SlideShare a Scribd company logo
1 of 6
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
202
Computerized Clinical Engineering Management System
Walid Tarawneh
Ministry of Health
Amman Jordan
P.O.Box 1438
00962799049449
walidst@gmail.com
Majeda Ghannam
Ministry of Health
Amman Jordan
P.O.Box 1438
00962799049288
yaqout11@hotmail.com
ABSTRACT
This article describes a unique Computerized Clinical
Engineering Management System (CCEMS) designed, developed
and implemented at the Ministry of Health (MOH) in Jordan. The
system covers the automation of all related to medical equipment
(more than 30000 pieces of equipment) technical issues in 30
hospitals, 700 health centers, 420 dental clinics, 348 pediatrics
and mother care clinics, and 23 blood banks. Every medical
equipment was assigned an identity code that can be recognized
through a bar code scanning system, and similarly all other
involved parameters, such as hospitals, personnel, spare parts,
workshops, and others, are also coded comprehensively. The
system presents a powerful software package designed based on
Oracle and implemented using a network covering different
locations of the Directorate of Biomedical Engineering (DBE) at
the MOH all over Jordan (20 location including the DBE- center)
and through Web-based interactive connection. The CCEMS
includes major subsystem regarding the Clinical Engineering
(CE) activities such as; maintenance management, planning
management, contract management, purchasing and material
(spare parts) management and quality control management. The
system proves to be invaluable tool to manage, control, and report
all different parameters concerning the CE activities. The system
can read and report in both Arabic and English languages. All
system components were designed based on system requirement,
international standards [4] and MOH regulations in Jordan. The
system is implemented since 2004 and was evaluated and found to
be reliable effective, and unique compared with internationally
available systems.
Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and Engineering
- Engineering
General Terms
Management and Design.
Keywords
Computerized Clinical Engineering Management System
(CCEMS), Ministry of Health (MOH), Directorate of Biomedical
Engineering (DBE), Clinical Engineering (CE).
1. INTRODUCTION
During the medical equipment life cycle an enormous amount of
data needs to be collected, stored, recovered, analyzed, followed
up and used to improve all related to medical equipment issues
and activities. Just gathering data for medical equipment will not
serve any purpose. In healthcare facilities the clinical engineers
are swimming in data, exerting great effort to get information,
knowledge and to perform action in base of medical equipment
data. Figure 1 shows the different sources of medical equipment
data, where too many data needs to be collected, managed,
analyzed and used. The computerization of medical equipment
data can save time, money and can minimize the human errors.
The rapid development in information technology and computer
science offers many solutions, programs, systems to computerize
the medical equipment data and information [1]. In the market,
there is a wide range of ready-made software packages that are
flexible enough for different clinical engineering management
systems [2]. Most of these systems present a complete solution to
all issues associated with a certain clinical engineering system.
Those packages mainly concentrate on equipment maintenance,
spare parts management, can't be customized to certain clinical
engineering needs and apply single language. Our aim was to
design a CCEMS that cover all aspects related to the CE
management system in Jordan MOH.
Figure 1. Sources of medical equipment data
2. SYSTEM DESCRIPTION
Figure 2 shows the main component handled by the system. The
whole software system was constructed using Oracle 8i, 1.7,
Developer 6 on the operating system windows 2000 NT. The
system is basically constructed from 63 interlinked data entry
screens distributed as shown in Table 1. The screens were
designed and interlinked according to actual workflow after
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Fourth International Conference on Intelligent Computing and
Information Systems, March 19-22, 2009, Cairo, Egypt.
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
203
detailed analysis of the implemented at DBE - CE procedures.
The web based application of the system is done by using ASP
NET, which read / write from the same date base using SQL. As
shown in Figure 3, which represents the complete configuration of
the designed and implemented CCEMS, it covers all DBE
locations all over the country (departments and workshops),
where all CE departments have multiuser with simultaneous
access to the system. The system generates more than 90 reports
regarding all related to medical equipment matters and CE
activities. This reporting mechanism can be extended to cover
wider range of reports according to demand.
Figure 2. Main system components
Table 1. System data entry screens
No Screen Type No. Screens
1 Coding screens 15
2 Equipment inventory and tracking 3
3 Preventive and Corrective Maintenance 6
4 Purchase operations 5
5 Equipment planning 6
6 Spare parts control 4
7 Contract management 4
8 Equipment warranty 3
9 Training control 2
10 Quality control 4
11 Manuals and test equipment control 2
12
Personnel control Archiving and
document follows
9
Figure 3. The complete configuration of CCEMS
3. SYSTEM COMPONENTS
3.1 Standardizations and Coding
As an important factor in data collection we paid high attention to
standardizations and coding. All key data has been codified
instead of using hand writing text to avoid any sort of typo errors.
The following data has been coded: equipment names,
manufacturers, suppliers, equipment locations, models,
employees, equipment service priorities, spare parts, equipment
groups, technical groups, workshops, test equipments, DBE
stores, medical departments & units, countries and towns, files
and document references, document locations. Every piece of
medical equipment is assigned with 2 types of codes, the
inventory number and the class number. The inventory number is
an identity number that assign each unit in the medical equipment
inventory list, which shall be identified by the information
