maximum growth l ≤46% increase
  • 105. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 106. Conclusion ¢ Maximum growth l 0.25 to 0.85 mm l Low volatile material l 11% amendment l 50% reduction of inputs •  Phosphorus •  Water l Water buffering capacity
  • 107. Overview ¢ Introduction ¢ Experiments l Clay processing l Clay rate l Input efficiency ¢ Conclusion ¢ Future
  • 108. Future Research ¢ Species screen ¢ Nutrient addition of clay l Phosphorus l Potassium ¢ Water Management
  • 109. Financial Support NC STATE UNIVERSITY FNRI
  • 110. Thank you….. William Reece Mary Lorscheider Kim Hutchison Beth Harden Dr. Fonteno Dr. Northup Dr. Beauchemin Mike Jett Dr. Swallow Sandy Donaghy Bradley Holland Tim Ketchie Anthony LeBude Michelle McGinnis Cindy Proctor Carroll Williamson Kristen Walton Brian Jackson Daniel Norden Greta Bjorkquist Dr. Hunt Committee: Dr. Warren Dr. Bilderback Dr. Cassel Dr. Hesterberg Horticulture & Soil Science Faculty & Graduate Students My family
  • 111. Thank you….. William Reece Mary Lorscheider Kim Hutchison Beth Harden Dr. Fonteno Dr. Northup Dr. Beauchemin Mike Jett Dr. Swallow Sandy Donaghy Bradley Holland Tim Ketchie Anthony LeBude Michelle McGinnis Cindy Proctor Carroll Williamson Kristen Walton Brian Jackson Daniel Norden Greta Bjorkquist Committee: Dr. Warren Dr. Bilderback Dr. Cassel Dr. Hesterberg Horticulture & Soil Science Faculty & Graduate Students My family