system. This was set to be a 6-digit number starting with letter M.
The first equipment is then given the inventory number M00001.
Within the software, the inventory number is assigned as a
primary key that is linked to basic equipment information. The
basic equipment information screen contains all basic information
about any equipment in the system (Figure 4). In addition to these
information's the screen shows the working condition, service
responsibility and priority, availability of manuals, current
running parts orders, the local agent of manufacturer, warrantee
status and the current unit price. For the class number (code
assigned to every type of medical equipment) the Universal
Medical Devices Nomenclature System (UMDNS) code from
ECRI [3] was adjusted and implemented. Every spare part was
assigned a unique 3-part code that is linked with store location,
equipment model number, and type of spare part. The code for
every spare part looks like the following model:
Spare part code = AA /BB / CCC
, where AA represents the location (store code); BB represents the
equipment group that part belong to (x-ray, sterilizer, dental,
suction …etc) and CCC, the serial number of part in the group.
Also every personnel working within DBE departments was
assigned with a unique 5-digit code, which is a serial number
starting with a ‘‘1’’ for biomedical engineers, ‘‘2’’ for biomedical
technicians, and ‘‘3’’ for others. The location coding is done
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
204
according to national geographical standard code and the assigned
by MOH coding tables, where every health facility is also
assigned with a 5-digit code. The coding system has also included
all other related parameters, including technical groups,
manufacturers, local representatives for manufacturers, and so on.
Figure 4. Basic information screen
3.2 Logging into System
Each employee was assigned a user name and pass word through
which he could enter to the system (Figure 5). According to the
job descriptions, some limitation has been implemented for
entering, changing and viewing data. The electronic signature is
made active according to the individual staff logged into the
system.
Figure 5.Employees coding screen
3.3 Users' Screens
The system, similar to other international systems, comprises
several users' screens. Some users' screens consist of sub screens.
All data entry screens are constructed as simple oracle forms with
fields linked to database system tables. Each screen depends on
the type of the procedure performed by the CE employees. As
mentioned before these screens were designed in accordance to
certain CE-procedures. For example a typical corrective
maintenance procedure is shown in Figure 6. The main
requirements to these users screen are to be: easy for use data
entry screens, have help menu, generate error messages/screens,
have on-line indicators that shows which fields can or can’t be
edited, "Pop-up" users facilities and that system should generate
some sub screens and messages to help the user for quick, correct
, better usage of the system. The help screens are obtained by
clicking F9 button while searching for certain code of equipment
type, location, part manufacturer, supplier, employee, model
…etc. The help messages are obtained: when a certain sequence is
needed, some fields are not allowed to be used by some users, or
when certain format of data is needed, information about some
fields...etc.
Figure 6. Typical maintenance procedure
The working order data entry screen is illustrated in Figure 7. The
screen allows the user to identify facility requesting equipment
service, type of service requested, whether the equipment
warranted or under contract, if so the user can contact the local
vendor or contractor via his fax or e-mail address. After finishing
certain maintenance job, the user writes the technical report, time
spend on job (including transport time) and sign
Figure 7. Working order data entry screen
electronically for completing the job. To follow up all incoming
working orders the CE open the shown in Figure 8 follow up
screen, which allows users the see pending jobs, clicking on
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
205
certain job number will transfer the user to the working order
screen. The quality control approval of each job is done after
completing and if approved the job will disappear from the follow
up screen, if not the quality control staff had to write reason for
not approving in the quality control field in the working order.
The spare parts used in certain job are discharged via anther user
screen (Figure 9) where the job number is used as a primary key.
Any jobs done by vendors or contractors engineers are filled in
the same manner. The preventive maintenance users' screen are
divided to two type: one for scheduling the time of inspection for
certain type of medical equipment in different location within a
year (Figure 10.) and one to control the performed periodic
preventive maintenance jobs. All jobs and activities performed on
certain equipment are summarized on so called history card
screen (Figure 11), which analysis the time break for certain
equipment ,the repair cost, type of failure ,spare parts used
repairing time and preformed preventive maintenance jobs for
certain equipment. In the planning process the user receive all the
requests for new equipment form certain location in the screen
illustrated in Figure 12. After technical evaluation in respect to
the available units within that location and after
Figure 8. Working order follow up screen
Figure 9. Parts discharge screen
Figure 10. Preventive maintenance scheduling screen
Figure 11.History card screen
Figure 12. Registration screen for new requested equipment
approving the request, the system calculates the estimated cost of
such request and auto planned it for purchasing depending on
predetermined criteria (priority, available yearly budget and
others). The system also provide the responsible CE-department
to plan the location of each piece of equipment within certain
medical department or hospital as shown in Figure 13.and to
extract the technical specifications and purchasing condition from
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
206
the data base for each item in the project. The purchasing users'
screens are divided to two general types: equipment purchasing
screens and spare parts purchasing screens. Each of these screen
consist of sub screens, which allows the user to follow up the
purchasing processes at each stage. The ordering of certain set of
spare part is performed by e-mail or fax messaging the local or
international vendors (figure 14). The illustrated in Figure 15 user
screen represent the final result of a purchasing process from
certain tender. The system contain many other user screens that
deal with different CE tasks and activities, but one of the most
interested applications toward the paperless work ,
communication, document flow tracking is the screen shown in
Figure 16, which present the documents archiving screen based on
a pre-scanned documents. The system codes these documents,
saves them in jpg file form, where they can be use later in CE
electronic messages/memos or communications via other screen.
Each user has a mail box to view the incoming messages /
memos, the attached documents to each message, to write his
comments and to follow up actions taken by others.
Figure 13.Equipment planning screen
Figure 14. Spare parts ordering screen
Figure 15.Equipment purchasing order registration screen
Figure 16. Documents archiving screen
4. SYSTEM'S REPORTS AND MESSAGES
The reporting capability of any system is a major indicator as to
the overall system performance. The CCEMS generate More than
90 reports. These reports can be classified to the following
categories : assets inventory reports (equipment, spare parts, test
equipment, maintenance tools, manuals and accessories available
within certain location), equipment status reports (faulty,
warranted, scraped, new installed, requested and planned for
purchasing equipment, equipment needs to be replaced next year
or during the next three year and equipment required to be
transfer to central workshop), equipment performance reports
(equipment up time and down time , mean time between failures,
failure analysis, equipment load, equipment level of utilization
used parts in certain equipment and others ), CE performance
reports (mean time to repair, the preventive maintenance
compliance, CE man hours analysis, CE work load analysis, jobs
and tasks performed by certain clinical engineer, technician,
working group or department during certain period of time,
pending jobs and others), cost analysis reports (cost effectiveness,
total cost of ownership, maintenance cost, parts cost,
transportation and man hours cost, contract cost, penalties
implemented to certain contractors or vendors, available or
released warranty bank security and performance bank security,
completed equipment or parts tenders and purchasing
Forth International Conference on Intelligent Computing and Information Systems
March 19-22, 2009, Cairo, Egypt
207
orders…etc), training reports (CE training programs, medical
staff training schedule, manufacturer training programs, user
faulty equipment training program, preformed service or user
training in certain model , type equipment) quality assurance and
control reports(pending jobs, frequently faulty equipment,
equipment safety, delays in jobs, performance working analysis of
certain engineer, working group or department, engineering down
time, customer complaints and satisfaction analysis ,quality
control yearly inspection plan, spare parts, manuals and test
equipment monitoring reports…etc), administrative and personal
reports(incoming or outgoing letters memos in certain subject,
waiting mails, vendors, local agent companies , service providers
and manufacturers address and field of work, staff assessment
staff vacations, leaves, sickness, salary, allowances, incentives
and position …etc). Figures 17 & 18 illustrate some example of
the system reports. On the other hand the system generates a
number of messages to warn and help user for further actions. The
help massages are obtained when a certain sequence is needed,
some fields are not allowed to be used by some users, certain
format of data is needed, information about some fields….etc,
while the warning messages are obtained to inform the user for
certain condition (time to perform preventive maintenance plan,
reaching the minimum stock level for certain spare part or group
of parts, exceeding certain time for an equipment without
servicing, equipment that will be out of warranty within one
month, exceeding the acceptable maintenance cost percentage,
purchasing of available in stock parts, warning when in-house CE
intends to service warrantees or contracts equipment and many
others messages. Figure 19 shows an example of these warning
messages.
Figure 17. Equipment failure analysis report
5. CONCLUSIONS
The CCEMS is implemented since July 2004 and was evaluated
and found to be reliable effective and unique tool for in-house CE
departments compared with internationally available systems. It is
a tailor made (designed) software system in accordance to DBE
procedures, activities and rules. It exactly match the requirements,
processes and terminology, which in-house staff and departments
know better than the outside vendors, more easy to be
customized, implementation the CCEMS was developed and
continue to be developed. Screens and reports are formed with
aesthetic look, user friendliness, and easy for use. Since the first
time of system developed upon the request of the DBE-
departments and staff. The system implementation has shown the
following results: achieving the ISO 9000/2001 certifications to
perform all different activities of CE by a computerized system, it
shows simplicity and immediate adaptation by all employees, it
has the ability to deal with the huge data and parameters
associated to CE.
Figure 18. Down time equipment report
Figure 19. Example of warning messages
6. ACKNOWLEDGMENTS
Our thanks to all DBE clinical engineers, technicians and others
employees for their help and support.
7. REFERENCES
[1] Cram N. Computerized maintenance management systems: a
review of a available products. J Clin Eng. Spring 1998.
[2] Cohen T. Computerized maintenance management systems.
J Clin Eng. Summer 2001.
[3] Emergency Care Research Institution (ECRI), Universal
Medical Device Nomenclature System, 2003 and 2007
Product Categories Thesaurus.
[4] Association for the Advancement of Medical
Instrumentation, Medical device software- Software life cycle
processes American National Standard ANSI/AAMI
SW68:2001

More Related Content

What's hot

Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chart
Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured ChartStock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chart
Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chartgrandhiprasuna
 
Medical Store Management System Software Engineering 1
Medical Store Management System Software Engineering 1Medical Store Management System Software Engineering 1
Medical Store Management System Software Engineering 1hani2253
 
FDA Medical Device Guidance
FDA Medical Device GuidanceFDA Medical Device Guidance
FDA Medical Device GuidanceMarket iT
 
Autoidlabs wp-bizapp-032
Autoidlabs wp-bizapp-032Autoidlabs wp-bizapp-032
Autoidlabs wp-bizapp-032wn393
 
Employee attendance details & medical expenses software project to TVS pvt ltd
Employee attendance details & medical expenses software project to TVS pvt ltd Employee attendance details & medical expenses software project to TVS pvt ltd
Employee attendance details & medical expenses software project to TVS pvt ltd Tecnovaters Software Solutions Pvt Ltd
 
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEM
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEMIMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEM
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEMAM Publications,India
 
IRJET - Leave Management System for AIKTC
IRJET - Leave Management System for AIKTCIRJET - Leave Management System for AIKTC
IRJET - Leave Management System for AIKTCIRJET Journal
 
SRS for Online Medicine Ordering System
SRS for Online Medicine Ordering SystemSRS for Online Medicine Ordering System
SRS for Online Medicine Ordering SystemUmmeKalsoom11
 
Passport automation system
Passport automation systemPassport automation system
Passport automation systemKoppula Sheryl
 
Project report On MSM (Mobile Shop Management)
Project report On MSM (Mobile Shop Management)Project report On MSM (Mobile Shop Management)
Project report On MSM (Mobile Shop Management)Dinesh Jogdand
 
WEB Based claim processing sytem SRS
WEB Based claim processing sytem SRSWEB Based claim processing sytem SRS
WEB Based claim processing sytem SRSNitin Bhardwaj
 

What's hot (13)

20 ijcse-01225-3
20 ijcse-01225-320 ijcse-01225-3
20 ijcse-01225-3
 
Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chart
Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured ChartStock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chart
Stock Maintenance System-Problem Statement, SRS, ERD, DFD, Structured Chart
 
Medical Store Management System Software Engineering 1
Medical Store Management System Software Engineering 1Medical Store Management System Software Engineering 1
Medical Store Management System Software Engineering 1
 
FDA Medical Device Guidance
FDA Medical Device GuidanceFDA Medical Device Guidance
FDA Medical Device Guidance
 
DRIVER ASSISTANCE FOR HEARING IMPAIRED PEOPLE USING AUGMENTED REALITY
DRIVER ASSISTANCE FOR HEARING IMPAIRED  PEOPLE USING AUGMENTED REALITYDRIVER ASSISTANCE FOR HEARING IMPAIRED  PEOPLE USING AUGMENTED REALITY
DRIVER ASSISTANCE FOR HEARING IMPAIRED PEOPLE USING AUGMENTED REALITY
 
Autoidlabs wp-bizapp-032
Autoidlabs wp-bizapp-032Autoidlabs wp-bizapp-032
Autoidlabs wp-bizapp-032
 
Employee attendance details & medical expenses software project to TVS pvt ltd
Employee attendance details & medical expenses software project to TVS pvt ltd Employee attendance details & medical expenses software project to TVS pvt ltd
Employee attendance details & medical expenses software project to TVS pvt ltd
 
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEM
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEMIMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEM
IMPLEMENT FINGERPRINT AUTHENTICATION FOR EMPLOYEE AUTOMATION SYSTEM
 
IRJET - Leave Management System for AIKTC
IRJET - Leave Management System for AIKTCIRJET - Leave Management System for AIKTC
IRJET - Leave Management System for AIKTC
 
SRS for Online Medicine Ordering System
SRS for Online Medicine Ordering SystemSRS for Online Medicine Ordering System
SRS for Online Medicine Ordering System
 
Passport automation system
Passport automation systemPassport automation system
Passport automation system
 
Project report On MSM (Mobile Shop Management)
Project report On MSM (Mobile Shop Management)Project report On MSM (Mobile Shop Management)
Project report On MSM (Mobile Shop Management)
 
WEB Based claim processing sytem SRS
WEB Based claim processing sytem SRSWEB Based claim processing sytem SRS
WEB Based claim processing sytem SRS
 

Similar to CCEMS

Health Informatics- Module 2-Chapter 2.pptx
Health Informatics- Module 2-Chapter 2.pptxHealth Informatics- Module 2-Chapter 2.pptx
Health Informatics- Module 2-Chapter 2.pptxArti Parab Academics
 
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf Platform
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf PlatformDesign of Interface Board for Medical Kiosk Based on Off-The-Shelf Platform
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf PlatformIRJET Journal
 
Hospital Management System Project
Hospital Management System ProjectHospital Management System Project
Hospital Management System ProjectSanjit Yadav
 
Dynamic Medical Machine
Dynamic Medical MachineDynamic Medical Machine
Dynamic Medical MachineIRJET Journal
 
IRJET- A Novel Survey to Secure Medical Images in Cloud using Digital Wat...
IRJET-  	  A Novel Survey to Secure Medical Images in Cloud using Digital Wat...IRJET-  	  A Novel Survey to Secure Medical Images in Cloud using Digital Wat...
IRJET- A Novel Survey to Secure Medical Images in Cloud using Digital Wat...IRJET Journal
 
231InformationSystems ChangesThe Manager’sChallen.docx
231InformationSystems ChangesThe Manager’sChallen.docx231InformationSystems ChangesThe Manager’sChallen.docx
231InformationSystems ChangesThe Manager’sChallen.docxeugeniadean34240
 
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...Developing Algorithm for Fault Detection and Classification for DC Motor Usin...
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...IRJET Journal
 
Introduction to Embedded System Architecture and Design.docx.pdf
Introduction to Embedded System Architecture and Design.docx.pdfIntroduction to Embedded System Architecture and Design.docx.pdf
Introduction to Embedded System Architecture and Design.docx.pdfArshak28
 
A Framework for Dead stock Management System for in-house computer engineerin...
A Framework for Dead stock Management System for in-house computer engineerin...A Framework for Dead stock Management System for in-house computer engineerin...
A Framework for Dead stock Management System for in-house computer engineerin...theijes
 
Automation Contingency Plan For Continuity Of Plant Operation
Automation Contingency Plan For Continuity Of Plant OperationAutomation Contingency Plan For Continuity Of Plant Operation
Automation Contingency Plan For Continuity Of Plant OperationTony Lisko
 
Information security management guidance for discrete automation
Information security management guidance for discrete automationInformation security management guidance for discrete automation
Information security management guidance for discrete automationjohnnywess
 
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDS
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDSAutomotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDS
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDSIOSR Journals
 
IRJET- Healthchannel - A Health Care Support App
IRJET- Healthchannel - A Health Care Support AppIRJET- Healthchannel - A Health Care Support App
IRJET- Healthchannel - A Health Care Support AppIRJET Journal
 
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONS
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONSANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONS
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONSijistjournal
 
Cloud Computing for Medical Application and Health Care
Cloud Computing for Medical Application and Health CareCloud Computing for Medical Application and Health Care
Cloud Computing for Medical Application and Health CareIRJET Journal
 
Book 2_Bab 11_Information Technology and ERM.pdf
Book 2_Bab 11_Information Technology and ERM.pdfBook 2_Bab 11_Information Technology and ERM.pdf
Book 2_Bab 11_Information Technology and ERM.pdfnoygemma2
 
Identifying an Appropriate Model for Information Systems Integration in the O...
Identifying an Appropriate Model for Information Systems Integration in the O...Identifying an Appropriate Model for Information Systems Integration in the O...
Identifying an Appropriate Model for Information Systems Integration in the O...Eswar Publications
 
Master Data, From Inspection to Analytics to Business Decision
Master Data, From Inspection to Analytics to Business DecisionMaster Data, From Inspection to Analytics to Business Decision
Master Data, From Inspection to Analytics to Business DecisionPreston Johnson
 

Similar to CCEMS (20)

Health Informatics- Module 2-Chapter 2.pptx
Health Informatics- Module 2-Chapter 2.pptxHealth Informatics- Module 2-Chapter 2.pptx
Health Informatics- Module 2-Chapter 2.pptx
 
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf Platform
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf PlatformDesign of Interface Board for Medical Kiosk Based on Off-The-Shelf Platform
Design of Interface Board for Medical Kiosk Based on Off-The-Shelf Platform
 
Hospital Management System Project
Hospital Management System ProjectHospital Management System Project
Hospital Management System Project
 
Dynamic Medical Machine
Dynamic Medical MachineDynamic Medical Machine
Dynamic Medical Machine
 
IRJET- A Novel Survey to Secure Medical Images in Cloud using Digital Wat...
IRJET-  	  A Novel Survey to Secure Medical Images in Cloud using Digital Wat...IRJET-  	  A Novel Survey to Secure Medical Images in Cloud using Digital Wat...
IRJET- A Novel Survey to Secure Medical Images in Cloud using Digital Wat...
 
231InformationSystems ChangesThe Manager’sChallen.docx
231InformationSystems ChangesThe Manager’sChallen.docx231InformationSystems ChangesThe Manager’sChallen.docx
231InformationSystems ChangesThe Manager’sChallen.docx
 
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...Developing Algorithm for Fault Detection and Classification for DC Motor Usin...
Developing Algorithm for Fault Detection and Classification for DC Motor Usin...
 
Introduction to Embedded System Architecture and Design.docx.pdf
Introduction to Embedded System Architecture and Design.docx.pdfIntroduction to Embedded System Architecture and Design.docx.pdf
Introduction to Embedded System Architecture and Design.docx.pdf
 
A Framework for Dead stock Management System for in-house computer engineerin...
A Framework for Dead stock Management System for in-house computer engineerin...A Framework for Dead stock Management System for in-house computer engineerin...
A Framework for Dead stock Management System for in-house computer engineerin...
 
Automation Contingency Plan For Continuity Of Plant Operation
Automation Contingency Plan For Continuity Of Plant OperationAutomation Contingency Plan For Continuity Of Plant Operation
Automation Contingency Plan For Continuity Of Plant Operation
 
Information security management guidance for discrete automation
Information security management guidance for discrete automationInformation security management guidance for discrete automation
Information security management guidance for discrete automation
 
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDS
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDSAutomotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDS
Automotive Diagnostics Communication Protocols AnalysisKWP2000, CAN, and UDS
 
D010112031
D010112031D010112031
D010112031
 
IRJET- Healthchannel - A Health Care Support App
IRJET- Healthchannel - A Health Care Support AppIRJET- Healthchannel - A Health Care Support App
IRJET- Healthchannel - A Health Care Support App
 
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONS
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONSANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONS
ANALYSIS OF SECURITY REQUIREMENTS OF FUTURISTIC MOBILE APPLICATIONS
 
Cloud Computing for Medical Application and Health Care
Cloud Computing for Medical Application and Health CareCloud Computing for Medical Application and Health Care
Cloud Computing for Medical Application and Health Care
 
Book 2_Bab 11_Information Technology and ERM.pdf
Book 2_Bab 11_Information Technology and ERM.pdfBook 2_Bab 11_Information Technology and ERM.pdf
Book 2_Bab 11_Information Technology and ERM.pdf
 
N018138696
N018138696N018138696
N018138696
 
Identifying an Appropriate Model for Information Systems Integration in the O...
Identifying an Appropriate Model for Information Systems Integration in the O...Identifying an Appropriate Model for Information Systems Integration in the O...
Identifying an Appropriate Model for Information Systems Integration in the O...
 
Master Data, From Inspection to Analytics to Business Decision
Master Data, From Inspection to Analytics to Business DecisionMaster Data, From Inspection to Analytics to Business Decision
Master Data, From Inspection to Analytics to Business Decision
 

More from Dr.Eng. Walid Tarawneh

More from Dr.Eng. Walid Tarawneh (14)

Automatic cart washers at CSSD
Automatic cart washers at CSSD   Automatic cart washers at CSSD
Automatic cart washers at CSSD
 
HYBRID OPERATING THEATER ROOM
HYBRID OPERATING THEATER ROOM HYBRID OPERATING THEATER ROOM
HYBRID OPERATING THEATER ROOM
 
Medical Equipment Planner Qualifications and Requirements
Medical Equipment Planner Qualifications and RequirementsMedical Equipment Planner Qualifications and Requirements
Medical Equipment Planner Qualifications and Requirements
 
Planning Considerations in Total Automation of Clinical Laboratory
Planning Considerations in Total Automation of Clinical Laboratory  Planning Considerations in Total Automation of Clinical Laboratory
Planning Considerations in Total Automation of Clinical Laboratory
 
Dialysis Water Treatment
 Dialysis Water Treatment  Dialysis Water Treatment
Dialysis Water Treatment
 
Cleaning Reusable Medical Devices
Cleaning Reusable Medical Devices Cleaning Reusable Medical Devices
Cleaning Reusable Medical Devices
 
Sleep Laboratory
Sleep Laboratory Sleep Laboratory
Sleep Laboratory
 
Quality Assurance and Control Of Clinical Engineering Activities
Quality Assurance and Control Of Clinical Engineering Activities Quality Assurance and Control Of Clinical Engineering Activities
Quality Assurance and Control Of Clinical Engineering Activities
 
biomedical engineering consultant
biomedical engineering consultant biomedical engineering consultant
biomedical engineering consultant
 
certified expert in biomedical engineering projects
certified expert in biomedical engineering projectscertified expert in biomedical engineering projects
certified expert in biomedical engineering projects
 
Certifcates
CertifcatesCertifcates
Certifcates
 
patent
patentpatent
patent
 
Certificate1
Certificate1Certificate1
Certificate1
 
Biomedical Waste Managment
Biomedical Waste Managment Biomedical Waste Managment
Biomedical Waste Managment
 

CCEMS

  • 1. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 202 Computerized Clinical Engineering Management System Walid Tarawneh Ministry of Health Amman Jordan P.O.Box 1438 00962799049449 walidst@gmail.com Majeda Ghannam Ministry of Health Amman Jordan P.O.Box 1438 00962799049288 yaqout11@hotmail.com ABSTRACT This article describes a unique Computerized Clinical Engineering Management System (CCEMS) designed, developed and implemented at the Ministry of Health (MOH) in Jordan. The system covers the automation of all related to medical equipment (more than 30000 pieces of equipment) technical issues in 30 hospitals, 700 health centers, 420 dental clinics, 348 pediatrics and mother care clinics, and 23 blood banks. Every medical equipment was assigned an identity code that can be recognized through a bar code scanning system, and similarly all other involved parameters, such as hospitals, personnel, spare parts, workshops, and others, are also coded comprehensively. The system presents a powerful software package designed based on Oracle and implemented using a network covering different locations of the Directorate of Biomedical Engineering (DBE) at the MOH all over Jordan (20 location including the DBE- center) and through Web-based interactive connection. The CCEMS includes major subsystem regarding the Clinical Engineering (CE) activities such as; maintenance management, planning management, contract management, purchasing and material (spare parts) management and quality control management. The system proves to be invaluable tool to manage, control, and report all different parameters concerning the CE activities. The system can read and report in both Arabic and English languages. All system components were designed based on system requirement, international standards [4] and MOH regulations in Jordan. The system is implemented since 2004 and was evaluated and found to be reliable effective, and unique compared with internationally available systems. Categories and Subject Descriptors J.2 [Computer Applications]: Physical Sciences and Engineering - Engineering General Terms Management and Design. Keywords Computerized Clinical Engineering Management System (CCEMS), Ministry of Health (MOH), Directorate of Biomedical Engineering (DBE), Clinical Engineering (CE). 1. INTRODUCTION During the medical equipment life cycle an enormous amount of data needs to be collected, stored, recovered, analyzed, followed up and used to improve all related to medical equipment issues and activities. Just gathering data for medical equipment will not serve any purpose. In healthcare facilities the clinical engineers are swimming in data, exerting great effort to get information, knowledge and to perform action in base of medical equipment data. Figure 1 shows the different sources of medical equipment data, where too many data needs to be collected, managed, analyzed and used. The computerization of medical equipment data can save time, money and can minimize the human errors. The rapid development in information technology and computer science offers many solutions, programs, systems to computerize the medical equipment data and information [1]. In the market, there is a wide range of ready-made software packages that are flexible enough for different clinical engineering management systems [2]. Most of these systems present a complete solution to all issues associated with a certain clinical engineering system. Those packages mainly concentrate on equipment maintenance, spare parts management, can't be customized to certain clinical engineering needs and apply single language. Our aim was to design a CCEMS that cover all aspects related to the CE management system in Jordan MOH. Figure 1. Sources of medical equipment data 2. SYSTEM DESCRIPTION Figure 2 shows the main component handled by the system. The whole software system was constructed using Oracle 8i, 1.7, Developer 6 on the operating system windows 2000 NT. The system is basically constructed from 63 interlinked data entry screens distributed as shown in Table 1. The screens were designed and interlinked according to actual workflow after Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Fourth International Conference on Intelligent Computing and Information Systems, March 19-22, 2009, Cairo, Egypt.
  • 2. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 203 detailed analysis of the implemented at DBE - CE procedures. The web based application of the system is done by using ASP NET, which read / write from the same date base using SQL. As shown in Figure 3, which represents the complete configuration of the designed and implemented CCEMS, it covers all DBE locations all over the country (departments and workshops), where all CE departments have multiuser with simultaneous access to the system. The system generates more than 90 reports regarding all related to medical equipment matters and CE activities. This reporting mechanism can be extended to cover wider range of reports according to demand. Figure 2. Main system components Table 1. System data entry screens No Screen Type No. Screens 1 Coding screens 15 2 Equipment inventory and tracking 3 3 Preventive and Corrective Maintenance 6 4 Purchase operations 5 5 Equipment planning 6 6 Spare parts control 4 7 Contract management 4 8 Equipment warranty 3 9 Training control 2 10 Quality control 4 11 Manuals and test equipment control 2 12 Personnel control Archiving and document follows 9 Figure 3. The complete configuration of CCEMS 3. SYSTEM COMPONENTS 3.1 Standardizations and Coding As an important factor in data collection we paid high attention to standardizations and coding. All key data has been codified instead of using hand writing text to avoid any sort of typo errors. The following data has been coded: equipment names, manufacturers, suppliers, equipment locations, models, employees, equipment service priorities, spare parts, equipment groups, technical groups, workshops, test equipments, DBE stores, medical departments & units, countries and towns, files and document references, document locations. Every piece of medical equipment is assigned with 2 types of codes, the inventory number and the class number. The inventory number is an identity number that assign each unit in the medical equipment inventory list, which shall be identified by the information system. This was set to be a 6-digit number starting with letter M. The first equipment is then given the inventory number M00001. Within the software, the inventory number is assigned as a primary key that is linked to basic equipment information. The basic equipment information screen contains all basic information about any equipment in the system (Figure 4). In addition to these information's the screen shows the working condition, service responsibility and priority, availability of manuals, current running parts orders, the local agent of manufacturer, warrantee status and the current unit price. For the class number (code assigned to every type of medical equipment) the Universal Medical Devices Nomenclature System (UMDNS) code from ECRI [3] was adjusted and implemented. Every spare part was assigned a unique 3-part code that is linked with store location, equipment model number, and type of spare part. The code for every spare part looks like the following model: Spare part code = AA /BB / CCC , where AA represents the location (store code); BB represents the equipment group that part belong to (x-ray, sterilizer, dental, suction …etc) and CCC, the serial number of part in the group. Also every personnel working within DBE departments was assigned with a unique 5-digit code, which is a serial number starting with a ‘‘1’’ for biomedical engineers, ‘‘2’’ for biomedical technicians, and ‘‘3’’ for others. The location coding is done
  • 3. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 204 according to national geographical standard code and the assigned by MOH coding tables, where every health facility is also assigned with a 5-digit code. The coding system has also included all other related parameters, including technical groups, manufacturers, local representatives for manufacturers, and so on. Figure 4. Basic information screen 3.2 Logging into System Each employee was assigned a user name and pass word through which he could enter to the system (Figure 5). According to the job descriptions, some limitation has been implemented for entering, changing and viewing data. The electronic signature is made active according to the individual staff logged into the system. Figure 5.Employees coding screen 3.3 Users' Screens The system, similar to other international systems, comprises several users' screens. Some users' screens consist of sub screens. All data entry screens are constructed as simple oracle forms with fields linked to database system tables. Each screen depends on the type of the procedure performed by the CE employees. As mentioned before these screens were designed in accordance to certain CE-procedures. For example a typical corrective maintenance procedure is shown in Figure 6. The main requirements to these users screen are to be: easy for use data entry screens, have help menu, generate error messages/screens, have on-line indicators that shows which fields can or can’t be edited, "Pop-up" users facilities and that system should generate some sub screens and messages to help the user for quick, correct , better usage of the system. The help screens are obtained by clicking F9 button while searching for certain code of equipment type, location, part manufacturer, supplier, employee, model …etc. The help messages are obtained: when a certain sequence is needed, some fields are not allowed to be used by some users, or when certain format of data is needed, information about some fields...etc. Figure 6. Typical maintenance procedure The working order data entry screen is illustrated in Figure 7. The screen allows the user to identify facility requesting equipment service, type of service requested, whether the equipment warranted or under contract, if so the user can contact the local vendor or contractor via his fax or e-mail address. After finishing certain maintenance job, the user writes the technical report, time spend on job (including transport time) and sign Figure 7. Working order data entry screen electronically for completing the job. To follow up all incoming working orders the CE open the shown in Figure 8 follow up screen, which allows users the see pending jobs, clicking on
  • 4. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 205 certain job number will transfer the user to the working order screen. The quality control approval of each job is done after completing and if approved the job will disappear from the follow up screen, if not the quality control staff had to write reason for not approving in the quality control field in the working order. The spare parts used in certain job are discharged via anther user screen (Figure 9) where the job number is used as a primary key. Any jobs done by vendors or contractors engineers are filled in the same manner. The preventive maintenance users' screen are divided to two type: one for scheduling the time of inspection for certain type of medical equipment in different location within a year (Figure 10.) and one to control the performed periodic preventive maintenance jobs. All jobs and activities performed on certain equipment are summarized on so called history card screen (Figure 11), which analysis the time break for certain equipment ,the repair cost, type of failure ,spare parts used repairing time and preformed preventive maintenance jobs for certain equipment. In the planning process the user receive all the requests for new equipment form certain location in the screen illustrated in Figure 12. After technical evaluation in respect to the available units within that location and after Figure 8. Working order follow up screen Figure 9. Parts discharge screen Figure 10. Preventive maintenance scheduling screen Figure 11.History card screen Figure 12. Registration screen for new requested equipment approving the request, the system calculates the estimated cost of such request and auto planned it for purchasing depending on predetermined criteria (priority, available yearly budget and others). The system also provide the responsible CE-department to plan the location of each piece of equipment within certain medical department or hospital as shown in Figure 13.and to extract the technical specifications and purchasing condition from
  • 5. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 206 the data base for each item in the project. The purchasing users' screens are divided to two general types: equipment purchasing screens and spare parts purchasing screens. Each of these screen consist of sub screens, which allows the user to follow up the purchasing processes at each stage. The ordering of certain set of spare part is performed by e-mail or fax messaging the local or international vendors (figure 14). The illustrated in Figure 15 user screen represent the final result of a purchasing process from certain tender. The system contain many other user screens that deal with different CE tasks and activities, but one of the most interested applications toward the paperless work , communication, document flow tracking is the screen shown in Figure 16, which present the documents archiving screen based on a pre-scanned documents. The system codes these documents, saves them in jpg file form, where they can be use later in CE electronic messages/memos or communications via other screen. Each user has a mail box to view the incoming messages / memos, the attached documents to each message, to write his comments and to follow up actions taken by others. Figure 13.Equipment planning screen Figure 14. Spare parts ordering screen Figure 15.Equipment purchasing order registration screen Figure 16. Documents archiving screen 4. SYSTEM'S REPORTS AND MESSAGES The reporting capability of any system is a major indicator as to the overall system performance. The CCEMS generate More than 90 reports. These reports can be classified to the following categories : assets inventory reports (equipment, spare parts, test equipment, maintenance tools, manuals and accessories available within certain location), equipment status reports (faulty, warranted, scraped, new installed, requested and planned for purchasing equipment, equipment needs to be replaced next year or during the next three year and equipment required to be transfer to central workshop), equipment performance reports (equipment up time and down time , mean time between failures, failure analysis, equipment load, equipment level of utilization used parts in certain equipment and others ), CE performance reports (mean time to repair, the preventive maintenance compliance, CE man hours analysis, CE work load analysis, jobs and tasks performed by certain clinical engineer, technician, working group or department during certain period of time, pending jobs and others), cost analysis reports (cost effectiveness, total cost of ownership, maintenance cost, parts cost, transportation and man hours cost, contract cost, penalties implemented to certain contractors or vendors, available or released warranty bank security and performance bank security, completed equipment or parts tenders and purchasing
  • 6. Forth International Conference on Intelligent Computing and Information Systems March 19-22, 2009, Cairo, Egypt 207 orders…etc), training reports (CE training programs, medical staff training schedule, manufacturer training programs, user faulty equipment training program, preformed service or user training in certain model , type equipment) quality assurance and control reports(pending jobs, frequently faulty equipment, equipment safety, delays in jobs, performance working analysis of certain engineer, working group or department, engineering down time, customer complaints and satisfaction analysis ,quality control yearly inspection plan, spare parts, manuals and test equipment monitoring reports…etc), administrative and personal reports(incoming or outgoing letters memos in certain subject, waiting mails, vendors, local agent companies , service providers and manufacturers address and field of work, staff assessment staff vacations, leaves, sickness, salary, allowances, incentives and position …etc). Figures 17 & 18 illustrate some example of the system reports. On the other hand the system generates a number of messages to warn and help user for further actions. The help massages are obtained when a certain sequence is needed, some fields are not allowed to be used by some users, certain format of data is needed, information about some fields….etc, while the warning messages are obtained to inform the user for certain condition (time to perform preventive maintenance plan, reaching the minimum stock level for certain spare part or group of parts, exceeding certain time for an equipment without servicing, equipment that will be out of warranty within one month, exceeding the acceptable maintenance cost percentage, purchasing of available in stock parts, warning when in-house CE intends to service warrantees or contracts equipment and many others messages. Figure 19 shows an example of these warning messages. Figure 17. Equipment failure analysis report 5. CONCLUSIONS The CCEMS is implemented since July 2004 and was evaluated and found to be reliable effective and unique tool for in-house CE departments compared with internationally available systems. It is a tailor made (designed) software system in accordance to DBE procedures, activities and rules. It exactly match the requirements, processes and terminology, which in-house staff and departments know better than the outside vendors, more easy to be customized, implementation the CCEMS was developed and continue to be developed. Screens and reports are formed with aesthetic look, user friendliness, and easy for use. Since the first time of system developed upon the request of the DBE- departments and staff. The system implementation has shown the following results: achieving the ISO 9000/2001 certifications to perform all different activities of CE by a computerized system, it shows simplicity and immediate adaptation by all employees, it has the ability to deal with the huge data and parameters associated to CE. Figure 18. Down time equipment report Figure 19. Example of warning messages 6. ACKNOWLEDGMENTS Our thanks to all DBE clinical engineers, technicians and others employees for their help and support. 7. REFERENCES [1] Cram N. Computerized maintenance management systems: a review of a available products. J Clin Eng. Spring 1998. [2] Cohen T. Computerized maintenance management systems. J Clin Eng. Summer 2001. [3] Emergency Care Research Institution (ECRI), Universal Medical Device Nomenclature System, 2003 and 2007 Product Categories Thesaurus. [4] Association for the Advancement of Medical Instrumentation, Medical device software- Software life cycle processes American National Standard ANSI/AAMI SW68:2001